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FOREWORD

A few years ago I had an occasion to go through the book Calculus by L V Terasov. It unravels intricacies
of the subject through a dialogue between Teacher and Student. I thoroughly enjoyed reading it. For me this
seemed to be one of the few books which teach a difficult subject through inquisition, and using programmed
concept for learning. After that book, Dr Harish Chandra Verma’s book on physics, CONCEPTS OF PHYSICS is
another such attempt, even though it is not directly in the dialogue form. I have thoroughly appreciated it. It
is clear that Dr Verma has spent considerable time in formulating the structure of the book, besides its contents.
I think he has been successful in this attempt. Dr Verma’s book has been divided into two parts because of the
size of the total manuscript. There have been several books on this subject, each one having its own flavour.
However, the present book is a totally different attempt to teach physics, and I am sure it will be extremely
useful to the undergraduate students. The exposition of each concept is extremely lucid. In carefully formatted
chapters, besides problems and short questions, a number of objective questions have also been included. This
book can certainly be extremely useful not only as a textbook, but also for preparation of various competitive
examinations.

Those who have followed Dr Verma’s scientific work always enjoyed the outstanding contributions he has
made in various research areas. He was an outstanding student of Physics Department of IIT Kanpur during
his academic career. An extremely methodical, sincere person as a student, he has devoted himself to the task
of educating young minds and inculcating scientific temper amongst them. The present venture in the form of
these two volumes is another attempt in that direction. I am sure that young minds who would like to learn
physics in an appropriate manner will find these volumes extremely useful.

I must heartily congratulate Dr Harish Chandra Verma for the magnificent job he has done.

          
                                                           Y R Waghmare
                                                           Professor of  Physics
                                                           IIT Kanpur.
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P R E F A C E

Why a new book ?

Excellent books exist on physics at an introductory college level so why a new one ? Why so many books
exist at the same level, in the first place, and why each of them is highly appreciated ? It is because each of
these books has the privilege of having an author or authors who have experienced physics and have their own
method of communicating with the students. During my years as a physics teacher, I have developed a somewhat
different methodology of presenting physics to the students. Concepts of Physics is a translation of this
methodology into a textbook.

Prerequisites

The book presents a calculus-based physics course which makes free use of algebra, trigonometry and
co-ordinate geometry. The level of the latter three topics is quite simple and high school mathematics is sufficient.
Calculus is generally done at the introductory college level and I have assumed that the student is enrolled in
a concurrent first calculus course. The relevant portions of calculus have been discussed in Chapter 2 so that
the student may start using it from the beginning.

Almost no knowledge of physics is a prerequisite. I have attempted to start each topic from the zero level.
A receptive mind is all that is needed to use this book.

Basic philosophy of the book

The motto underlying the book is physics is enjoyable.
Being a description of the nature around us, physics is our best friend from the day of our existence. I have

extensively used this aspect of physics to introduce the physical principles starting with common day occurrences
and examples. The subject then appears to be friendly and enjoyable. I have taken care that numerical values
of different quantities used in problems correspond to real situations to further strengthen this approach.

Teaching and training

The basic aim of physics teaching has been to let the student know and understand the principles and
equations of physics and their applications in real life.

However, to be able to use these principles and equations correctly in a given physical situation, one needs
further training. A large number of questions and solved and unsolved problems are given for this purpose. Each
question or problem has a specific purpose. It may be there to bring out a subtle point which might have passed
unnoticed while doing the text portion. It may be a further elaboration of a concept developed in the text. It
may be there to make the student react when several concepts introduced in different chapters combine and
show up as a physical situation and so on. Such tools have been used to develop a culture: analyse the situation,
make a strategy to invoke correct principles and work it out.

Conventions

I have tried to use symbols, names, etc., which are popular nowadays. SI units have been consistently used
throughout the book. SI prefixes such as micro, milli, mega, etc., are used whenever they make the presentation
more readable. Thus, 20 µF is preferred over 20 × 10 − 6 F. Co-ordinate sign convention is used in geometrical
optics. Special emphasis has been given to dimensions of physical quantities. Numerical values of physical
quantities have been mentioned with the units even in equations to maintain dimensional consistency.

I have tried my best to keep errors out of this book. I shall be grateful to the readers who point out any
errors and/or make other constructive suggestions.

                                                                H C Verma

(vii)



ACKNOWLEDGEMENTS

The work on this book started in 1984. Since then, a large number of teachers, students and physics lovers
have made valuable suggestions which I have incorporated in this work. It is not possible for me to acknowledge
all of them individually. I take this opportunity to express my gratitude to them. However, to Dr S B Mathur,
who took great pains in going through the entire manuscript and made valuable comments, I am specially
indebted. I am also beholden to my colleagues Dr A Yadav, Dr Deb Mukherjee, Mr M M R Akhtar,
Dr Arjun Prasad, Dr S K Sinha and others who gave me valuable advice and were good enough to find time
for fruitful discussions. To Dr T K Dutta of B E College, Sibpur I am grateful for having taken time to go
through portions of the book and making valuable comments.

I thank my student Mr Shailendra Kumar who helped me in checking the answers. I am grateful to
Dr B C Rai, Mr Sunil Khijwania & Mr Tejaswi Khijwania for helping me in the preparation of  rough sketches
for the book.

Finally, I thank the members of my family for their support and encouragement.

                                                                 H C Verma

(viii)



TO THE STUDENTS

Here is a brief discussion on the organisation of the book which will help you in using the book most
effectively. The book contains 47 chapters divided in two volumes. Though I strongly believe in the underlying
unity of physics, a broad division may be made in the book as follows:

Chapters 1–14: Mechanics
15–17: Waves including wave optics
18–22: Optics 
23–28: Heat and thermodynamics
29–40: Electric and magnetic phenomena
41–47: Modern physics

Each chapter contains a description of the physical principles related to that chapter. It is well supported
by mathematical derivations of equations, descriptions of laboratory experiments, historical background, etc.
There are "in-text" solved examples. These examples explain the equation just derived or the concept just
discussed. These will help you in fixing the ideas firmly in your mind. Your teachers may use these in-text
examples in the classroom to encourage students to participate in discussions.

After the theory section, there is a section on Worked Out Examples. These numerical examples correspond
to various thinking levels and often use several concepts introduced in that chapter or even in previous chapters.
You should read the statement of a problem and try to solve it yourself. In case of difficulty, look at the solution
given in the book. Even if you solve the problem successfully, you should look into the solution to compare it
with your method of solution. You might have thought of a better method, but knowing more than one method
is always beneficial.

Then comes the part which tests your understanding as well as develops it further. Questions for Short
Answer generally touch very minute points of your understanding. It is not necessary that you answer these
questions in a single sitting. They have great potential to initiate very fruitful dicussions. So, freely discuss
these questions with your friends and see if they agree with your answer. Answers to these questions are not
given for the simple reason that the answers could have cut down the span of such discussions and that would
have sharply reduced the utility of these questions.

There are two sections on multiple-choice questions, namely OBJECTIVE I and OBJECTIVE II. There are
four options following each of these questions. Only one option is correct for OBJECTIVE I questions. Any number
of options, zero to four, may be correct for OBJECTIVE II questions. Answers to all these questions are provided.

Finally, a set of numerical problems are given for your practice. Answers to these problems are also provided.
The problems are generally arranged according to the sequence of the concepts developed in the chapter but
they are not grouped under section-headings. I don’t want to bias your ideas beforehand by telling you that this
problem belongs to that section and hence use that particular equation. You should yourself look into the problem
and decide which equations or which methods should be used to solve it. Many of the problems use several
concepts developed in different sections of the chapter. Many of them even use the concepts from the previous
chapters. Hence, you have to plan out the strategy after understanding the problem.

Remember, no problem is difficult. Once you understand the theory, each problem will become easy. So, don’t
jump to exercise problems before you have gone through the theory, the worked-out problems and the objectives.
Once you feel confident in theory, do the exercise problems. The exercise problems are so arranged that they
gradually require more thinking.

I hope you will enjoy Concepts of Physics.
                                                              H C Verma
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increases monotonically with increasing temperature.
This property of a gas may be used to construct a
thermometer. Figure (23.3) shows a schematic diagram
of a constant volume gas thermometer.

A mass of gas is enclosed in a bulb A connected to
a capillary BC. The capillary is connected to the
manometer CD which contains mercury. The other end
of the manometer is open to atmosphere. A vertical
metre scale E is fixed in such a way that the height
of the mercury column in the tube D can easily be
measured. The mercury in the manometer is connected
to the mercury reservoir F through a rubber tube.

The capillary BC has a fixed mark at C. By raising
or lowering the reservoir F, the mercury level in the
left part of the manometer is maintained at C. This
ensures that the volume of the gas enclosed in the bulb
A (and the capillary BC) remains constant. The
pressure of the gas is equal to the atmospheric
pressure plus the pressure due to the difference of the
mercury columns in the manometer. Thus,
p  p0  hg, where p0  atmospheric pressure,
h  difference of mercury levels in the manometer tube,
  density of mercury and g  acceleration due to
gravity.

If the temperature of the bulb is increased and its
volume is kept constant by adjusting the height of the
reservoir F, the pressure of the gas p  p0  hg
increases. Thus, a temperature scale may be defined
by choosing some suitable function of this pressure.
Let us assume that the temperature is proportional to
the pressure, i.e.,

T  cp ,  (23.4)

where c is some constant.

In addition, the temperature of triple point of
water is assigned a value 273.16 K. (Triple point is a
state in which ice, water and water vapour can stay
together in equilibrium.) The unit is called a kelvin
and is denoted by the symbol K. To get the value of
the constant c in equation (23.4), we can put the bulb

A in a triple point cell and measure the pressure ptr

of the gas. From equation (23.4),

          273.16 K  cptr

or,         c  
273.16 K

ptr
 

The temperature of the gas when the pressure is
p is obtained by putting this value of c in equation
(23.4). It is

           T  
p
ptr

  273.16 K.  (23.5)

To use the thermometer, we must first determine
the pressure of the gas ptr at the triple point. This is
a fixed value for the thermometer and is used in any
measurement. To measure the temperature of a bath
of extended volume, the bulb A is dipped in the bath.
Sufficient time is allowed so that the gas in the bulb
comes to thermal equilibrium with the bath. The
reservoir F is adjusted to bring the volume of the gas
to its original value and the pressure p of the gas is
measured with the manometer. The temperature T on
the gas scale is then obtained from equation (23.5).

One can also define a centigrade scale with gas
thermometers. Suppose the pressure of the gas is p0

when the bulb A is placed in melting ice (ice point)
and it is p100 when the bulb is placed in a steam bath
(steam point). We assign 0C to the temperature of the
ice point and 100C to the steam point. The
temperature t corresponding to a pressure p of the gas
is defined by 

t  
p  p0

p100  p0
  100C.  (23.6)

 The constant volume gas thermometer allows
several errors in the temperature measurement. The
main sources of error are the following:

(a) The space in the capillary tube BC generally
remains out of the heat bath in which the bulb A is
placed. The gas in BC is, therefore, not at the same
temperature as the gas in A.

(b) The volume of the glass bulb changes slightly
with temperature allowing the volume of the gas to
change.

Example 23.1

   The pressure of air in the bulb of a constant volume gas
thermometer is 73 cm of mercury at 0C, 100.3 cm of
mercury at 100C and 77.8 cm of mercury at room
temperature. Find the room temperature in centigrades.

Solution : We have t  
p  p0

p100  p0

  100C

 
77.8  73
100.3  73

  100C  17C.

Pressure = P + h g0

A

B

C

E
D

F
h

Figure 23.3
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At 27°C, the pressure is 75 cm + 5 cm = 80 cm of
mercury. At the liquid temperature, the pressure is

75 cm + 45 cm = 120 cm of mercury. Using T2 = 
P2

P1

 T1,

the temperature of the liquid is

     T = 
120
80

 × ( 27.0 + 273.15 ) K = 450.22 K.

= 177.07°C ≈ 177°C.

 5. The resistances of a platinum resistance thermometer at
the ice point, the steam point and the boiling point of
sulphur are 2.50, 3.50 and 6.50 Ω respectively. Find the
boiling point of sulphur on the platinum scale. The ice
point and the steam point measure 0° and 100°
respectively.

Solution : The temperature on the platinum scale is
defined as

t = 
Rt − R0

R100 − R0

 × 100°.

The boiling point of sulphur on this scale is

t = 
6.50 − 2.50
3.50 − 2.50

 × 100° = 400°.

 6. A platinum resistance thermometer reads 0° and 100° at
the ice point and the boiling point of water respectively.
The resistance of a platinum wire varies with Celsius
temperature θ as Rt = R0 (1 + αθ + βθ 2), where

α = 3.8 × 10 – 3 °C – 1 and β = − 5.6 × 10 – 7 °C – 2. What will
be the reading of this thermometer if it is placed in a
liquid bath maintained at 50°C ?

Solution : The resistances of the wire in the thermometer
at 100°C and 50°C are 

     R100 = R0 [1 + α × 100°C + β × (100°C )2]

and, R50 = R0 [1 + α × 50°C + β × ( 50°C )2].

The temperature t measured on the platinum
thermometer is given by

        t = 
R50 − R0

R100 − R0

 × 100°

= 
α × 50°C + β × ( 50°C) 2

α × 100°C + β × ( 100°C) 2 × 100°

= 50.4°.

 7. A platinum resistance thermometer is constructed which
reads 0° at ice point and 100° at steam point. Let tp

denote the temperature on this scale and let t denote the
temperature on a mercury thermometer scale. The
resistance of the platinum coil varies with t as
Rt = R0 (1 + αt + βt 2). Derive an expression for the
resistance as a function of tp.

Solution : Let Rtp
 denote the resistance of the coil at

the platinum scale temperature tp. Then

      tp = 
Rtp

 − R0

R100 − R0

 × 100

or, Rtp
  = 

tp

100
 ⎛
⎝
R100 − R0⎞⎠

 + R0

= 
tp

100
 ⎡
⎣
R0 

⎧
⎨
⎩1 + α × 100 + β × (100) 2 ⎫

⎬
⎭ − R0⎤⎦

 + R0

= 
tp

100
 ⎡⎣ α × 100 + β × (100) 2⎤

⎦ R0 + R0

= R0 
⎡
⎢
⎣
1 + 

⎧
⎨
⎩ α × 100 + β × (100) 2 

⎫
⎬
⎭ 

tp

100
 
⎤
⎥
⎦

= R0 ⎡⎣
 1 + αtp + β × (100) tp ⎤⎦

.

Only numerical values of α and β are to be used.

 8. An iron rod of length 50 cm is joined at an end to an
aluminium rod of length 100 cm. All measurements refer
to 20°C. Find the length of the composite system at
100°C and its average coefficient of linear expansion. The
coefficient of linear expansion of iron and aluminium are
12 × 10 – 6 °C −1 and 24 × 10 – 6 °C −1 respectively.

Solution : The length of the iron rod at 100°C is

    l1 = ( 50 cm ) [ 1 + (12 × 10 – 6 °C −1) (100°C − 20°C) ]

= 50.048 cm.

The length of the aluminium rod at 100°C is

l2 = ( 100 cm ) [ 1 + (24 × 10 – 6 °C −1) (100°C − 20°C) ]

= 100.192 cm.

The length of the composite system at 100°C is

50.048 cm + 100.192 cm = 150.24 cm.

The length of the composite system at 20°C is 150 cm.
So, the average coefficient of linear expansion of the
composite rod is

α = 
0.24 cm

150 cm × (100°C − 20°C)

           = 20 × 10 − 6 °C − 1 .

 9. An iron ring measuring 15.00 cm in diameter is to be
shrunk on a pulley which is 15.05 cm in diameter. All
measurements refer to the room temperature 20°C. To
what minimum temperature should the ring be heated to
make the job possible ? Calculate the strain developed in
the ring when it comes to the room temperature.
Coefficient of linear expansion of iron = 12 × 10 – 6 °C – 1.

Solution : The ring should be heated to increase its
diameter from 15.00 cm to 15.05 cm.

Using         l2 = l1 ( 1 + α Δθ),

8 Concepts of Physics



             = 
0.05 cm

15.00 cm × 12 × 10 – 6 °C −1

= 278°C
The temperature = 20°C + 278°C = 298°C.

The strain developed = 
l2 − l1

l1

 = 3.33 × 10 – 3.

10. A pendulum clock consists of an iron rod connected to a
small, heavy bob. If it is designed to keep correct time at
20°C, how fast or slow will it go in 24 hours at 40°C ?

Coefficient of linear expansion of iron = 1.2 × 10 – 5 °C – 1.

Solution : The time period at temperature θ is

         T = 2π√⎯⎯⎯⎯⎯lθ /g

= 2π √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯l0(1 + αθ)/g

= 2π √⎯⎯⎯⎯⎯l0 / g  (1 + αθ) 1/2

≈ T0(1 + 
1
2

 αθ).

Thus, T20 = T0[1 + 1
2

 α(20°C)]

and, T40 = T0[1 + 1
2

 α(40°C)]

or, 
T40

T20
 = [1 + (20°C)α] [1 + (10°C)α] – 1

≈ [1 + (20°C)α] [1 − (10°C)α]

≈ 1 + (10°C) α

   or, 
T40 − T20

T20

 = (10°C) α = 1.2 × 10 – 4. … (i)

This is fractional loss of time. As the temperature
increases, the time period also increases. Thus, the clock
goes slow. The time lost in 24 hours is, by (i),

      Δt = (24 hours) (1.2 × 10 – 4) = 10.4 s.

11. A pendulum clock having copper rod keeps correct time
at 20°C. It gains 15 seconds per day if cooled to 0°C.
Calculate the coefficient of linear expansion of copper.

Solution : The time period at temperature θ is

            T = 2π √⎯⎯⎯⎯⎯lθ /g

≈ T0 (1 + 
1
2

 αθ)

Thus, T20 = T0 [1 + α (10°C)]

   or,
(T20 − T0)

T0

 = α (10°C). … (i)

T20  is the correct time period. The period at 0°C is
smaller so that the clock runs fast. Equation (i) gives
approximately the fractional gain in time. The time
gained in 24 hours is

ΔT = (24 hours) [(10°C)α]

or,      15 s = (24 hours) [(10°C)α]

or,       α = 
15 s

(24 hours) (10°C)

         = 1.7 × 10 – 5 °C – 1.

12. A piece of metal weighs 46 g in air and 30 g in a liquid
of density 1.24 × 10 3 kg m – 3 kept at 27°C. When the
temperature of the liquid is raised to 42°C, the metal
piece weighs 30.5 g. The density of the liquid at 42°C is

1.20 × 10 3 kg m – 3. Calculate the coefficient of linear
expansion of the metal.

Solution : Let the volume of the metal piece be V0 at
27°C and Vθ at 42°C. The density of the liquid at 27°C

is ρ0 = 1.24 × 10 3 kg m – 3 and the density of the liquid at

42°C is ρθ = 1.20 × 10 3 kg m – 3.

The weight of the liquid displaced = apparent loss in the
weight of the metal piece when dipped in the liquid.
Thus,

V0 ρ0 = 46 g − 30 g = 16 g

and, Vθ ρθ = 46 g − 30.5 g = 15.5 g .

Thus,

             
Vθ

V0

 = 
ρ0

ρθ
 × 

15.5
16

or, 1 + 3 αΔθ = 
1.24 × 10 3 × 15.5
1.20 × 10 3 × 16

or, 1 + 3α(42°C − 27°C) = 1.00104

or, α = 2.3 × 10 – 5 °C – 1.

13. A sphere of diameter 7.0 cm and mass 266.5 g floats in
a bath of liquid. As the temperature is raised, the sphere
begins to sink at a temperature of 35°C. If the density of
the liquid is 1.527 g cm –3 at 0°C, find the coeffiecient of
cubical expansion of the liquid. Neglect the expansion of
the sphere.

Solution : It is given that the expansion of the sphere is
negligible as compared to the expansion of the liquid.
At 0°C, the density of the liquid is ρ0 = 1.527 g cm –3. At
35°C, the density of the liquid equals the density of the
sphere. Thus,

          ρ35 = 
266.5 g

4
3

 π (3.5 cm) 3

 = 1.484 g cm – 3

We have 
ρθ

ρ0

 = 
V0

Vθ
 = 

1
(1 + γθ)

or,        ρθ = 
ρ0

1 + γθ
 ⋅

Thus,      γ = 
ρ0 − ρ35

ρ35 (35°C)
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        = 
(1.527 − 1.484) g cm – 3

(1.484 g cm – 3) (35°C)

= 8.28 × 10– 4 °C – 1.

14. An iron rod and a copper rod lie side by side. As the
temperature is changed, the difference in the lengths of the
rods remains constant at a value of 10 cm. Find the lengths
at 0°C. Coefficients of linear expansion of iron and copper

are 1.1 × 10 – 5 °C – 1 and 1.7 × 10 – 5 °C – 1 respectively.

Solution : Suppose the length of the iron rod at 0°C is
li0 and the length of the copper rod at 0°C is lc0. The
lengths at temperature θ are

liθ = li0 (1 + αiθ) … (i)

   and lcθ = lc0 (1 + αcθ). … (ii)

Subtracting,
        liθ − lcθ = (li0 − lc0) + (li0 αi − lc0 αc) θ. … (iii)

Now,       
liθ − lcθ = li0 − lc0 (= 10 cm).

Thus, from (iii), li0 αi = lc0 αc

or, 
li0

lc0

 = 
αc

αi

or,
li0

li0 − lc0

 = 
αc

αc − αi

 = 
1.7 × 10 – 5 °C −1

0.6 × 10 – 5 °C −1 = 17
6

 ⋅

This shows that li0 − lc0 is positive. Its value is 10 cm as
given in the question.

Hence,      li0 = 
17
6

 × (li0 − lc0)

= 
17
6

 × 10 cm = 28.3 cm

and lc0 = li0 − 10 cm = 18.3 cm.

15. A uniform steel wire of cross-sectional area 0.20 mm 2 is
held fixed by clamping its two ends. Find the extra force
exerted by each clamp on the wire if the wire is cooled from
100°C to 0°C. Young’s modulus of steel = 2.0 × 10 11 N m – 2.

Coefficient of linear expansion of steel = 1.2 × 10 – 5 °C – 1.

Solution : Let us assume that the tension is zero at 100°C so
that lθ is the natural length of the wire at 100°C. As the

wire cools down, its natural length decreases to l0. As the
wire is fixed at the clamps, its length remains the same
as the length at 100°C. Thus, the extension of the wire
over its natural length at 0°C is

       lθ − l0 = l0 (1 + αθ) − l0 = l0αθ.

The strain developed is 
lθ − l0

lθ
 ≈ 

lθ − l0

l0

 = αθ.

The stress developed = Y × strain = Y αθ.
The tension in the wire at 0°C is

     T = stress × area

= Y αt × 0.20 mm 2

= (2.0 × 10 11 N m – 2) × (1.2 × 10 – 5 °C – 1)

        × 100°C × (0.20 × 10 – 6 m – 2)
= 48 N.

This is equal to the extra force exerted by each clamp.

16. A glass vessel of volume 100 cm – 3 is filled with mercury
and is heated from 25°C to 75°C. What volume of
mercury will overflow ? Coefficient of linear expansion of
glass = 1.8 × 10 – 6 °C – 1 and coefficient of volume expansion

of mercury is 1.8 × 10 – 4 °C – 1.

Solution : The volume of mercury at 25°C is

   V0 = 100 cm – 3.

The coefficient of volume expansion of mercury

γL = 1.8 ×10 – 4 °C – 1.

The coefficient of volume expansion of glass

γS = 3 × 1.8 × 10 – 6 °C – 1

= 5.4 × 10 – 6 °C – 1.

Thus, the volume of mercury at 75°C is

VLθ = V0(1 + γL Δθ)

and the volume of the vessel at 75°C is

VSθ = V0 (1 + γS Δθ).

The volume of mercury overflown

= VLθ − VSθ = V0 (γL − γS) Δθ … (i)

  = (100 cm – 3) (1.8 × 10 – 4 − 5.4 × 10 – 6)/°C × (50°C)

= 0.87 cm 3.

Note that γa = (γL − γS) acts as the effective coefficient of
expansion of the liquid with respect to the solid. The
expansion of mercury ‘as seen from the glass’ can be
written as

           Vθ − V0 = V0 γaθ

or,            Vθ = V0(1 + γaθ).

The constant γa is called the ‘apparent coefficient of
expansion’ of the liquid with respect to the solid.

17. A barometer reads 75.0 cm on a steel scale. The room
temperature is 30°C. The scale is correctly graduated for
0°C. The coefficient of linear expansion of steel is

α = 1.2 × 10 – 5 °C – 1 and the coefficient of volume

expansion of mercury is γ = 1.8 × 10 – 4 °C – 1. Find the
correct atmospheric pressure.

Solution : The 75 cm length of steel at 0°C will become
lθ at 30°C where,

          lθ = (75 cm) [1 + α (30°C)].         … (i)
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The length of mercury column at 30°C is lθ. Suppose the

length of the mercury column, if it were at 0°C, is l0.
Then,

            lθ = l0 [1 + 
1
3

 γ (30°C)]. … (ii)

By (i) and (ii),

   l0[1 + 
1
3

 γ (30°C)] = 75 cm[1 + α(30°C)]

or,      l0 = 75 cm
[1 + α(30°C)]

[1 + 1
3

 γ (30°C)]

≈ 75 cm [1 + (α − 
γ
3

) (30°C)]

= 74.89 cm .

QUESTIONS FOR SHORT ANSWER

 1. If two bodies are in thermal equilibrium in one frame,
will they be in thermal equilibrium in all frames ?

 2. Does the temperature of a body depend on the frame
from which it is observed ?

 3. It is heard sometimes that mercury is used in defining
the temperature scale because it expands uniformly with
the temperature. If the temperature scale is not yet
defined, is it logical to say that a substance expands
uniformly with the temperature ?

 4. In defining the ideal gas temperature scale, it is
assumed that the pressure of the gas at constant volume
is proportional to the temperature T . How can we verify
whether this is true or not ? Are we using the kinetic
theory of gases ? Are we using the experimental result
that the pressure is proportional to temperature ?

 5. Can the bulb of a thermometer be made of an adiabatic
wall ?

 6. Why do marine animals live deep inside a lake when
the surface of the lake freezes ?

 7. The length of a brass rod is found to be smaller on a
hot summer day than on a cold winter day as measured

by the same aluminium scale. Do we conclude that brass
shrinks on heating ?

 8. If mercury and glass had equal coefficient of volume
expansion, could we make a mercury thermometer in a
glass tube ?

 9. The density of water at 4°C is supposed to be
1000 kg m – 3. Is it same at the sea level and at a high
altitude ?

10. A tightly closed metal lid of a glass bottle can be opened
more easily if it is put in hot water for some time.
Explain.

11. If an automobile engine is overheated, it is cooled by
putting water on it. It is advised that the water should
be put slowly with engine running. Explain the reason.

12. Is it possible for two bodies to be in thermal equilibrium
if they are not in contact ?

13. A spherical shell is heated. The volume changes
according to the equation Vθ = V0 (1 + γθ). Does the
volume refer to the volume enclosed by the shell or the
volume of the material making up the shell ?

OBJECTIVE I

 1. A system X is neither in thermal equilibrium with Y nor
with Z. The systems Y and Z
(a) must be in thermal equilibrium
(b) cannot be in thermal equilibrium
(c) may be in thermal equilibrium.

 2. Which of the curves in figure (23-Q1) represents the
relation between Celsius and Fahrenheit temperatures ?

 3. Which of the following pairs may give equal numerical
values of the temperature of a body ?
(a) Fahrenheit and kelvin  (b) Celsius and kelvin
(c) Kelvin and platinum

 4. For a constant volume gas thermometer, one should fill
the gas at
(a) low temperature and low pressure
(b) low temperature and high pressure
(c) high temperature and low pressure
(d) high temperature and high pressure.

 5. Consider the following statements.
(A) The coefficient of linear expansion has dimension
        K – 1.
(B) The coefficient of volume expansion has dimension
        K – 1.
(a) A and B are both correct.
(b) A is correct but B is wrong.

Figure 23-Q1
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(c) B is correct but A is wrong.
(d) A and B are both wrong.

 6. A metal sheet with a circular hole is heated. The hole
(a) gets larger             (b) gets smaller
(c) remains of the same size    (d) gets deformed.

 7. Two identical rectangular strips, one of copper and the
other of steel, are rivetted together to form a bimetallic
strip (αcopper > αsteel). On heating, this strip will
(a) remain straight
(b) bend with copper on convex side
(c) bend with steel on convex side
(d) get twisted.

 8. If the temperature of a uniform rod is slightly increased
by Δt, its moment of inertia I about a perpendicular

bisector increases by
(a) zero    (b) αIΔt    (c) 2αIΔt    (d) 3αIΔt.

 9. If the temperature of a uniform rod is slightly increased
by Δt, its moment of inertia I about a line parallel to
itself will increase by
(a) zero    (b) αIΔt    (c) 2αIΔt    (d) 3αIΔt.

10. The temperature of water at the surface of a deep lake
is 2°C. The temperature expected at the bottom is
(a) 0°C     (b) 2°C     (c) 4°C     (d) 6°C.

11. An aluminium sphere is dipped into water at 10°C. If
the temperature is increased, the force of buoyancy
(a) will increase             (b) will decrease
(c) will remain constant
(d) may increase or decrease depending on the radius
       of the sphere.

OBJECTIVE II

 1. A spinning wheel is brought in contact with an identical
wheel spinning at identical speed. The wheels slow down
under the action of friction. Which of the following
energies of the first wheel decrease ?
(a) Kinetic  (b) Total  (c) Mechanical  (d) Internal

 2. A spinning wheel A is brought in contact with another
wheel B initially at rest. Because of the friction at
contact, the second wheel also starts spinning. Which of
the following energies of the wheel B increase ?
(a) Kinetic  (b) Total  (c) Mechanical  (d) Internal

 3. A body A is placed on a railway platform and an
identical body B in a moving train. Which of the
following energies of B are greater than those of A as
seen from the ground ?
(a) Kinetic  (b) Total  (c) Mechanical  (d) Internal

 4. In which of the following pairs of temperature scales,
the size of a degree is identical ?

(a) Mercury scale and ideal gas scale
(b) Celsius scale and mercury scale
(c) Celsius scale and ideal gas scale
(d) Ideal gas scale and absolute scale

 5. A solid object is placed in water contained in an
adiabatic container for some time. The temperature of
water falls during the period and there is no appreciable
change in the shape of the object. The temperature of
the solid object
(a) must have increased      (b) must have decreased
(c) may have increased
(d) may have remained constant.

 6. As the temperature is increased, the time period of a
pendulum
(a) increases proportionately with temperature
(b) increases             (c) decreases
(d) remains constant.

EXERCISES

 1. The steam point and the ice point of a mercury
thermometer are marked as 80° and 20°. What will be
the temperature in centigrade mercury scale when this
thermometer reads 32° ?

 2. A constant volume thermometer registers a pressure of
1.500 × 10 4 Pa at the triple point of water and a pressure
of 2.050 × 10 4 Pa at the normal boiling point. What is
the temperature at the normal boiling point ?

 3. A gas thermometer measures the temperature from the
variation of pressure of a sample of gas. If the pressure
measured at the melting point of lead is 2.20 times the
pressure measured at the triple point of water, find the
melting point of lead.

 4. The pressure measured by a constant volume gas
thermometer is 40 kPa at the triple point of water. What
will be the pressure measured at the boiling point of
water (100°C) ?

 5. The pressure of the gas in a constant volume gas
thermometer is 70 kPa at the ice point. Find the
pressure at the steam point.

 6. The pressures of the gas in a constant volume gas
thermometer are 80 cm, 90 cm and 100 cm of mercury
at the ice point, the steam point and in a heated wax
bath respectively. Find the temperature of the wax bath.

 7. In a Callender’s compensated constant pressure air
thermometer, the volume of the bulb is 1800 cc. When
the bulb is kept immersed in a vessel, 200 cc of mercury
has to be poured out. Calculate the temperature of the
vessel.

 8. A platinum resistance thermometer reads 0° when its
resistance is 80 Ω and 100° when its resistance is 90 Ω.
Find the temperature at the platinum scale at which the
resistance is 86 Ω.

12 Concepts of Physics



 9. A resistance thermometer reads R = 20.0 Ω, 27.5 Ω,  and
50.0 Ω at the ice point (0°C), the steam point (100°C)
and the zinc point (420°C) respectively. Assuming that
the resistance varies with temperature as
Rθ = R0 (1 + αθ + βθ 2), find the values of R0 , α and β.
Here θ represents the temperature on Celsius scale.

10. A concrete slab has a length of 10 m on a winter night
when the temperature is 0°C. Find the length of the slab
on a summer day when the temperature is 35°C. The
coefficient of linear expansion of concrete is
1.0 × 10 – 5 °C – 1.

11. A metre scale made of steel is calibrated at 20°C to give
correct reading. Find the distance between 50 cm mark
and 51 cm mark if the scale is used at 10°C. Coefficient
of linear expansion of steel is 1.1 × 10 – 5 °C – 1.

12. A railway track (made of iron) is laid in winter when
the average temperature is 18°C. The track consists of
sections of 12.0 m placed one after the other. How much
gap should be left between two such sections so that
there is no compression during summer when the
maximum temperature goes to 48°C ? Coefficient of
linear expansion of iron = 11 × 10 – 6 °C – 1.

13. A circular hole of diameter 2.00 cm is made in an
aluminium plate at 0°C. What will be the diameter at
100°C ? α for aluminium = 2.3 × 10 – 5 °C – 1.

14. Two metre scales, one of steel and the other of
aluminium, agree at 20°C. Calculate the ratio
aluminium-centimetre/steel-centimetre at (a) 0°C,
(b) 40°C and (c) 100°C. α for steel = 1.1 × 10  – 5 °C – 1 and
for aluminium = 2.3 × 10 – 5 °C – 1.

15. A metre scale is made up of steel and measures correct
length at 16°C. What will be the percentage error if this
scale is used (a) on a summer day when the temperature
is 46°C and (b) on a winter day when the temperature
is 6°C ? Coefficient of linear expansion of steel
= 11 × 10 – 6 °C – 1.

16. A metre scale made of steel reads accurately at 20°C.
In a sensitive experiment, distances accurate up to
0.055 mm in 1 m are required. Find the range of
temperature in which the experiment can be performed
with this metre scale. Coefficient of linear expansion of
steel = 11 × 10 – 6 °C – 1.

17. The density of water at 0°C is 0.998 g cm –3 and at 4°C is
1.000 g cm –3. Calculate the average coefficient of volume
expansion of water in the temperature range 0 to 4°C.

18. Find the ratio of the lengths of an iron rod and an
aluminium rod for which the difference in the lengths
is independent of temperature. Coefficients of linear
expansion of iron and aluminium are 12 × 10 – 6 °C – 1 and
23 × 10 – 6 °C – 1 respectively.

19. A pendulum clock gives correct time at 20°C at a place
where g = 9.800 m s –2. The pendulum consists of a light
steel rod connected to a heavy ball. It is taken to a
different place where g = 9.788 m s –2. At what
temperature will it give correct time ? Coefficient of
linear expansion of steel = 12 × 10 – 6 °C – 1.

20. An aluminium plate fixed in a horizontal position has a
hole of diameter 2.000 cm. A steel sphere of diameter
2.005 cm rests on this hole. All the lengths refer to a
temperature of 10°C. The temperature of the entire
system is slowly increased. At what temperature will the
ball fall down ? Coefficient of linear expansion of
aluminium is 23 × 10 – 6 °C – 1 and that of steel is
11 × 10 – 6 °C – 1.

21. A glass window is to be fit in an aluminium frame. The
temperature on the working day is 40°C and the glass
window measures exactly 20 cm × 30 cm. What should
be the size of the aluminium frame so that there is no
stress on the glass in winter even if the temperature
drops to 0°C ? Coefficients of linear expansion for glass
and aluminium are 9.0 × 10 – 6 °C – 1 and 24 × 10 – 6 °C – 1

respectively.
22. The volume of a glass vessel is 1000 cc at 20°C. What

volume of mercury should be poured into it at this
temperature so that the volume of the remaining space
does not change with temperature ? Coefficients of
cubical expansion of mercury and glass are
1.8 ×10 – 4 °C – 1 and 9.0 × 10 – 6 °C – 1 respectively.

23. An aluminium can of cylindrical shape contains
500 cm 3 of water. The area of the inner cross section of
the can is 125 cm 2. All measurements refer to 10°C.
Find the rise in the water level if the temperature
increases to 80°C. The coefficient of linear expansion of
aluminium = 23 × 10 – 6 °C – 1 and the average coefficient of
volume expansion of water = 3.2 × 10 – 4 °C – 1 respectively.

24. A glass vessel measures exactly 10 cm × 10 cm × 10 cm
at 0°C. It is filled completely with mercury at this
temperature. When the temperature is raised to 10°C,
1.6 cm 3 of mercury overflows. Calculate the coefficient
of volume expansion of mercury. Coefficient of linear
expansion of glass = 6.5 × 10 – 6 °C – 1.

25. The densities of wood and benzene at 0°C are
880 kg m 3 and 900 kg m – 3 respectively. The coefficients
of volume expansion are 1.2 × 10 – 3 °C – 1 for wood and
1.5 × 10 – 3 °C – 1 for benzene. At what temperature will a
piece of wood just sink in benzene ?

26. A steel rod of length 1 m rests on a smooth horizontal
base. If it is heated from 0°C to 100°C, what is the
longitudinal strain developed ?

27. A steel rod is clamped at its two ends and rests on a
fixed horizontal base. The rod is unstrained at 20°C.
Find the longitudinal strain developed in the rod if the
temperature rises to 50°C. Coefficient of linear
expansion of steel = 1.2 × 10 – 5 °C – 1.

28. A steel wire of cross-sectional area 0.5 mm 2 is held
between two fixed supports. If the wire is just taut at
20°C, determine the tension when the temperature falls
to 0°C. Coefficient of linear expansion of steel is
1.2 × 10 – 5 °C – 1 and its Young’s modulus is
2.0 × 10 11 N m – 2.

29. A steel rod is rigidly clamped at its two ends. The rod
is under zero tension at 20°C. If the temperature rises
to 100°C, what force will the rod exert on one of the
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clamps? Area of cross section of the rod = 2.00 mm 2.
Coefficient of linear expansion of steel = 12.0 × 10 – 6 °C – 1

and Young’s modulus of steel = 2.00 × 10 11 N m – 2.
30. Two steel rods and an aluminium rod of equal length

lo and equal cross section are joined rigidly at their ends
as shown in the figure below. All the rods are in a state
of zero tension at 0°C. Find the length of the system
when the temperature is raised to θ. Coefficient of linear
expansion of aluminium and steel are αa  and  αs

respectively. Young’s modulus of aluminium is Ya and
of steel is Ys.

31. A steel ball initially at a pressure of 1.0 × 10 5 Pa is

heated from 20°C to 120°C keeping its volume constant.

Find the pressure inside the ball. Coefficient of linear
expansion of steel = 12 × 10 – 6 °C – 1 and bulk modulus of
steel = 1.6 × 10 11 N m – 2.

32. Show that moment of inertia of a solid body of any shape
changes with temperature as I = I0 (1 + 2αθ), where I0 is
the moment of inertia at 0°C and α is the coefficient of
linear expansion of the solid.

33. A torsional pendulum consists of a solid disc connected
to a thin wire  (α = 2.4 × 10 – 5 °C – 1) at its centre. Find
the percentage change in the time period between peak
winter (5°C) and peak summer (45°C).

34. A circular disc made of iron is rotated about its axis at
a constant velocity ω. Calculate the percentage change
in the linear speed of a particle of the rim as the disc
is slowly heated from 20°C to 50°C keeping the angular
velocity constant. Coefficient of linear expansion of iron
= 1.2 × 10 – 5 °C – 1.

ANSWERS

OBJECTIVE I

 1. (c)  2. (a)  3. (a)  4. (c)  5. (a)  6. (a)
 7. (b)  8. (c)  9. (c) 10. (c) 11. (b)

OBJECTIVE II

 1. (a), (c)  2. all  3. (a), (b), (c)
 4. (c), (d)  5. (a)  6. (b)

EXERCISES

 1. 20°C

 2. 373.3 K
 3. 601 K
 4. 55 kPa
 5. 96 kPa
 6. 200°C
 7. 307 K
 8. 60°

 9. 20.0 Ω, 3.8 × 10 – 3 °C – 1, − 5.6 × 10 – 7 °C – 2

10. 10.0035 m

11. 0.99989 cm

12. 0.4 cm
13. 2.0046 cm
14. (a) 0.99977 (b) 1.00025 (c) 1.00096

15. (a) –0.033% (b) 0.011%

16. 15°C to 25°C

17. − 5 × 10 – 4 °C – 1

18. 23 : 12

19. – 82°C
20. 219°C

21. 20.012 cm × 30.018 cm

22. 50 cc

23. 0.089 cm

24. 1.8 × 10 – 4 °C – 1

25. 83°C
26. zero

27. − 3.6 × 10 – 4

28. 24 N

29. 384 N

30. lo
⎡
⎢
⎣
1 + 

αa Ya + 2αS YS

Ya + 2YS

 θ
⎤
⎥
⎦

31. 5.8 × 10 8 Pa

33. 9.6 × 10 – 2

34. 3.6 × 10 – 2

Figure 23-E1
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CHAPTER 24

KINETIC THEORY OF GASES

24.1 INTRODUCTION

We have seen in the previous chapter that the
pressure p, the volume V and the temperature T of
any gas at low densities obey the equation

           pV = nRT,
where n is the number of moles in the gas and R is
the gas constant having value 8.314 JK −1mol– 1. The
temperature T is defined on the absolute scale. We
define the term ideal gas to mean a gas which always
obeys this equation. The real gases available to us are
good approximation of an ideal gas at low density but
deviate from it when the density is increased.

Any sample of a gas is made of molecules. A
molecule is the smallest unit having all the chemical
properties of the sample. The observed behaviour of a
gas results from the detailed behaviour of its large
number of molecules. The kinetic theory of gases
attempts to develop a model of the molecular behaviour
which should result in the observed behaviour of an
ideal gas.

24.2 ASSUMPTIONS OF KINETIC THEORY OF GASES

1. All gases are made of molecules moving
randomly in all directions.

2. The size of a molecule is much smaller than
the average separation between the molecules.

3. The molecules exert no force on each other or
on the walls of the container except during collision.

4. All collisions between two molecules or between
a molecule and a wall are perfectly elastic. Also, the
time spent during a collision is negligibly small.

5. The molecules obey Newton’s laws of motion.
6. When a gas is left for sufficient time, it comes

to a steady state. The density and the distribution of
molecules with different velocities are independent of
position, direction and time. This assumption may be
justified if the number of molecules is very large.

The last assumption needs some explanation.
Suppose there are 2 × 10 19 molecules in a particular

1 cm 3. Our assumption means that there are
2 × 10 19 molecules in any other 1 cm 3 in the container
and this number does not change as time passes.
Similarly, if there are 400 molecules having velocities
nearly parallel to the x-axis in a particular 1 cm 3,
there are 400 molecules having velocities in this
direction in any other 1 cm 3 and this number does not
change with time. Also, there are 400 molecules in
1 cm 3 that are going in y-direction. The fact that the
distribution of molecules does not change with time
has an interesting consequence. Consider a molecule
in a small volume ΔV having a velocity v

→
. A collision

occurs and the velocity of this molecule changes. But
the number of molecules in ΔV having velocity v

→
 should

not depend on time. So there must be another collision
which results in a nearby molecule taking up velocity
v
→
. Effectively, we may neglect both the collisions and

say that the molecule continues with the same velocity
v
→
. This greatly simplifies calculations.

The assumptions of kinetic theory are close to the
real situation at low densities. The molecular size is
roughly 100 times smaller than the average separation
between the molecules at 0.1 atm and room
temperature. The real molecules do exert electric
forces on each other but these forces may be neglected
as the average separation between the molecules is
large as compared to their size. The collisions between
real molecules are indeed elastic if no permanent
deformation is caused to a molecule. This is true when
the temperature is not too high. The collisions with
the walls are elastic if the temperature of the walls is
the same as the temperature of the gas. If the gas is
left in the container for sufficient time, this
assumption will be valid. The fact that the motion of
molecules may be described by Newton’s laws may be
taken as a pure chance for the time being. The last
assumption is very nearly true if the number of
molecules is very large. As there are about 6 × 10 23

molecules per mole, this condition is almost always
true in a practical situation.



24.3 CALCULATION OF THE PRESSURE
     OF AN IDEAL GAS

Consider an ideal gas enclosed in a cubical vessel
of edge L. Take a corner of the vessel as the origin O
and the x-, y-, z- axes along the edges (figure 24.1).
Let A1 and A2 be the parallel faces perpendicular to the
x-axis. Consider a molecule moving with velocity v


. The

components of the velocity along the axes are vx,
vy and vz. When the molecule collides with the face
A1, the x-component of the velocity is reversed whereas
the y- and the z-components remain unchanged. This
follows from our assumption that the collisions of the
molecules with the wall are perfectly elastic. The
change in momentum of the molecule is

       p  mvx  mvx  2mvx.

As the momentum remains conserved in a collision,
the change in momentum of the wall is
            p  2mvx.  (i)

After rebound, this molecule travels towards A2

with the x-component of velocity equal to vx. Any
collision of the molecule with any other face (except
for A2) does not change the value of vx. So, it travels
between A1 and A2 with a constant x-component of
velocity which is equal to vx. Note that we can neglect
any collision with the other molecules in view of the
last assumption discussed in the previous section.

The distance travelled parallel to the x-direction
between A1 and A2  L. Thus, the time taken by the
molecule to go from A1 to A2  L/vx. The molecule
rebounds from A2, travels towards A1 and collides with
it after another time interval L/vx. Thus, the time
between two consecutive collisions of this molecule
with A1 is t  2L/vx. The number of collisions of this
molecule with A1 in unit time is

n  
1
t

  
vx

2L
   (ii)

The momentum imparted per unit time to the wall by
this molecule is, from (i) and (ii),

F  np

         
vx

2L
  2mvx  

m
L

 vx
 2.

This is also the force exerted on the wall A1 due to
this molecule. The total force on the wall A1 due to all
the molecules is

          F    
m
L

 vx
 2

            
m
L

  vx
 2.  (iii)

As all directions are equivalent, we have

        vx
 2   vy

 2   vz
 2

 
1
3

  vx
 2  vy

 2  vz
 2

  
1
3

  v 2.

Thus, from (iii), F  
1
3

 
m
L

  v 2.

If N is the total number of molecules in the sample,
we can write

F  
1
3

  
mN
L

  
 v 2

N
 

The pressure is force per unit area so that

p  
F

L 2
 

 
1
3

  
mN
L 3  

 v 2

N
 

 
1
3

 
M
L3 

 v 2

N
  

1
3

  
 v 2

N
 ,

where M is the total mass of the gas taken and  is
its density. Also,  v 2/N is the average of the speeds

squared. It is written as v 2


 and is called mean square
speed. Thus, the pressure is

             p  
1
3

  v 2


 (24.1)

   or, pV  
1
3

Mv 2


 (24.2)

   or, pV  
1
3

 Nmv 2


.  (24.3)

24.4 RMS SPEED

The square root of mean square speed is called
root-mean-square speed or rms speed. It is denoted by
the symbol vrms. Thus,

        vrms   v 2/N

or, v 2


  vrms 
2.

Equation (24.1) may be written as

     p  
1
3

 vrms
 2

Figure 24.1
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so that      vrms = √⎯⎯3p
ρ

 = √⎯⎯3pV
M

⋅

Example 24.1

   Calculate the rms speed of nitrogen at STP (pressure
= 1 atm and temperature = 0°C). The density of nitrogen
in these conditions is 1.25 kg m –3.

Solution : At STP, the pressure is 1.0 × 10 5 N m –2. The
rms speed is

       vrms = √⎯⎯3p
ρ

= √⎯⎯⎯⎯⎯3 × 10 5 N m – 2

1.25 kg m – 3

= 490 m s – 1.

Translational Kinetic Energy of a Gas

The total translational kinetic energy of all the
molecules of the gas is

     K = ∑ 
1
2

 mv 2 = 
1
2

 mN 
Σv 2

N
 = 

1
2

 Mvrms
 2 . … (24.4)

The average kinetic energy of a molecule is

       K/N = 
1
2

 
M
N

 vrms
 2  = 

1
2

 mvrms
 2 .

From equation (24.2),

       pV = 
2
3

 ⋅ 1
2

 Mvrms
 2

   or, pV = 
2
3

 K

   or, K = 
3
2

 pV.

24.5 KINETIC INTERPRETATION OF TEMPERATURE

We know that a hotter body has larger internal
energy than an otherwise similar colder body. Thus,
higher temperature means higher internal energy and
lower temperature means lower internal energy.
According to the kinetic theory of gases, the internal
energy of an ideal gas is the same as the total
translational kinetic energy of its molecules which is,
from equation (24.4),

          K = 
1
2

 M vrms
 2 .

Thus, for a given sample of a gas, higher
temperature means higher value of vrms and lower
temperature means lower value of vrms. We can write,

          T = f(vrms)
for a given sample of a gas.

Let p and v be the pressure of the gas and the rms
speed of the molecules at temperature T respectively.
Let ptr and vtr be the values of these quantities at

temperature 273.16 K, keeping the volume V the same
as that at T.
   From equation (24.2),

             pV = 
1
3

 Mv2

   and ptrV = 
1
3

 Mvtr
 2 .

   Thus, 
p
ptr

 = 
v 2

vtr
 2  ⋅ … (i)

From the definition of absolute temperature scale,

           
p
ptr

 = 
T

273.16 K
 ⋅ … (ii)

From (i) and (ii),

           T = ⎛⎜
⎝

273.16 K
vtr

 2
⎞
⎟
⎠
 v 2. … (24.5)

Now, vtr is the rms speed of the molecules at
273.16 K and hence is a constant for a given gas.
Equation (24.5) shows that the absolute temperature of
a given gas is proportional to the square of the rms
speed of its molecules. As the total translational kinetic
energy of the molecules is K = 1

2
 Mvrms

 2 ,  we see that

T ∝ K for a given sample of a gas.

Thus, the absolute temperature of a given sample
of a gas is proportional to the total translational kinetic
energy of its molecules.

Now consider a mixture of two gases A and B. Let
m1 be the mass of a molecule of the first gas and m2

be that of the second. As the molecules collide with
each other, they exchange energy. On an average, the
molecules with higher kinetic energy lose energy to
those with lower kinetic energy. In thermal
equilibrium, the average kinetic energy of all molecules
are equal. If v1 and v2 be the rms speeds of the
molecules of A and B respectively,

          
1
2

 m1 v1
 2 = 

1
2

 m2 v2
 2. … (24.6)

We find that for different kinds of gases, it is not
the rms speed but average kinetic energy of individual
molecules that has a fixed value at a given
temperature. The heavier molecules move with smaller
rms speed and the lighter molecules move with larger
rms speed.

Example 24.2

   If the rms speed of nitrogen molecules is 490 m s– 1 at
273 K, find the rms speed of hydrogen molecules at the
same temperature.

Solution : The molecular weight of nitrogen is 28 g mol– 1

and that of hydrogen is 2 g mol– 1. Let m1, m2 be the
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masses and v1, v2 be the rms speeds of a nitrogen
molecule and a hydrogen molecule respectively. Then
m1  14m2. Using equation (24.6),

  
1
2

 m1v1
 2  

1
2

 m2v2
 2

or, v2  v1m1/m2   490 m s – 1  14  1830 m s – 1.

24.6 DEDUCTIONS FROM KINETIC THEORY

Boyle’s Law

At a given temperature, the pressure of a given
mass of a gas is inversely proportional to its volume.
This is known as Boyle’s law.

From equation (24.3), we have

         pV  
1
3

 mN vrms
 2 .  (i)

As for a given gas vrms
 2   T, the value of vrms

 2  is
constant at a given temperature. Also, for a given mass
of the gas, m and N are constants. Thus, from (i),
         pV  constant

or, p  
1
V

which is Boyle’s law.

Charles’s Law

At a given pressure, the volume of a given mass of
a gas is proportional to its absolute temperature. This
is known as Charles’s law.

From (i), if p is constant,

V  vrms
 2 .

As vrms
 2   T,  we  get  V  T

which is Charles’s law.

Charles’s Law of Pressure

At a given volume, the pressure of a given mass of
a gas is proportional to its absolute temperature. This
is known as Charles’s law for pressure.

In fact, this is the definition of the absolute
temperature T. If one starts from the fact that
vrms

 2   T and uses the fact that V is constant, one gets
from (i),
            p  vrms

 2

or, p  T.

Avogadro’s Law

At the same temperature and pressure, equal
volumes of all gases contain equal number of molecules.
This is known as Avogadro’s law.

Consider equal volumes of two gases kept at the
same pressure and temperature. Let,

m1  mass of a molecule of the first gas
   m2  mass of a molecule of the second gas
   N1  number of molecules of the first gas
   N2  number of molecules of the second gas
    p  common pressure of the two gases
    V  common volume of the two gases.

From equation (24.3),

         pV  
1
3

 N1 m1 v1
 2

   and pV  
1
3

 N2 m2 v2
 2,

where v1 and v2 are rms speeds of the molecules of the
first and the second gas respectively. Thus,

          N1 m1 v1
 2  N2 m2 v2

 2.  (i)

As the temperatures of the gases are the same, the
average kinetic energy of the molecules is same for the
two gases (equation 24.6), i.e.,

           
1
2

 m1 v1
 2  

1
2

 m2 v2
 2.  (ii)

From (i) and (ii),
           N1  N2

   which proves Avogadro’s law.

Graham’s Law of Diffusion

When two gases at the same pressure and
temperature are allowed to diffuse into each other, the
rate of diffusion of each gas is inversely proportional
to the square root of the density of the gas. This is
known as Graham’s law of diffusion.

It is reasonable to assume that the rate of diffusion
is proportional to the rms speed of the molecules of
the gas. Then if r1  and  r2 be the rates of diffusion of
the two gases,

             
r1

r2
  

v1, rms

v2, rms
   (i)

From equation (24.1),

          vrms  3p




If the pressure of the two gases are the same,

         
v1, rms

v2, rms
  2

1

so that from (i)

            
r1

r2
  2

1

which is Graham’s law.

Dalton’s Law of Partial Pressure

Dalton’s law of partial pressure says that the
pressure exerted by a mixture of several gases equals
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the sum of the pressures exerted by each gas occupying
the same volume as that of the mixture.

In kinetic theory, we assume that the pressure
exerted by a gas on the walls of a container is due to
the collisions of the molecules with the walls. The total
force on the wall is the sum of the forces exerted by
the individual molecules. Suppose there are N1

molecules of gas 1, N2 molecules of gas 2, etc., in the
mixture.

Thus, the force on a wall of surface area A is 
    F =  force by N1 molecules of gas 1

          + force by N2 molecules of gas 2 + …
= F1 + F2 + …

Thus, the pressure is

          p = 
F1

A
 + 

F2

A
 + …

If the first gas alone is kept in the container, its
N1 molecules will exert a force F1 on the wall. If the
pressure in this case is p1,

           p1 = F1 /A.
Similar is the case for other gases.

Thus,
p = p1 + p2 + p3 + …

24.7 IDEAL GAS EQUATION

Consider a sample of an ideal gas at pressure P,
volume V and temperature T. Let m be the mass of
each molecule and v be the rms speed of the molecules.
Also, let vtr be the rms speed of the gas at the triple
point 273.16 K. From equation (24.3),

            pV = 
1
3

 N mv 2 … (i)

and from equation (24.5)

         T = ⎛⎜
⎝

273.16 K
vtr

 2
⎞
⎟
⎠
 v2

or, v 2 = 
⎛
⎜
⎝

vtr
 2

273.16 K

⎞
⎟
⎠
 T.

Putting this expression for v 2 in (i),

         pV = N 
⎛
⎜
⎝
1
3

 
mvtr

 2

273.16 K

⎞
⎟
⎠
 T. … (ii)

Now 1
2
 mvtr

 2 is the average kinetic energy of a

molecule at the triple point 273.16 K. As the average
kinetic energy of a molecule is the same for all gases
at a fixed temperature (equation 24.6), 1

2
 mvtr

 2 is a

universal constant. Accordingly, the quantity in
bracket in equation (ii) above is also a universal

constant. Writing this constant as k, equation (ii)
becomes,
          pV = NkT. … (24.7)

The universal constant k is known as the
Boltzmann constant and its value is

         k = 1.38 × 10 − 23 J K – 1

up to three significant digits. If the gas contains n
moles, the number of molecules is
            N = n NA

where NA = 6.02 × 10 23 mol − 1 is the Avogadro
constant.

Using this, equation (24.7) becomes
          pV = nNAkT

   or, pV = nRT … (24.8)

where R = NAk is another universal constant known as
the universal gas constant. Its value is

        R = 8.314 J K – 1 mol – 1.
Equation (24.8) is known as the equation of state

of an ideal gas.

Example 24.3

   Calculate the number of molecules in each cubic metre
of a gas at 1 atm and 27 °C.

Solution : We have pV = NkT

or, N = 
pV
kT

= 
(1.0 × 10 5 N m – 2) (1 m 3)

(1.38 × 10 − 23 J K – 1) (300 K)

≈ 2.4 × 10 25.

Rms Speed in Terms of Temperature

We are now in a position to write the rms speed
of the molecules in terms of the absolute temperature.
From equation (24.3),

         pV = 
1
3

 Nmvrms
 2

and from equation (24.7),
pV = NkT.

From these two,
1
3

 mvrms
 2  = kT

   or, vrms = √⎯⎯3kT
m

⋅ … (24.9)

This may also be written as,

       vrms = √⎯⎯⎯3kNAT
mNA
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            = √⎯⎯3RT
Mo

… (24.10)

where Mo = mNA is the molecular weight.

Average Kinetic Energy of a Molecule

Average kinetic energy of a molecule is

       
1
2

 mvrms
 2  = 1

2
 m ⋅ 3kT

m

= 
3
2

 kT. … (24.11)

The total kinetic energy of all the molecules is

         U = N ⎛⎜
⎝

3
2

 kT⎞
⎟
⎠
 = 

3
2

 nRT. … (24.12)

The average speed v
__
 = Σ v/ N is somewhat smaller

than the rms speed. It can be shown that

      v
__
 = √⎯⎯8kT

πm
 = √⎯⎯8RT

πMo
⋅

Example 24.4

   Find the rms speed of oxygen molecules in a gas at
300 K.

Solution : vrms = √⎯⎯3RT
Mo

  = √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯3 × ( 8.3 J K – 1 mol – 1) × ( 300 K )
32 g mol – 1

= √⎯⎯⎯⎯⎯3 × 8.3 × 300
0.032

 m s – 1 = 483 m s – 1.

It should be clearly understood that the motion of
molecules discussed here is truly random motion. In
other words, the centre of mass of the gas is assumed
to be at rest and any rotation about the centre of mass
is assumed to be absent. Any systematic motion of a
gas sample has no effect on temperature. For example,
if we place a gas jar in a moving train, the increase
in translational kinetic energy does not increase the
temperature of the gas.

24.8 MAXWELL’S SPEED DISTRIBUTION LAW

The rms speed of an oxygen molecule in a sample
at 300 K is about 480 m s– 1. This does not mean that
the speed of each molecule is 480 m s– 1. Many of the
molecules have speed less than 480 m s– 1 and many
have speed more than 480 m s– 1. Maxwell derived an
equation giving the distribution of molecules in
different  speeds. If dN represents the number of
molecules with speeds between v and v + dv then

    dN = 4πN⎛
⎜
⎝
 m
2πkT

 ⎞⎟
⎠

 3/2

v 2 e − mv 
2
/2kTdv … (24.13)

Figure (24.2) shows plots of dN/dv against v at two
different temperatures. We see that there are some
molecules which have  speeds many times greater than
the mean speed. This fact helps in making nuclear
fusion reactions in a laboratory. The speed vp at which
dN ⁄ dv is maximum is called the most probable speed.
Its value is given by

        vp = √⎯⎯2kT
m

⋅ … (24.14)

24.9 THERMODYNAMIC STATE

A given sample of a substance has a number of
parameters which can be physically measured. When
these parameters are uniquely specified, we say that
the thermodynamic state of the system is specified.
However, not all of these parameters are independent
of each other. For example, we can measure pressure,
volume, temperature, internal energy and many other
parameters of an ideal gas. But if pressure and volume
are specified, the rest of the parameters may be
calculated. Thus, a thermodynamic state of a given
sample of an ideal gas is completely described if its
pressure and its volume are given. When a process is
performed on a system, it passes from one
thermodynamic state to another.

Equation of State

The pressure, volume and temperature of a given
sample of a substance are related to each other. An
equation describing this relation is called the equation
of state for that substance. For an ideal gas it is

          pV = nRT

where the symbols have their usual meanings. For a
real gas the equation of state is different. The size of
a molecule is not negligible in comparison to the
average separation between them. Also, the molecular
attraction is not negligible. Taking these two facts into
account, van der Waals derived the following equation
of state for a real gas:

         ⎛
⎜
⎝
p + 

a
V 2

⎞
⎟
⎠
 (V − b) = nRT … (24.15)

Figure 24.2
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where a and b are small positive constants. The
constant a is related to the average force of attraction
between the molecules and b is related to the total
volume of the molecules.

24.10 BROWNIAN MOTION

We have assumed in kinetic theory of gases that
the molecules of a gas are in constant random motion,
colliding with each other and with the walls of the
container. This is also valid for a liquid. Robert Brown,
a botanist, accidentally came across an evidence of this
type of molecular motion in 1827. He was observing
small pollen grains suspended in water, under a
powerful microscope. He observed that although the
water appeared to be at complete rest, the grains were
moving randomly in the water, occasionally changing
their directions of motion. A typical path of a grain
looks as shown in figure (24.3). Such a phenomenon is
called Brownian motion. The molecules strike the
particles of the pollen grains and kick them to move
in a direction. Another collision with some other
molecules changes the direction of the grain.

The molecules are too small to be directly seen
under a normal microscope, but the grains can be seen.
A piece of wood floating in water can be seen with
naked eyes but its mass is so large that it does not
respond quickly to the molecular collisions. Hence, to
observe Brownian motion one should have light
suspended particles. Brownian motion increases if we
increase the temperature. Comparing between
different liquids, one with smaller viscosity and
smaller density will show more intense Brownian
motion.

Einstein developed a theoretical model for
Brownian motion in 1905 and deduced the average size
of the molecules from it.

24.11 VAPOUR

The kinetic theory of gases described above is
strictly valid only for ideal gases. These concepts are
also useful in qualitatively understanding several
behaviours of nonideal gases, liquids and even solids.
We have assumed in kinetic theory that the molecules
do not exert a force on each other except at the time
of collision. The molecules, in fact, exert an attractive

force on each other. For a gas at a low pressure and
a high temperature, the average separation between
the molecules is quite large. The molecular attraction
is quite small and hence the associated attraction
energy is small as compared to the average kinetic
energy. If the pressure is increased or the temperature
is decreased, the attraction energy gradually becomes
more important and finally the gas liquefies. Thus, in
general, a gas can be liquefied either by increasing the
pressure (by compressing it) or by decreasing the
temperature. However, if the temperature is
sufficiently high so that the kinetic energy of the
molecules is large, no amount of pressure can liquefy
the gas. The temperature above which this behaviour
occurs is called the critical temperature of the
substance. A gas below its critical temperature is
called vapour.

Figure (24.4) shows the gas–liquid transition of
water in a pV diagram. Each solid curve represents
the variation in pressure with the volume of a sample
of water while the temperature is kept fixed. It,
therefore, represents an isothermal process and is
called an isotherm.  The dotted curve represents the
region where the transition actually takes place.
Consider the isotherm ABCD. Suppose the water is in
its gas form at 350C and its pressure and volume are
represented by the point A. We say that the state of
the system is represented by A. As the pressure is
increased keeping the temperature fixed, the state
changes to B where it enters the region bounded by
the dotted curve. Liquefaction starts at 350C at
163 atm of pressure and the volume rapidly decreases.
When the entire water is converted to liquid phase,
the state is represented by the point C. Now, a large
increase in pressure is needed for even a small
compression so that the part CD is very steep.

At 370C, liquefaction starts at a higher pressure
that is around 194 atm. If the temperature is higher
than 374.1C (say 380C), the isotherm does not enter
the region bounded by the dotted curve. This means
water cannot be liquefied at a temperature greater

Figure 24.3
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than 374.1°C, no matter how large the pressure  is.
Thus,  374.1°C is the critical temperature of water.
Water in its gas form at a temperature lower than
374.1°C is called water vapour and that above 374.1°C
is water gas.

So, a vapour is a gas which can be liquefied by
increasing the pressure without changing the
temperature. Vapour obeys Dalton’s law of partial
pressure. Thus, the pressure exerted by the vapour
present in air is the same as what it would be if the
vapour were alone in the space with the same density
and at the same temperature.

24.12 EVAPORATION

Let us take equal amounts of ether in three
identical vessels. One is closed by a lid, one by a big
jar and one is left open to air.

If we examine the vessels after a few hours, we
shall find that the quantity of ether in the first vessel
is almost the same, that in the second is reduced to
some extent and that in the third has almost vanished.
This can be explained with the help of kinetic theory.
The molecules of ether move with random speeds and
in random directions. A molecule collides frequently
with other molecules and the container walls to change
its direction and speed. Occasionally, a molecule
starting in upward direction near the surface of the
liquid may escape collisions and move out of the liquid.
This process is called evaporation. Thus, evaporation
is a process in which molecules escape slowly from the
surface of a liquid.

We can now understand why the first vessel
contains almost the same amount of ether as time
passes. Surface molecules still move out of the liquid,
but they cannot move very far away because of the lid.
These molecules collide with the lid, with the air
molecules, with the surface of the water and among
themselves. Some of these molecules may be directed
back into the liquid. The number going back depends
on the density of the escaped molecules which keeps
on increasing as more and more evaporation takes
place. An equilibrium is reached when the number of
molecules escaping from the liquid per second equals
the number returning to the liquid. The volume of the
liquid then becomes constant.

The same process takes place in the vessel covered
by the jar. But now there is much more space for the
escaped molecules to move around and many more

molecules must escape before the equilibrium is
reached.

In the vessel open to air, there is no restriction on
the escaped molecules. They can go far away and never
return. Occasionally, some molecules may return after
colliding with an air molecule but the number escaped
is always greater than the number returned. Thus, the
liquid will keep on evaporating till the entire liquid is
evaporated. If air blows over the liquid surface in
the open vessel, the number of returning molecules is
further reduced. This is because any molecule escaping
from the surface is blown away from the vicinity of
the liquid. This increases the rate of net evaporation.
This is why clothes dry faster when a wind is blowing.

When a molecule comes out of the liquid surface,
it has to oppose the attraction of the surface molecules
it is leaving behind. This needs extra energy. Thus,
only those molecules can escape which have kinetic
energy sufficiently larger than the average. The
average kinetic energy of the remaining liquid
decreases and hence, its temperature goes down. This
effect is used in cooling water in pitchers having
porous walls.

24.13 SATURATED AND UNSATURATED VAPOUR:
     VAPOUR PRESSURE

Let us consider the vessel of figure (24.5) closed
by the jar. After sufficient time an equilibrium is
reached when the volume of the liquid becomes
constant. The rate of transformation from liquid to
vapour equals the rate of transformation from vapour
to liquid. If we inject some vapour from outside into
the space above the liquid, the rate of the returning
molecules will increase while the rate of evaporation
will still be the same. The net result is that the extra
amount of vapour will convert into liquid. Thus, the
space cannot contain more than a certain maximum
amount of vapour. If the amount of vapour is less than
this, the return rate is less than the rate of evaporation
and the amount of vapour will increase to its
maximum value.

When a space actually contains the maximum
possible amount of vapour, the vapour is called
saturated. If the amount is less than the maximum
possible, the vapour is called unsaturated.

This maximum amount depends on the
temperature. If we increase the temperature of the
vessel, the liquid molecules will have higher average
speed and the chances of escaping increases. Thus, the
rate of evaporation increases and equilibrium is
reached after more vapour has gone in the space
provided.

Figure 24.5
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The pressure exerted by a saturated vapour is
called saturation vapour pressure. We shall denote it
by the symbol SVP. The saturation vapour pressure of
a substance is constant at a given temperature. It
increases when the temperature is increased. Figure
(24.6) shows the saturation vapour pressure as a
function of temperature for methyl alcohol and water.

Table (24.1) gives the saturation vapour pressure
of water at different temperatures.

Table 24.1 : Saturation vapour pressure of water

 T
 °C

Vapour pressure
torr (mmHg)

 T
 °C

Vapour pressure
torr (mmHg)

  0    4.58 100     760

  5    6.51 120     1490

 10    8.94 140     2710

 15    12.67 160     4630

 20    17.5 180     7510

 40    55.1 200     11650

 60   149 220     17390

 80   355

The concept of saturated vapour is valid even if
there is no liquid below. Consider a closed vessel in
which we gradually inject vapour. When the amount
of vapour is small, on an average, the molecules are
far apart. The average attraction energy is much
smaller than the average kinetic energy. As the
amount is increased, the average separation decreases
and the attraction energy becomes more and more
important. At a certain state, the attraction becomes
sufficient to draw several molecules close enough to
form liquid. Thus, the vapour starts condensing. This
is the case of saturation. Any vapour further injected
will condense and the pressure inside the container
will remain equal to the saturation vapour pressure.

In atmosphere, air and vapour are mixed with each
other. If a given volume contains maximum amount of

vapour possible, the air is called saturated with
vapour. Otherwise, it is called unsaturated.

24.14 BOILING

The energy of a certain amount of substance is
more in its vapour state than in its liquid state. This
is because energy has to be supplied to separate the
molecules against the attractive forces operating in the
liquid phase. If we heat the liquid, the average kinetic
energy of the entire liquid increases and at a certain
stage the energy becomes sufficient to break the
molecular attraction. The molecules anywhere in the
liquid can form vapour bubbles. These bubbles float to
the surface of the liquid and finally come out of the
liquid. This phenomenon is called boiling and the
temperature at which boiling occurs is called boiling
point. Thus, in evaporation, only the molecules near
the surface which have kinetic energy greater than the
average escape from the liquid, whereas, in boiling,
the molecules all over the liquid gain enough energy
to become vapour.

The boiling point of a liquid depends on the
external pressure over its surface. In fact, boiling
occurs at a temperature where the SVP equals the
external pressure. Thus, from figure (24.6), the boiling
point of water at 1 atm (760 mm of mercury) is
100°C but at 0.5 atm it is 82°C.

Example 24.5

   At what external pressure will water boil at 140°C ? Use
table (24.1) for vapour pressure data and express the
answer in atm.

Solution : The saturation vapour pressure of water at
140°C is 2710 mm of Hg. Thus, water will boil at
140°C at this pressure. Now 760 mm of Hg = 1 atm.

Thus, 2710 mm of Hg = 2710
760

 atm = 3.56 atm.

The pressure inside a pressure cooker is of this order
when it whistles. So, the temperature inside is of the
order of 140°C which helps in cooking the food much
faster.

24.15 DEW POINT

Table (24.1) gives the saturation vapour pressure
of water as a function of temperature. Suppose air at
temperature 20°C contains some vapour which exerts
a pressure of 8.94 mm of mercury. The air is
unsaturated because a vapour pressure of 17.5 mm of
mercury is needed to saturate the air at 20°C. If we
decrease the temperature from 20°C to 10°C, the air
will become saturated with vapour because at 10°C the
saturated vapour pressure is 8.94 mm of mercury.

Figure 24.6
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The temperature at which the saturation vapour
pressure is equal to the present vapour pressure is
called the dew point.

If the temperature is decreased below the dew
point, some of the vapour condenses.

24.16 HUMIDITY

The amount of water vapour present in a unit
volume of air is called the absolute humidity of air. It
is generally mentioned in terms of g m – 3. The ratio of
the amount of water vapour present in a given volume
to the amount of water vapour required to saturate
the volume at the same temperature is called the
relative humidity. Thus, relative humidity is defined
as

   RH  

Amount  of  water  vapour  present  in  a  given
volume  of  air  at  a  given  temperature

Amount  of  water  vapour  required  to  saturate  the
same  volume  of  air  at  the  same  temperature

 

 (24.16)

Relative humidity is generally expressed as a
percentage. Thus, if the above ratio is 0.6, the relative
humidity is 60%. If the air is already saturated, the
relative humidity is 100%.

As the pressure exerted by the vapour is directly
proportional to the amount of vapour present in a
given volume, the relative humidity may also be
defined as

    RH  
Vapour pressure of air

SVP at the same temperature
   (24.17)

The vapour pressure of air at the actual
temperature is equal to the saturation vapour pressure
at the dew point. Thus, the relative humidity may be
redefined as

    RH  
SVP at the dew point 

SVP at the airtemperature
   (24.18)

Example 24.6

   The vapour pressure of air at 20C is found to be
12 mm of Hg on a particular day. Find the relative
humidity. Use the data of table (24.1).

Solution : The saturation vapour pressure of water at
20C is 17.5 mm of Hg. Thus, the relative humidity is

vapour pressure of air 
SVP at the same temperature

             
12 mm of Hg

17.5 mm of Hg
  0.69,

that is, 69%.

24.17 DETERMINATION OF RELATIVE HUMIDITY

A simple method to measure the relative humidity
is to find the dew point and then use equation (24.18).
We describe below the Regnault’s hygrometer to find
the dew point.

The apparatus consists of two test tubes A and B
fitted with a hollow stand C. The test tube A can
communicate with the hollow space in C but the tube
B cannot. Both the tubes have silvered outer surfaces
in the lower part. A hollow tube D goes into the test
tube A. The other end of the tube D is open to the
atmosphere. Sensitive thermometers T1 and T2 are
inserted in the test tubes. The hollow space of the
stand is connected to a vessel E through a rubber tube.
The vessel has an outlet.

Some ether (about half the test tube) is taken in
the test tube A and the vessel E is filled with water.
The outlet below the vessel E is opened so that the
water slowly comes out of the vessel. As a partial
vacuum is created over the water surface, air is sucked
through the tube D, the hollow stand and the rubber
tube. Thus, air passes through the ether and
evaporates it in the process. The temperature of the
test tube A gradually decreases and becomes equal to
the dew point at a certain time. The vapour in the air
near the silvered surface of the test tube A starts
condensing. Tiny water droplets in the form of dew
appear on the silvered surface. This surface becomes
hazy while the silvered surface of the test tube B
remains shining. Both the surfaces are continuously
observed from a distance (a telescope may be used for
the purpose). As soon as the difference in shine is
observed, the temperature of the test tube A is noted
with the thermometer T1. The reading of T2 gives the
air-temperature.

The outlet to the vessel D is closed. The
evaporation stops and the temperature of A which had
gone below the dew point, starts rising. As it just
crosses the dew point, the surface again starts shining.
The temperature of T1 at which the two silvered
surfaces start looking similar, is noted. The average of
the two readings of T1 is taken as the dew point.

D

A B

E

C

T1 2T

Figure 24.7
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If f and F be the saturation vapour pressures at
the dew point and at the air-temperature respectively,
the relative humidity is

         
f
F

 × 100%.

Example 24.7

   In an experiment with Regnault’s hygrometer, dew
appears at 10°C when the atmospheric temperature is
40°C. Using table (24.1), find the relative humidity.

Solution : The dew point is 10°C. The saturation vapour
pressure at this temperature is 8.94 mm of Hg  from
table (24.1). Also, the saturation vapour pressure of air
at 40°C is 55.1 mm of Hg. The relative humidity
expressed in percentage

   = 
vapour pressure at the dew point 

SVP  at the air−temperature
 × 100%

= 
8.94
55.1

 ×  100% =  16.2%..

24.18 PHASE DIAGRAMS : TRIPLE POINT

When a liquid and its vapour remain together in
equilibrium, the vapour is saturated. The saturation
vapour pressure depends on temperature. Figure (24.8)
shows a curve representing the saturation vapour
pressure as a function of temperature. If the vapour
pressure and the temperature of a  liquid–vapour
system are represented by a point on the curve, such
as A, the vapour is saturated. The liquid and the
vapour can coexist in this case. Now suppose, the
vapour pressure is increased by injecting more vapour
into the space so that the situation is represented by
the point L in figure (24.8).  As the vapour is already
saturated, the extra vapour will condense into liquid
and the system will return to the point A. Similarly,
suppose the vapour pressure is decreased by taking
out some vapour from the space so that the situation
is represented by the point V in figure (24.8). The
vapour will become unsaturated and some liquid will
evaporate to take the system back to the point A.

Thus, the liquid phase and the vapour phase can
coexist only along the curve shown. At points above
this curve a pure liquid can exist in equilibrium and
at points below this curve a pure vapour can exist in
equilibrium.

At the boiling point, the saturation vapour
pressure equals the external pressure. The curve in
figure (24.8), therefore, also represents the boiling
point as a function of external pressure. The horizontal
axis then represents the boiling point and the vertical
axis represents the external pressure.

Similar curves also exist for solid–liquid transition
and for solid–vapour transition. Figure (24.9) shows
qualitatively these curves for water and carbon
dioxide. The curve PB represents solid–liquid
transition and PC represents solid–vapour transition.
Solid and liquid phases may coexist along the curve
PB and solid and vapour phases can coexist along PC.
These curves also represent, respectively, the melting
point as a function of pressure and sublimation point
as a function of pressure. Thus, the p–T space is
divided in three regions labelled solid, liquid and
vapour.

The three curves meet at one point labelled P. At
the pressure and temperature corresponding to this
point, all the three phases may remain together in
equilibrium. This point is known as the triple point.
For water, the triple point occurs at the pressure 4.58
mm of mercury and temperature 273.16 K.

For carbon dioxide, the temperature at the triple
point is 216.55 K and the corresponding pressure is
5.11 atm. Thus, at atmospheric pressure it can remain
either in solid phase or in vapour phase (figure 24.9).
When solid CO2, open to atmosphere, is heated, it
becomes vapour directly without passing through the
liquid phase. It is, therefore, called dry ice.

24.19 DEW AND FOG

In winter nights, the atmospheric temperature
goes down. The surfaces of windowpanes, flowers,
grass, etc., become still colder due to radiation. The
air near them becomes saturated and condensation
begins. The droplets condensed on such surfaces are
known as dew.

If the temperature falls further, the whole
atmosphere in that region may become saturated.
Small droplets then condense on the dust particles
present in the air. These droplets keep floating in the
air and form a thick mist which restricts visibility.
This thick mist is called fog.

Figure 24.8

Figure 24.9
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Worked Out Examples

 1. A vessel of volume 8.0 × 10 −3 m 3 contains an ideal gas at
300 K and 200 kPa. The gas is allowed to leak till the
pressure falls to 125 kPa . Calculate the amount of the
gas (in moles) leaked assuming that the temperature
remains constant.

Solution : As the gas leaks out, the volume and the
temperature of the remaining gas do not change. The
number of moles of the gas in the vessel is given by

n = pV
RT

 ⋅ The number of moles in the vessel before the

leakage is

             n1 = 
p1V
RT

and that after the leakage is

             n2 = 
p2V
RT

 ⋅

Thus, the amount leaked is

n1 − n2 = 
(p1 − p2 ) V

RT

= 
(200 − 125) × 10 3 N m − 2 × 8.0 × 10−3 m 3

(8.3 J K − 1 mol − 1) × (300 K)

= 0.24 mol − 1.

 2. A vessel of volume 2000 cm3 contains 0.1 mol of oxygen
and 0.2 mol of carbon dioxide. If the temperature of the
mixture is 300 K, find its pressure.

Solution : We have p = 
nRT

V
 .

The pressure due to oxygen is

p1 = 
(0.1 mol) (8.3 J K − 1 mol − 1) (300 K)

(2000 × 10 − 6 m − 3)
 = 1.25 × 10 5 Pa.

Similarly, the pressure due to carbon dioxide is

p2 = 2.50 × 10 5 Pa.
The total pressure in the vessel is

p = p1 + p2

= (1.25 + 2.50) × 10 5 Pa = 3.75 × 10 5 Pa.

 3. A mixture of hydrogen and oxygen has volume
2000 cm3, temperature 300 K, pressure 100 kPa and mass
0.76 g. Calculate the masses of hydrogen and oxygen in
the mixture.

Solution : Suppose there are n1 moles of hydrogen and
n2 moles of oxygen in the mixture. The pressure of the
mixture will be

p = 
n1 RT

V
 + 

n2 RT
V

 = (n1 + n2)
RT
V

or, 100 × 10 3 Pa = (n1 + n2) 
(8.3 J K − 1 mol − 1) (300 K)

2000 × 10 − 6 m − 3  

   or, n1 + n2 = 0.08 mol. … (i)

The mass of the mixture is

n1 × 2 g mol − 1 + n2 × 32 g mol − 1 = 0.76 g

   or, n1 + 16n2 = 0.38 mol. … (ii)

from (i) and (ii),

       n1 = 0.06 mol  and  n2 = 0.02 mol .

The mass of hydrogen = 0.06 × 2 g = 0⋅12 g and the mass

of oxygen = 0.02 × 32 g = 0.64 g .

 4. A mercury manometer (figure 24-W1) consists of two
unequal arms of equal cross section 1 cm 2 and lengths
100 cm and 50 cm. The two open ends are sealed with
air in the tube at a pressure of 80 cm of mercury. Some
amount of mercury is now introduced in the manometer
through the stopcock connected to it. If mercury rises in
the shorter tube to a length 10 cm in steady state, find
the length of the mercury column risen in the longer tube.

Solution : Let p1 and p2 be the pressures in centimetre of
mercury in the two arms after introducing mercury in
the tube. Suppose the mercury column rises in the
second arm to l0 cm.

Using pV = constant for the shorter arm,
(80 cm) (50 cm) = p1(50 cm − 10 cm)

   or, p1 = 100 cm. … (i)

Using pV = constant for the longer arm,

     (80 cm) (100 cm) = p2(100 − l0) cm. … (ii)

From the figure,
p1 = p2 + (l0 − 10) cm.

Thus by (i),
100 cm = p2 + ( l0 − 10 ) cm

or, p2 = 110 cm − l0 cm.
Putting in (ii),

(110 − l0) (100 − l0) = 8000

or, l0
 2 − 210l0 + 3000 = 0

or,             l0 = 15.5.

The required length is 15.5 cm.

 5. An ideal gas has pressure p0 , volume V0 and temperature
T0 . It is taken through an isochoric process till its

Figure 24-W1
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pressure is doubled. It is now isothermally expanded to
get the original pressure. Finally, the gas is isobarically
compressed to its original volume V0 . (a) Show the
process on a p−V diagram. (b) What is the temperature
in the isothermal part of the process ? (c) What is the
volume at the end of the isothermal  part of the
process ?

Solution : (a) The process is shown in a p−V diagram in
figure (24-W2). The process starts from A and goes
through ABCA.

(b) Applying   pV = nRT at A and B,
p0V0 = nRT0

and ( 2p0 )V0 = nRTB .

Thus, TB = 2 T0.
This is the temperature in the isothermal part BC.
(c) As the process BC is isothermal, TC = TB = 2T0.
Applying pV = nRT at A and C,

p0V0 = nRT0

and p0VC = nR( 2T0 )
or, VC = 2V0 .

 6. A cyclic process ABCA shown in the V−T diagram (figure
24-W3) is performed with a constant mass of an ideal
gas. Show the same process on a p−V diagram. In the
figure, CA is parallel to the V-axis and BC is parallel to
the T-axis.

Solution : The p−V diagram is shown in figure (24-W4).
During the part AB of figure (24-W3), V is proportional

to T. Thus, V
T

 is constant. Using pV
T

 = nR, we see that

the pressure p is constant in this part. This is
represented by the part A′B′ in the p−V diagram. During

the part BC, volume is constant. Thus, p
T

 is constant. As

the temperature decreases, pressure also decreases. This
is represented by the part B′C′ in the p−V diagram.
During the part CA, the temperature remains constant
so that pV = constant. Thus, p is inversely proportional
to V. This is represented by the part C′A′ in the p−V
diagram.

 7. Two closed vessels of equal volume contain air at
105 kPa,  300 K and are connected through a narrow
tube. If one of the vessels is now maintained at 300 K
and the other at 400 K, what will be the pressure in the
vessels ?

Solution : Let the initial pressure, volume and
temperature in each vessel be p0(= 105 kPa), V0 and
T0(= 300 K). Let the number of moles in each vessel be
n. When the first vessel is maintained at temperature
T0 and the other is maintained at T ′ = 400 K, the
pressures change. Let the common pressure become p′
and the number of moles in the two vessels become
n1 and n2. We have

              p0V0 = nRT0 … (i)
p′V0 = n1RT0 … (ii)
p′V0 = n2RT ′ … (iii)

   and n1 + n2 = 2n. … (iv)

Putting n, n1 and  n2 from (i), (ii) and (iii) in (iv),

       
p′V0

RT0

 + 
p′V0

RT ′
 = 2 

p0V0

RT0

 

or,      p′




T ′ + T0

T0T ′



 = 

2p0

T0

or, p′ = 
2p0T ′

T ′ + T0

 

= 
2 × 105 kPa × 400 K

400 K + 300 K
 = 120 kPa .

 8. A vessel contains 14 g of hydrogen and 96 g of oxygen at
STP. (a) Find the volume of the vessel. (b) Chemical
reaction is induced by passing electric spark in the vessel
till one of the gases is consumed. The temperature is
brought back to its starting value 273 K. Find the
pressure in the vessel.

Solution : (a) The number of moles of hydrogen
= 14 g/2 g = 7 and the number of moles of oxygen
= 96 g/32 g = 3. The total number of moles in the vessel
= 7 + 3 = 10. The pressure is 1 atm = 1.0 × 10 5 N m –2 and
the temperature = 273 K.

   Now            pV = nRT … (i)

Figure 24-W2

Figure 24-W3

Figure 24-W4

Figure 24-W5
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or,     V = 
nRT

p

= 
(10 mol) × (8.3 J K − 1 mol − 1) × (273 K)

1⋅0 × 10 5 N m − 2  

= 0.23 m 3.
(b) When electric spark is passed, hydrogen reacts with
oxygen to form water (H2O). Each gram of hydrogen
reacts with eight grams of oxygen. Thus, 96 g of oxygen
will be totally consumed together with 12 g of hydrogen.
The gas left in the vessel will be 2 g of hydrogen which
is n′ = 1 mole .

Neglecting the volume of the water formed,

              p′V = n′RT. … (ii)

From (i) and (ii),
p′
p

 = 
n′
n

 = 
1
10

or, p′ = p × 0.10

= 0.10 atm.

 9. A barometer reads 75 cm of mercury. When 2.0 cm3 of
air at atmospheric pressure is introduced into the space
above the mercury level, the volume of this space becomes
50 cm 3. Find the length by which the mercury column
descends.

Solution : Let the pressure of the air in the barometer be
p. We have,

   p × 50 cm3 = (75 cm of mercury) × ( 2.0 cm3 )

or, p = 3.0 cm  of  mercury.

The atmospheric pressure is equal to the pressure due
to the mercury column plus the pressure due to the air
inside. Thus, the mercury column descends by 3.0 cm.

10. A barometer tube is 1 m long and 2 cm2 in cross section.
Mercury stands to a height of 75 cm in the tube. When
a small amount of oxygen is introduced in the space
above the mercury level, the level falls by 5 cm. Calculate
the mass of the oxygen introduced. Room temperature
= 27°C, g = 10 m s − 2 and density of mercury

= 13600 kg m − 3.

Solution : The pressure of oxygen in the space above the
mercury level = 5 cm of mercury

= 0.05 m × 13600 kg m − 3 × 10 m s − 2

= 6800 N m − 2.

The volume of oxygen = (2 cm 2) × (25 cm + 5 cm)
= 60 cm 3 = 6 × 10 − 5 m − 3.

The temperature = ( 273 + 27 ) K = 300 K.
The amount of oxygen is

n = 
pV
RT

       = 
(6800 N m − 2) × 6 × 10 − 5 m − 3

 (8.3 J K − 1 mol − 1 ) ×  (300 K)

= 16.4 × 10 − 5 mol.
The mass of oxygen is

        (16.4 × 10−5 mol ) × ( 32 g mol − 1)

= 5.24 × 10 − 3 g.

11. Figure (24-W6) shows a vertical cylindrical vessel
separated in two parts by a frictionless piston free to move
along the length of the vessel. The length of the cylinder
is 90 cm and the piston divides the cylinder in the ratio
of 5 : 4. Each of the two parts of the vessel contains
0.1 mole of an ideal gas. The temperature of the gas is
300 K in each part. Calculate the mass of the piston.

Solution : Let l1 and  l2 be the lengths of the upper part
and the lower part of the cylinder respectively. Clearly,
l1 = 50 cm  and  l2 = 40 cm. Let the pressures in the upper
and lower parts be p1  and  p2 respectively. Let the area
of cross section of the cylinder be A. The temperature
in both parts is T = 300 K.
Consider the equilibrium of the piston. The forces acting
on the piston are
   (a) its weight mg
   (b) p1 A downward, by the upper part of the gas
and (c) p2 A upward, by the lower part of the gas.

   Thus, p2 A = p1 A + mg … (i)

Using pV = nRT for the upper and the lower parts

p1l1A = nRT … (ii)

   and        p2l2A = nRT. … (iii)

Putting p1 A  and  p2 A from (ii) and (iii) into (i),

            
nRT

l2

 = 
nRT

l1

 + mg.

Thus,  m = 
nRT

g
 


1
l2

 − 
1
l1





  = 
(0.1 mol) (8.3 J K − 1 mol − 1) (300 K)

9.8 m s − 2  


1
0.4 m

 − 
1

0.5 m




= 12.7 kg.

12. Figure (24-W7) shows a cylindrical tube of volume V0

divided in two parts by a frictionless separator. The walls
of the tube are adiabatic but the separator is conducting.
Ideal gases are filled in the two parts. When the separator
is kept in the middle, the pressures are p1  and  p2 in the

Figure 24-W6
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left part and the right part respectively. The separator is
slowly slid and is released at a position where it can stay
in equilibrium. Find the volumes of the two parts.

Solution : As the separator is conducting, the
temperatures in the two parts will be the same. Suppose
the common temperature is T when the separator is in
the middle. Let n1 and  n2 be the number of moles of the
gas in the left part and the right part respectively. Using
ideal gas equation,

            p1

V0

2
  n1RT

and p2

V0

2
  n2RT.

   Thus, 
n1

n2

  
p1

p2

   (i)

The separator will stay in equilibrium at a position
where the pressures on the two sides are equal. Suppose
the volume of the left part is V1 and of the right part is
V2 in this situation. Let the common pressure be p. Also,
let the common temperature in this situation be T .
Using ideal gas equation,

pV1  n1RT 

and pV2  n2RT 

   or,  
V1

V2

  
n1

n2

  
p1

p2

  [using (i)]

Also, V1  V2  V0.

Thus,     V1  
p1V0

p1  p2

  and  V2  
p2V0

p1  p2

 

13. A thin tube of uniform cross section is sealed at both
ends. It lies horizontally, the middle 5 cm containing
mercury and the parts on its two sides containing air at
the same pressure p. When the tube is held at an angle
of 60 with the vertical, the length of the air column above
and below the mercury pellet are 46 cm and 44.5 cm
respectively. Calculate the pressure p in centimetres of
mercury. The temperature of the system is kept at 30C.

Solution : When the tube is kept inclined to the vertical,
the length of the upper part is l1  46 cm and that of the
lower part is l2  44.5 cm. When the tube lies
horizontally, the length on each side is

      l0  
l1  l2

2
   

46 cm  44.5 cm
2

   45.25 cm.

Let p1 and  p2 be the pressures in the upper and the
lower parts when the tube is kept inclined. As the
temperature is constant throughout, we can apply
Boyle’s law. For the upper part,

         p1l1 A  pl0 A

   or,         p1  
pl0

l1

   (i)

Similarly, for the lower part,

p2  
pl0

l2

   (ii)

Now consider the equilibrium of the mercury pellet
when the tube is kept in inclined position. Let m be the
mass of the mercury. The forces along the length of the
tube are

   (a) p1 A down the tube

   (b) p2 A up the tube

and (c) mg  cos 60 down the tube.

Thus,  p2  p1   
mg
A

  cos 60.

Putting from (i) and (ii),

pl0

l2

  
pl0

l1

  
mg
2A

or, pl0 




1
l2

  
1
l1




  

mg
2A

or, p  mg

2Al0 




1
l2

  
1
l1





 

If the pressure p is equal to a height h of mercury,

        p  hg.

Also, m  5 cmA

so that hg  
5 cm Ag

2Al0 




1
l2

  
1
l1





or, h  
5 cm

245.25 cm 


1
44.5 cm

  
1

46 cm




 75.39 cm.

The pressure p is equal to 75.39 cm of mercury.

14. An ideal monatomic gas is confined in a cylinder by a
spring-loaded piston of cross section 8.0  10  3 m 2.
Initially the gas is at 300 K and occupies a volume of
2.4  10  3 m 3 and the spring is in its relaxed state (figure
24-W9). The gas is heated by a small heater until the
piston moves out slowly by 0.1 m. Calculate the final
temperature of the gas. The force constant of the
spring is 8000 N m  1, and the atmospheric pressure is
1.0  10 5 N m  2. The cylinder and the piston are

Figure 24-W7

Figure 24-W8
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thermally insulated. The piston and the spring are
massless and there is no friction between the piston and
the cylinder. Neglect any heat-loss through the lead wires
of the heater. The heat capacity of the heater coil is
negligible.

Solution : Initially the spring is in its relaxed state. So,
the pressure of the gas equals the atmospheric pressure.

Initial pressure  p1  1.0  10 5 N m  2.

Final pressure  p2  p1  
kx
A

 1.0  10 5 N m  2  
8000 N m  1 0.1 m

8.0  10  3 m 2  

 2.0  10 5 N m  2.
Final volume  V2  V1  Ax

 2.4  10  3 m 3  8.0  10  3 m 2  0.1 m  3.2  10  3 m 3.

Using 
p1V1

T1

  
p2V2

T2

 ,

T2  
p2V2

p1V1

  T1

 
2.0  10 5 N m  2 3.2  10  3 m 3
1.0  10 5 N m  2 2.4  10  3 m 3

  300 K

 800 K.

15. Assume that the temperature remains essentially
constant in the upper part of the atmosphere. Obtain an
expression for the variation in pressure in the upper
atmosphere with height. The mean molecular weight of
air is M.

Solution : Suppose the pressure at height h is p and that
at h  dh is p  dp. Then

   dp   g dh.   (i)

Now considering any small volume V of air of mass
m,

pV  nRT  
m
M

  RT

or, p  
m
V

  RT
M

  
RT
M

or,   
M
RT

 p.

Putting in (i), 

dp   
M
RT

 pg dh

or,          
p0

p

 
dp
p

   
0

h

  
M
RT

 g dh

or,       ln 
p
p0

   
Mgh
RT

where p0 is the pressure at h  0.

Thus, p  p0 e 
 

Mgh
RT .

16. A horizontal tube of length l closed at both ends contains
an ideal gas of molecular weight M. The tube is rotated
at a constant angular velocity  about a vertical axis
passing through an end. Assuming the temperature to be
uniform and constant, show that

p2  p1 e 
M 

2
l 

2

2RT ,
where p2  and  p1 denote the pressures at the free end and
the fixed end respectively.

Solution : Consider an element of the gas between the
cross sections at distances x  and  x  dx from the fixed
end (figure 24-W10). If p be the pressure at
x  and  p  dp  at  x  dx, the force acting on the element
towards the centre is Adp, where A is the cross sectional
area. As this element is going in a circle of radius x,

Adp  dm2x  (i)

where dm  mass of the element. Using pV  nRT on this
element,

pAdx  
dm
M

 RT

or, dm  
MpA
RT

 dx.

Putting in (i),

Adp  
MpA
RT

  2x dx

or,  
p1

p2
dp
p

   
0

l
M 2

RT
 x dx

or, ln 
p2

p1

  
M2l 2

2RT

or, p2  p1 e 
M 

2
l 

2

2RT .

17. A barometer tube contains a mixture of air and saturated
water vapour in the space above the mercury column. It
reads 70 cm when the actual atmospheric pressure is
76 cm of mercury. The saturation vapour pressure at
room temperature is 1.0 cm of mercury. The tube is now
lowered in the reservoir till the space above the mercury
column is reduced to half its original volume. Find the

Figure 24-W9

Figure 24-W10
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reading of the barometer. Assume that the temperature
remains constant.

Solution : The pressure due to the air + vapour is
76 cm − 70 cm = 6 cm of mercury. The vapour is
saturated and the pressure due to it is 1 cm of mercury.
The pressure due to the air is, therefore, 5 cm of
mercury.
As the tube is lowered and the volume above the
mercury is decreased, some of the vapour will condense.
The remaining vapour will again exert a pressure of
1 cm of mercury. The pressure due to air is doubled as
the volume is halved. Thus, pair = 2 × 5 cm = 10 cm of
mercury. The pressure due to the air + vapour
= 10 cm + 1 cm = 11 cm of mercury. The barometer
reading is 76 cm − 11 cm = 65 cm.

18. Find the mass of water vapour per cubic metre of air at
temperature 300 K and relative humidity 50%. The
saturation vapour pressure at 300 K is 3.6 kPa and the
gas constant R = 8.3 J K − 1 mol − 1 .

Solution : At 300 K, the saturation vapour pressure

= 3.6 kPa. Considering 1 m 3  of volume,

pV = nRT = 
m
M

 RT

where m = mass of vapour and M = molecular weight of
water.

Thus, m = 
MpV
RT

= 
(18 g mol − 1) (3.6 × 10 3 Pa) (1 m 3)

(8.3 J K − 1 mol − 1) (300 K)
 ≈ 26 g.

As the relative humidity is 50%, the amount of vapour
present in 1 m 3  is  26 g × 0.50 = 13 g.

19. The temperature and the relative humidity of air are
20°C and 80% on a certain day. Find the fraction of the
mass of water vapour that will condense if the
temperature falls to 5°C. Saturation vapour pressures at
20°C and 5°C are 17.5 mm and 6.5 mm of mercury
respectively.

Solution : The relative humidity is
vapour  pressure  of  the  air

SVP  at  the  same  temperature
 ⋅

Thus, the vapour pressure at 20°C

= 0.8 × 17.5 mm of Hg
= 14 mm of Hg.

Consider a volume V of air. If the vapour pressure is
p and the temperature is T, the mass m of the vapour
present is given by

pV = 
m
M

 RT

   or, m = 
MV
R

 
p
T

 ⋅ … (i)

The mass present at 20°C is

         m1 = 
MV
R

 
14 mm of Hg

293 K
 ⋅

When the air is cooled to 5°C, some vapour condenses
and the air gets saturated with the remaining vapour.
The vapour pressure at 5°C is, therefore, 6.5 mm of
mercury. The mass of vapour present at 5°C is, therefore,

m2 = 
MV
R

 
6.5 mm of Hg

278 K
 ⋅

The fraction condensed

         = 
m1 − m2

m1

 = 1 − 
m2

m1

= 1 − 
6.5
278

 × 
293
14

 = 0.51.

20. A vessel containing water is put in a dry sealed room of
volume 76 m 3 at a temperature of 15°C. The saturation
vapour pressure of water at 15°C is 15 mm of mercury.
How much water will evaporate before the water is in
equilibrium with the vapour ?

Solution : Water will be in equilibrium with its vapour
when the vapour gets saturated. In this case, the
pressure of vapour = saturation vapour pressure
= 15 mm of mercury

= (15 × 10 − 3 m) (13600 kg m − 3) (9.8 m s − 2)
= 2000 N m − 2.

Using gas law, pV = 
m
M

 RT

m = 
MpV
RT

= 
(18 g mol − 1) (2000 N m − 2) (76 m 3)

(8.3 J K − 1 mol − 1) (288 K)

= 1145 g = 1.14 kg.
Thus, 1.14 kg of water will evaporate.

21. A jar contains a gas and a few drops of water at absolute
temperature T1. The pressure in the jar is 830 mm of
mercury. The temperature of the jar is reduced by 1%.
The saturation vapour pressures of water at the two
temperatures are 30 mm of mercury and 25 mm of
mercury. Calculate the new pressure in the jar.

Solution : At temperature T1, the total pressure is
830 mm of mercury. Out of this, 30 mm of mercury is
due to the vapour and 800 mm of mercury is due to the
gas. As the temperature decreases, the pressure due to
the gas decreases according to the gas law. Here the
volume is constant, so,

   
p2

T2

 = 
p1

T1

or,         p2 = 
T2

T1

 p1 ⋅

As T2 is 1% less than T1
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          T2 = 0.99 T1

and hence,

p2 = 0.99 p1

= 0.99 × 800 mm of mercury = 792 mm of mercury.

The vapour is still saturated and hence, its pressure is
25 mm of mercury. The total pressure at the reduced
temperature is
           p = (792 + 25) mm of mercury 

= 817 mm of mercury.

22. Calculate the mass of 1 litre of moist air at 27°C when
the barometer reads 753.6 mm of mercury and the dew
point is 16.1°C. Saturation vapour pressure of water at
16.1°C = 13.6 mm of mercury, density of air at STP

= 0.001293 g (cc)− 1, density of saturated water vapour at

STP = 0.000808 g (cc)− 1.

Solution : We have pV = 
m
M

 RT

   or, ρ = 
m
V

 = 
Mp
RT

 ⋅ … (i)

The dew point is 16.1°C and the saturation vapour
pressure is 13.6 mm of mercury at the dew point. This
means that the present vapour pressure is 13.6 mm of
mercury.

At this pressure and temperature, the density of vapour
will be

ρ = 
Mp
RT

= 
(18 g mol − 1) (13.6 × 10 

− 3 m) (13600 kg m − 3) (9.8 m s − 2)
(8.3 J K − 1 mol − 1) (300 K)

= 13.1 g m − 3.

Thus, 1 litre of moist air at 27°C contains 0.0131 g of

vapour.
The pressure of dry air at 27°C is 753.6 mm – 13.6 mm

= 740 mm of mercury. The density of air at STP is

0.001293 g (cc)− 1. The density at 27°C is given by

equation (i),

           
ρ1

ρ2

 = 
p1 /T1

p2 /T2

or, ρ2 = 
p2T1

T2 p1

 ρ1

= 
740 × 273
300 × 760

 × 0.001293 g (cc) − 1.

= .001457 g (cc) − 1.

Thus, 1 litre of moist air contains 1.145 g of dry air. The
mass of 1 litre of moist air is 1.1457 g + 0.0131 g
≈ 1.159 g.

QUESTIONS FOR SHORT ANSWER

 1. When we place a gas cylinder on a van and the van
moves, does the kinetic energy of the molecules
increase ? Does the temperature increase ?

 2. While gas from a cooking gas cylinder is used, the
pressure does not fall appreciably till the last few
minutes. Why ?

 3. Do you expect the gas in a cooking gas cylinder to obey
the ideal gas equation ?

 4. Can we define the temperature of (a) vacuum, (b) a
single molecule ?

 5. Comment on the following statement: the temperature
of all the molecules in a sample of a gas is the same.

 6. Consider a gas of neutrons. Do you expect it to behave
much better as an ideal gas as compared to hydrogen
gas at the same pressure and temperature ?

 7. A gas is kept in a rigid cubical container. If a load of
10 kg is put on the top of the container, does the
pressure increase ?

 8. If it were possible for a gas in a container to reach the
temperature 0 K, its pressure would be zero. Would the

molecules not collide with the walls ? Would they not
transfer momentum to the walls ?

 9. It is said that the assumptions of kinetic theory are good
for gases having low densities. Suppose a container is
so evacuated that only one molecule is left in it. Which
of the assumptions of kinetic theory will not be valid for
such a situation ? Can we assign a temperature to this
gas ?

10. A gas is kept in an enclosure. The pressure of the gas
is reduced by pumping out some gas. Will the
temperature of the gas decrease by Charles’s law ?

11. Explain why cooking is faster in a pressure cooker.
12. If the molecules were not allowed to collide among

themselves, would you expect more evaporation or less
evaporation ?

13. Is it possible to boil water at room temperature, say
30°C ? If we touch a flask containing water boiling at
this temperature, will it be hot ?

14. When you come out of a river after a dip, you feel cold.
Explain.
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OBJECTIVE I

 1. Which of the following parameters is the same for
molecules of all gases at a given temperature ?
(a) Mass              (b) Speed
(c) Momentum          (d) Kinetic energy.

 2. A gas behaves more closely as an ideal gas at
(a) low pressure and low temperature
(b) low pressure and high temperature
(c) high pressure and low temperature
(d) high pressure and high temperature.

 3. The pressure of an ideal gas is written as p = 2E
3V

 ⋅ Here

E refers to
(a) translational kinetic energy
(b) rotational kinetic energy
(c) vibrational kinetic energy
(d) total kinetic energy.

 4. The energy of a given sample of an ideal gas depends
only on its
(a) volume  (b) pressure  (c) density  (d) temperature.

 5. Which of the following gases has maximum rms speed
at a given temperature ?
(a) hydrogen               (b) nitrogen
(c) oxygen                 (d) carbon dioxide.

 6. Figure 24-Q1 shows graphs of pressure vs density for
an ideal gas at two temperatures T1  and  T2.
(a) T1 > T2         (b) T1 = T2

(c) T1 < T2         (d) Any of the three is possible.

 7. The mean square speed of the molecules of a gas at
absolute temperature T is proportional to

(a) 
1
T

      (b) √T        (c) T       (d) T 2.

 8. Suppose a container is evacuated to leave just one
molecule of a gas in it. Let va  and  vrms represent the
average speed and the rms speed of the gas.
(a) va > vrms                (b) va < vrms

(c) va = vrms               (d) vrms  is  undefined.

 9. The rms speed of oxygen at room temperature is about
500 m/s. The rms speed of hydrogen at the same
temperature is about
(a) 125 m s− 1 (b) 2000 m s− 1 (c) 8000 m s− 1 (d) 31 m s− 1.

10. The pressure of a gas kept in an isothermal container
is 200 kPa. If half the gas is removed from it, the
pressure will be
(a) 100 kPa   (b) 200 kPa   (c) 400 kPa   (d) 800 kPa.

11. The rms speed of oxygen molecules in a gas is v. If the
temperature is doubled and the oxygen molecules
dissociate into oxygen atoms, the rms speed will become
(a) v      (b) v √2       (c) 2v      (d) 4v.

12. The quantity pV
kT

 represents

(a) mass of the gas
(b) kinetic energy of the gas
(c) number of moles of the gas
(d) number of molecules in the gas.

13. The process on an ideal gas, shown in figure (24-Q2), is
(a) isothermal (b) isobaric (c) isochoric (d) none of these.

14. There is some liquid in a closed bottle. The amount of
liquid is continuously decreasing. The vapour in the
remaining part
(a) must be saturated    (b) must be unsaturated
(c) may be saturated     (d) there will be no vapour.

15. There is some liquid in a closed bottle. The amount of
liquid remains constant as time passes. The vapour in
the remaining part
(a) must be saturated      (b) must be unsaturated
(c) may be unsaturated    (d) there will be no vapour.

16. Vapour is injected at a uniform rate in a closed vessel
which was initially evacuated. The pressure in the vessel
(a) increases continuously
(b) decreases continuously
(c) first increases and then decreases
(d) first increases and then becomes constant.

17. A vessel A has volume V and a vessel B has volume 2V.
Both contain some water which has a constant volume.
The pressure in the space above water is pa for vessel
A and pb for vessel B.
(a) pa = pb               (b) pa = 2pb

(c) pb = 2pa             (d) pb = 4pa

OBJECTIVE II

 1. Consider a collision between an oxygen molecule and a
hydrogen molecule in a mixture of oxygen and hydrogen
kept at room temperature. Which of the following are

possible ?
(a) The kinetic energies of both the molecules increase.
(b) The kinetic energies of both the molecules decrease.

Figure 24-Q1

Figure 24-Q2
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(c) kinetic energy of the oxygen molecule increases and
       that of the hydrogen molecule decreases.
(d) The kinetic energy of the hydrogen molecule
       increases and that of the oxygen molecule decreases.

 2. Consider a mixture of oxygen and hydrogen kept at room
temperature. As compared to a hydrogen molecule an
oxygen molecule hits the wall
(a) with greater average speed
(b) with smaller average speed
(c) with greater average kinetic energy
(d) with smaller average kinetic energy.

 3. Which of the following quantities is zero on an average
for the molecules of an ideal gas in equilibrium ?
(a) Kinetic energy        (b) Momentum
(c) Density            (d) Speed.

 4. Keeping the number of moles, volume and temperature
the same, which of the following are the same for all
ideal gases ?

(a) Rms speed of a molecule       (b) Density
(c) Pressure
(d) Average magnitude of momentum.

 5. The average momentum of a molecule in a sample of an
ideal gas depends on
(a) temperature            (b) number of moles
(c) volume                (d) none of these.

 6. Which of the following quantities is the same for all ideal
gases at the same temperature ?
(a) The kinetic energy of 1 mole
(b) The kinetic energy of 1 g
(c) The number of molecules in 1 mole
(d) The number of molecules in 1 g

 7. Consider the quantity MkT
pV

 of an ideal gas where M is

the mass of the gas. It depends on the
(a) temperature of the gas     (b) volume of the gas
(c) pressure of the gas       (d) nature of the gas.

EXERCISES

Use R = 8.3 J K− 1 mol− 1 wherever required.

 1. Calculate the volume of 1 mole of an ideal gas at STP.
 2. Find the number of molecules of an ideal gas in a volume

of 1.000 cm 3 at STP.

 3. Find the number of molecules in 1 cm3 of an ideal gas
at 0°C and at a pressure of 10 − 5 mm of mercury.

 4. Calculate the mass of 1 cm 3 of oxygen kept at STP.
 5. Equal masses of air are sealed in two vessels, one of

volume V0 and the other of volume 2V0 . If the first vessel
is maintained at a temperature 300  K and the other at
600  K, find the ratio of the pressures in the two vessels.

 6. An electric bulb of volume 250  cc was sealed during
manufacturing at a pressure of 10 − 3 mm of mercury at
27°C. Compute the number of air molecules contained
in the bulb. Avogadro constant = 6 × 10 23 mol− 1, density
of mercury = 13600 kg m − 3 and g = 10 m s − 2.

 7. A gas cylinder has walls that can bear a maximum
pressure of 1.0 × 10 6 Pa. It contains a gas at
8.0 × 10 5 Pa and 300  K. The cylinder is steadily heated.
Neglecting any change in the volume, calculate the
temperature at which the cylinder will break.

 8. 2 g of hydrogen is sealed in a vessel of volume 0.02 m 3

and is maintained at 300 K. Calculate the pressure in
the vessel.

 9. The density of an ideal gas is 1.25 × 10 − 3 g cm − 3at STP.
Calculate the molecular weight of the gas.

10. The temperature and pressure at Simla are 15.0°C and
72.0 cm of mercury and at Kalka these are 35.0°C and
76.0 cm of mercury. Find the ratio of air density at Kalka
to the air density at Simla.

11. Figure (24-E1) shows a cylindrical tube with adiabatic
walls and fitted with a diathermic separator. The
separator can be slid in the tube by an external
mechanism. An ideal gas is injected into the two sides

at equal pressures and equal temperatures. The
separator remains in equilibrium at the middle. It is
now slid to a position where it divides the tube in the
ratio of 1:3. Find the ratio of the pressures in the two
parts of the vessel.

12. Find the rms speed of hydrogen molecules in a sample
of hydrogen gas at 300  K. Find the temperature at
which the rms speed is double the speed calculated in
the previous part.

13. A sample of 0.177 g of an ideal gas occupies 1000 cm 3

at STP. Calculate the rms speed of the gas molecules.

14. The average translational kinetic energy of air molecules
is 0.040 eV (1 eV = 1.6 × 10 – 19 J). Calculate the
temperature of the air. Boltzmann constant
k = 1.38 × 10 – 23 J K− 1.

15. Consider a sample of oxygen at 300 K. Find the average
time taken by a molecule to travel a distance equal to
the diameter of the earth.

16. Find the average magnitude of linear momentum of a
helium molecule in a sample of helium gas at 0°C. Mass
of a helium molecule = 6.64 × 10 – 27 kg and Boltzmann
constant = 1.38 × 10 – 23 J K− 1.

17. The mean speed of the molecules of a hydrogen sample
equals the mean speed of the molecules of a helium
sample. Calculate the ratio of the temperature of the
hydrogen sample to the temperature of the helium
sample.

18. At what temperature the mean speed of the molecules
of hydrogen gas equals the escape speed from the earth ?

Figure 24-E1
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19. Find the ratio of the mean speed of hydrogen molecules
to the mean speed of nitrogen molecules in a sample
containing a mixture of the two gases.

20. Figure (24-E2) shows a vessel partitioned by a fixed
diathermic separator. Different ideal gases are filled in
the two parts. The rms speed of the molecules in the
left part equals the mean speed of the molecules in the
right part. Calculate the ratio of the mass of a molecule
in the left part to the mass of a molecule in the
right part.

21. Estimate the number of collisions per second suffered
by a molecule in a sample of hydrogen at STP. The mean
free path (average distance covered by a molecule
between successive collisions) = 1.38 × 10 – 5 cm.

22. Hydrogen gas is contained in a closed vessel at 1 atm
(100 kPa) and 300 K. (a) Calculate the mean speed of
the molecules. (b) Suppose the molecules strike the wall
with this speed making an average angle of 45° with it.
How many molecules strike each square metre of the
wall per second ?

23. Air is pumped into an automobile tyre’s tube up to a
pressure of 200  kPa in the morning when the air
temperature is 20°C. During the day the temperature
rises to 40°C and the tube expands by 2%. Calculate the
pressure of the air in the tube at this temperature.

24. Oxygen is filled in a closed metal jar of volume
1.0  ×  10 – 3 m 3 at a pressure of 1.5 × 10 5 Pa and
temperature 400 K. The jar has a small leak in it. The
atmospheric pressure is 1.0 × 10 5 Pa and the
atmospheric temperature is 300 K. Find the mass of the
gas that leaks out by the time the pressure and the
temperature inside the jar equalise with the
surrounding.

25. An air bubble of radius 2.0 mm is formed at the bottom
of a 3.3 m deep river. Calculate the radius of the bubble
as it comes to the surface. Atmospheric pressure
= 1.0 × 10 5 Pa and density of water = 1000 kg m− 3.

26. Air is pumped into the tubes of a cycle rickshaw at a
pressure of 2 atm. The volume of each tube at this
pressure is 0.002 m 3. One of the tubes gets punctured
and the volume of the tube reduces to 0.0005 m 3. How
many moles of air have leaked out ? Assume that the
temperature remains constant at 300 K and that the air
behaves as an ideal gas.

27. 0.040 g of He is kept in a closed container initially at
100.0°C. The container is now heated. Neglecting the
expansion of the container, calculate the temperature at
which the internal energy is increased by 12 J.

28. During an experiment, an ideal gas is found to obey an
additional law pV 2 = constant. The gas is initially at a
temperature T and volume V. Find the temperature
when it expands to a volume 2V.

29. A vessel contains 1.60 g of oxygen and 2.80 g of nitrogen.
The temperature is maintained at 300 K and the volume
of the vessel is 0.166 m 3. Find the pressure of the
mixture.

30. A vertical cylinder of height 100  cm contains air at a
constant temperature. The top is closed by a frictionless
light piston. The atmospheric pressure is equal to 75 cm
of mercury. Mercury is slowly poured over the piston.
Find the maximum height of the mercury column that
can be put on the piston.

31. Figure (24-E3) shows two vessels A and B with rigid
walls containing ideal gases. The pressure, temperature
and the volume are pA,  TA,  V in the vessel A and
pB,  TB,  V in the vessel B. The vessels are now connected
through a small tube. Show that the pressure p and the
temperature T satisfy

           
p
T

 = 
1
2

 




pA

TA

 + 
pB

TB





   when equilibrium is achieved.

32. A container of volume 50  cc contains air (mean
molecular weight = 28.8 g) and is open to atmosphere
where the pressure is 100  kPa. The container is kept in
a bath containing melting ice (0°C). (a) Find the mass
of the air in the container when thermal equilibrium is
reached. (b) The container is now placed in another bath
containing boiling water (100°C). Find the mass of air
in the container. (c) The container is now closed and
placed in the melting-ice bath. Find the pressure of the
air when thermal equilibrium is reached.

33. A uniform tube closed at one end, contains a pellet of
mercury 10 cm long. When the tube is kept vertically
with the closed-end upward, the length of the air column
trapped is 20 cm. Find the length of the air column
trapped when the tube is inverted so that the closed-
end goes down. Atmospheric pressure = 75 cm of
mercury.

34. A glass tube, sealed at both ends, is 100  cm long. It lies
horizontally with the middle 10  cm containing mercury.
The two ends of the tube contain air at 27°C and at a
pressure 76 cm of mercury. The air column on one side
is maintained at 0°C and the other side is maintained
at 127°C. Calculate the length of the air column on the
cooler side. Neglect the changes in the volume of
mercury and of the glass.

35. An ideal gas is trapped between a mercury column and
the closed-end of a narrow vertical tube of uniform base
containing the column. The upper end of the tube is open
to the atmosphere. The atmospheric pressure equals
76 cm of mercury. The lengths of the mercury column
and the trapped air column are 20  cm and 43 cm
respectively. What will be the length of the air column
when the tube is tilted slowly in a vertical plane through
an angle of 60° ? Assume the temperature to remain
constant.

Figure 24-E2

Figure 24-E3
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36. Figure (24-E4) shows a cylindrical tube of length 30  cm
which is partitioned by a tight-fitting separator. The
separator is very weakly conducting and can freely slide
along the tube. Ideal gases are filled in the two parts of
the vessel. In the beginning, the temperatures in the
parts A and B are 400 K and 100 K respectively. The
separator slides to a momentary equilibrium position
shown in the figure. Find the final equilibrium position
of the separator, reached after a long time.

37. A vessel of volume V0 contains an ideal gas at pressure
p0 and temperature T. Gas is continuously pumped out
of this vessel at a constant volume-rate dV/dt = r
keeping the temperature constant. The pressure of the
gas being taken out equals the pressure inside the
vessel. Find (a) the pressure of the gas as a function of
time, (b) the time taken before half the original gas is
pumped out.

38. One mole of an ideal gas undergoes a process

p = 
p0

1 + (V/V0) 
2 

where p0  and  V0 are constants. Find the temperature of
the gas when V = V0.

39. Show that the internal energy of the air (treated as an
ideal gas) contained in a room remains constant as the
temperature changes between day and night. Assume
that the atmospheric pressure around remains constant
and the air in the room maintains this pressure by
communicating with the surrounding through the
windows, doors, etc.

40. Figure (24-E5) shows a cylindrical tube of radius 5  cm
and length 20  cm. It is closed by a tight-fitting cork.
The friction coefficient between the cork and the tube is
0.20. The tube contains an ideal gas at a pressure of
1 atm and a temperature of 300 K. The tube is slowly
heated and it is found that the cork pops out when the
temperature reaches 600 K. Let dN denote the
magnitude of the normal contact force exerted by a small
length dl of the cork along the periphery (see the figure).
Assuming that the temperature of the gas is uniform at

any instant, calculate dN
dl

 ⋅

41. Figure (24-E6) shows a cylindrical tube of cross-sectional
area A fitted with two frictionless pistons. The pistons
are connected to each other by a metallic wire. Initially,

the temperature of the gas is T0 and its pressure is p0

which equals the atmospheric pressure. (a) What is the
tension in the wire ? (b) What will be the tension if the
temperature is increased to 2T0 ?

42. Figure (24-E7) shows a large closed cylindrical tank
containing water. Initially the air trapped above the
water surface has a height h0 and pressure 2p0 where
p0 is the atmospheric pressure. There is a hole in the
wall of the tank at a depth h1 below the top from which
water comes out. A long vertical tube is connected as
shown. (a) Find the height h2 of the water in the long
tube above the top initially. (b) Find the speed with
which water comes out of the hole. (c) Find the height
of the water in the long tube above the top when the
water stops coming out of the hole.

43. An ideal gas is kept in a long cylindrical vessel fitted
with a frictionless piston of cross-sectional area 10 cm 2

and weight 1 kg (figure 24-E8). The vessel itself is kept
in a big chamber containing air at atmospheric pressure
100  kPa. The length of the gas column is 20  cm. If the
chamber is now completely evacuated by an exhaust
pump, what will be the length of the gas column ?
Assume the temperature to remain constant throughout
the process.

44. An ideal gas is kept in a long cylindrical vessel fitted
with a frictionless piston of cross-sectional area 10 cm2

and weight 1 kg. The length of the gas column in the
vessel is 20 cm. The atmospheric pressure is 100 kPa.
The vessel is now taken into a spaceship revolving round
the earth as a satellite. The air pressure in the spaceship
is maintained at 100 kPa. Find the length of the gas
column in the cylinder.

45. Two glass bulbs of equal volume are connected by a
narrow tube and are filled with a gas at 0°C at a
pressure of 76  cm of mercury. One of the bulbs is then
placed in melting ice and the other is placed in a water
bath maintained at 62°C. What is the new value of the

Figure 24-E4

Figure 24-E5

Figure 24-E6

Figure 24-E7

Figure 24-E8
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pressure inside the bulbs ? The volume of the connecting
tube is negligible.

46. The weather report reads, “Temperature 20°C : Relative
humidity 100%”. What is the dew point ?

47. The condition of air in a closed room is described as
follows. Temperature = 25°C, relative humidity = 60%,
pressure = 104  kPa. If all the water vapour is removed
from the room without changing the temperature, what
will be the new pressure ? The saturation vapour
pressure at 25°C =  3.2 kPa.

48. The temperature and the dew point in an open room are
20°C and 10°C. If the room temperature drops to 15°C,
what will be the new dew point ?

49. Pure water vapour is trapped in a vessel of volume
10 cm3.  The  relative  humidity is 40%. The vapour is
compressed slowly and isothermally. Find the volume of
the vapour at which it will start condensing.

50. A barometer tube is 80 cm long (above the mercury
reservoir). It reads 76 cm on a particular day. A small
amount of water is introduced in the tube and the
reading drops to 75.4 cm. Find the relative humidity in
the space above the mercury column if the saturation
vapour pressure at the room temperature is 1.0 cm.

51. Using figure (24.6) of the text, find the boiling point of
methyl alcohol at 1  atm (760 mm of mercury) and at
0.5  atm.

52. The human body has an average temperature of 98 °F.
Assume that the vapour pressure of the blood in the
veins behaves like that of pure water. Find the minimum
atmospheric pressure which is necessary to prevent the
blood from boiling. Use figure (24.6) of the text for the
vapour pressures.

53. A glass contains some water at room temperature
20°C. Refrigerated water is added to it slowly. When the
temperature of the glass reaches 10°C, small droplets
condense on the outer surface. Calculate the relative
humidity in the room. The boiling point of water at a
pressure of 17.5 mm of mercury is 20°C and at 8.9 mm
of mercury it is 10°C.

54. 50 m 3 of saturated vapour is cooled down from 30°C to
20°C. Find the mass of the water condensed. The
absolute humidity of saturated water vapour is
30 g m − 3  at  30°C and 16 g m − 3  at  20°C.

55. A barometer correctly reads the atmospheric pressure
as 76  cm of mercury. Water droplets are slowly
introduced into the barometer tube by a dropper. The
height of the mercury column first decreases and then

becomes constant. If the saturation vapour pressure at
the atmospheric temperature is 0.80 cm of mercury, find
the height of the mercury column when it reaches its
minimum value.

56. 50 cc of oxygen is collected in an inverted gas jar over
water. The atmospheric pressure is 99.4 kPa and the
room temperature is 27°C. The water level in the jar is
same as the level outside. The saturation vapour
pressure at 27°C is 3.4 kPa. Calculate the number of
moles of oxygen collected in the jar.

57. A faulty barometer contains certain amount of air and
saturated water vapour. It reads 74.0 cm when the
atmospheric pressure is 76.0 cm of mercury and reads
72.10 cm when the atmospheric pressure is 74.0 cm of
mercury. Saturation vapour pressure at the air
temperature = 1.0 cm of mercury. Find the length of the
barometer tube above the mercury level in the reservoir.

58. On a winter day, the outside temperature is 0°C and
relative humidity 40%. The air from outside comes into
a room and is heated to 20°C. What is the relative
humidity in the room ? The saturation vapour pressure
at 0°C is 4.6 mm of mercury and at 20°C it is 18  mm
of mercury.

59. The temperature and humidity of air are 27°C and 50%
on a particular day. Calculate the amount of vapour that
should be added to 1 cubic metre of air to saturate it.
The saturation vapour pressure at 27°C = 3600 Pa.

60. The temperature and relative humidity in a room are
300  K and 20% respectively. The volume of the room is
50 m3. The saturation vapour pressure at 300 K is
3.3 kPa. Calculate the mass of the water vapour present
in the room.

61. The temperature and the relative humidity are 300  K
and 20% in a room of volume 50  m 3. The floor is washed
with water, 500  g of water sticking on the floor.
Assuming no communication with the surrounding, find
the relative humidity when the floor dries. The changes
in temperature and pressure may be neglected.
Saturation vapour pressure at 300 K = 3.3 kPa.

62. A bucket full of water is placed in a room at 15°C with
initial relative humidity 40%. The volume of the room
is 50 m3. (a) How much water will evaporate ? (b) If the
room temperature is increased by 5°C, how much more
water will evaporate ? The saturation vapour pressure
of water at 15°C and 20°C are 1.6 kPa and 2.4 kPa
respectively.

ANSWERS

OBJECTIVE I

 1. (d)  2. (b)  3. (a)  4. (d)  5. (a)  6. (a)
 7. (c)  8. (c)  9. (b) 10. (a) 11. (c) 12. (d)
13. (c) 14. (b) 15. (a) 16. (d) 17. (a)

OBJECTICE II

 1. (c), (d)  2. (b)  3. (b)
 4. (c)  5. (d)  6. (a), (c)
 7. (d)
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EXERCISES

 1. 2.24 × 10 – 2 m 3

 2. 2.685 × 10 19

 3. 3.53 × 10 11

 4. 1.43 mg
 5. 1 : 1

 6. 8.0 × 10 15

 7. 375 K

 8. 1.24 × 10 5 Pa

 9. 28.3 g mol − 1

10. 0.987
11. 3 : 1

12. 1930 m s− 1, 1200 K

13. 1300 m s− 1

14. 310 K

15. 8.0 hour

16. 8.0 × 10 – 24 kg m s − 1

17. 1 : 2
18. 11800 K

19. 3.74

20. 1.18

21. 1.23 × 10 10

22. (a) 1780 m s− 1 (b) 1.2 × 10 28

23. 209 kPa

24. 0.16 g

25. 2.2 mm

26. 0.14
27. 196°C
28. T/2
29. 2250 N m–2

30. 25 cm

32. (a) 0.058 g (b) 0.0468 g (c) 73.0 kPa
33. 15 cm

34. 36.5 cm
35. 48 cm
36. 10 cm from the left end

37. (a) p = p0 e – γt/V
0 (b) 

V0 ln 2
γ

38. 
p0 V0

2 R
 mol – 1

40. 1.25 × 10 4 N m − 1

41. (a) zero (b) p0 A

42. (a) 
po

ρg
 − h0 (b) 




2
ρ

 p0 + ρg (h1 − h0)




 1/2

   (c) − h1

43. 2.2 m
44. 22 cm
45. 84 cm of mercury
46. 20°C
47. 102 kPa
48. 10°C
49. 4.0 cm 3

50. 60%
51. 65°C,  48°C
52. 50 mm of mercury
53. 51%
54. 700 g

55. 75.2 cm

56. 1.93 × 10 – 3

57. 91.1 cm

58. 9.5%
59. 13 g
60. 238 g
61. 62%
62. (a) 361 g (b) 296 g
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CHAPTER 25

CALORIMETRY

25.1 HEAT AS A FORM OF ENERGY

When two bodies at different temperatures are
placed in contact, the hotter body cools down and the
colder body warms up. Energy is thus transferred from
a body at higher temperature to a body at lower
temperature when they are brought in contact.

The energy being transferred between two bodies
or between adjacent parts of a body as a result of
temperature difference is called heat.

Thus, heat is a form of energy. It is energy in
transit whenever temperature differences exist. Once
it is transferred it becomes the internal energy of the
receiving body. It should be clearly understood that
the word “heat” is meaningful only as long as the
energy is being transferred. Thus, expressions like
“heat in a body” or “heat of a body” are meaningless.

25.2 UNITS OF HEAT

As heat is just energy in transit, its unit in SI is
joule. However, another unit of heat “calorie” is in wide
use. This unit was formulated much before it was
recognised that heat is a form of energy. The old day
definition of calorie is as follows:

The amount of heat needed to increase the
temperature of 1 g of water from 14.5°C to 15.5°C at
a pressure of 1 atm is called 1 calorie.

The amount of heat needed to raise the
temperature of 1 g of water by 1°C depends slightly
on the actual temperature of water and the pressure.
That is why, the range 14.5°C to 15.5°C and the
pressure 1 atm was specified in the definition. We shall
ignore this small variation and use one calorie to mean
the amount of heat needed to increase the temperature
of 1 g of water by 1°C at any region of temperature
and pressure.

The calorie is now defined in terms of joule as
1 cal = 4.186 joule. We also use the unit kilocalorie
which is equal to 1000 calorie as the name indicates.

Example 25.1

   What is the kinetic energy of a 10 kg mass moving at a
speed of 36 km h− 1 in calorie ?

Solution :
The kinetic energy is

    
1
2

 mv 2 = 
1
2

 × 10 kg × 




36 × 10 3 m
3600 s





 2

= 500 J = 
500

4.186
 cal ≈ 120 cal.

25.3 PRINCIPLE OF CALORIMETRY

A simple calorimeter is a vessel generally made of
copper with a stirrer of the same material. The vessel
is kept in a wooden box to isolate it thermally from
the surrounding. A thermometer is used to measure
the temperature of the contents of the calorimeter.

Objects at different temperatures are made to
come in contact with each other in the calorimeter. As
a result, heat is exchanged between the objects as well
as with the calorimeter. Neglecting any heat exchange
with the surrounding, the principle of calorimetry
states that the total heat given by the hot objects equals
the total heat received by the cold objects.

25.4 SPECIFIC HEAT CAPACITY AND
    MOLAR HEAT CAPACITY

When we supply heat to a body, its temperature
increases. The amount of heat absorbed depends on
the mass of the body, the change in temperature, the
material of the body as well as the surrounding
conditions, such as pressure. We write the equation
             Q = ms∆θ … (25.1)

where ∆θ is the change in temperature, m is the mass
of the body, Q is the heat supplied, and s is a constant
for the given material under the given surrounding
conditions. The constant s is called specific heat
capacity of the substance. When a solid or a liquid is



kept open in the atmosphere and heated, the pressure
remains constant. Table (25.1) gives the specific heat
capacities of some of the solids and liquids under
constant pressure condition. As can be seen from
equation (25.1), the SI unit for specific heat capacity
is J kg− 1 K− 1 which is the same as J kg− 1 °C− 1. The
specific heat capacity may also be expressed in
cal g− 1 K− 1 (same as cal g− 1 °C− 1). Specific heat capacity
is also called specific heat in short.

Table 25.1 : Specific heat capacities
      of some materials

Material cal g− 1

°C− 1
J kg− 1

K− 1

Material Cal g− 1

°C− 1
J kg− 1

K− 1

Water 1⋅00 4186 Glass 0⋅1−0⋅2 419–837

Ethanol 0⋅55 2302 Iron 0⋅112 470

Paraffin 0⋅51 2135 Copper 0⋅093 389

Ice 0⋅50 2093 Mercury 0⋅033 138

Steam 0⋅46 1926 Lead 0⋅031 130

Aluminium 0⋅215 900

The amount of substance in the given body may
also be measured in terms of the number of moles.
Equation (25.1) may be rewritten as

           Q = nC∆θ
where n is the number of moles in the sample. The
constant C is called molar heat capacity.

Example 25.2

   A copper block of mass 60 g is heated till its temperature
is increased by 20°C. Find the heat supplied to the block.
Specific heat capacity of copper = 0.09 cal g− 1 °C− 1 .

Solution :

The heat supplied is Q = ms∆θ

    = (60 g) (0.09 cal g− 1 °C− 1) (20°C) = 108 cal.

The quantity ms is called the heat capacity of the
body. Its unit is J K −1. The mass of water having the
same heat capacity as a given body is called the water
equivalent of the body.

25.5 DETERMINATION OF SPECIFIC HEAT
    CAPACITY IN LABORATORY

Figure (25.1) shows Regnault’s apparatus to
determine the specific heat capacity of a solid heavier
than water, and insoluble in it. A wooden partition P
separates a steam chamber O and a calorimeter C. The
steam chamber O is a double-walled cylindrical vessel.
Steam can be passed in the space between the two
walls through an inlet A and it can escape through an
outlet B. The upper part of the vessel is closed by a
cork. The given solid may be suspended in the vessel

by a thread passing through the cork. A thermometer
T1 is also inserted into the vessel to record the
temperature of the solid. The steam chamber is kept
on a wooden platform with a removable wooden disc
D closing the bottom hole of the chamber.

To start with, the experimental solid (in the form
of a ball or a block) is weighed and then suspended in
the steam chamber. Steam is prepared by boiling water
in a separate boiler and is passed through the steam
chamber. A calorimeter with a stirrer is weighed and
sufficient amount of water is kept in it so that the
solid may be completely immersed in it. The
calorimeter is again weighed with water to get the
mass of the water. The initial temperature of the water
is noted.

When the temperature of the solid becomes
constant (say for 15 minutes), the partition P is
removed, the calorimeter is taken below the steam
chamber, the wooden disc D is removed and the thread
is cut to drop the solid in the calorimeter. The
calorimeter is taken to its original place and is stirred.
The maximum temperature of the mixture is noted.

Calculation:

Let the mass of the solid          = m1

mass of the calorimeter and the stirrer = m2

mass of the water = m3

specific heat capacity of the solid = s1

specific heat capacity of the material
   of the calorimeter (and stirrer) = s2

specific heat capacity of water = s3

initial temperature of the solid = θ1

initial temperature of the calorimeter,
   stirrer and water = θ2

final temperature of the mixture = θ.

We have,

heat lost by the solid = m1s1(θ1 − θ)
heat gained by the calorimeter

   (and the stirrer)    = m2s2(θ − θ2)

�
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Figure 25.1
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and heat gained by the water = m3s3(θ − θ2).
Assuming no loss of heat to the surrounding, the heat
lost by the solid goes into the calorimeter, stirrer and
water. Thus,
   m1s1( θ1 − θ) = m2s2(θ − θ2) + m3s3(θ − θ2) … (i)

or, s1 = 
(m2s2 + m3s3) (θ − θ2)

m1(θ1 − θ)
 ⋅

Knowing the specific heat capacity of water
(s3 = 4186 J kg − 1 K − 1) and that of the material of the

calorimeter and the stirrer (s2 = 389 J kg − 1 K − 1 if the
material be copper), one can calculate s1.

Specific heat capacity of a liquid can also be
measured with the Regnault’s apparatus. Here a solid
of known specific heat capacity s1 is used and the
experimental liquid is taken in the calorimeter in place
of water. The solid should be denser than the liquid.
Using the same procedure and with the same symbols
we get an equation identical to equation (i) above,
that is,

   m1s1(θ1 − θ) = m2s2(θ − θ2) + m3s3(θ − θ2)
in which s3 is the specific heat capacity of the liquid.
We get,

       s3 = 
m1s1(θ1 − θ)
m3(θ − θ2)

 − 
m2s2

m3

 .

25.6 SPECIFIC LATENT HEAT OF FUSION
    AND VAPORIZATION

Apart from raising the temperature, heat supplied
to a body may cause a phase change such as solid to
liquid or liquid to vapour.

During this process of melting or vaporization, the
temperature remains constant. The amount of heat
needed to melt a solid of mass m may be written as
             Q = mL … (25.2)

where L is a constant for the given material (and
surrounding conditions). This constant L is called
specific latent heat of fusion. The term latent heat of
fusion is also used to mean the same thing. Equation
(25.2) is also valid when a liquid changes its phase to
vapour. The constant L in this case is called the
specific latent heat of vaporization or simply latent heat
of vaporization. When a vapour condenses or a liquid
solidifies, heat is released to the surrounding.

In solids, the forces between the molecules are
large and the molecules are almost fixed in their
positions inside the solid. In a liquid, the forces
between the molecules are weaker and the molecules
may move freely inside the volume of the liquid.
However, they are not able to come out of the surface.
In vapours or gases, the intermolecular forces are
almost negligible and the molecules may move freely

anywhere in the container. When a solid melts, its
molecules move apart against the strong molecular
attraction. This needs energy which must be supplied
from outside. Thus, the internal energy of a given body
is larger in liquid phase than in solid phase. Similarly,
the internal energy of a given body in vapour phase is
larger than that in liquid phase.

Example 25.3

   A piece of ice of mass 100 g and at temperature 0°C is
put in 200 g of water at 25°C. How much ice will melt
as the temperature of the water reaches 0°C ? The specific
heat capacity of water = 4200 J kg − 1 K − 1 and the specific
latent heat of fusion of ice = 3.4 × 10 5 J kg − 1.

Solution :

The heat released as the water cools down from 25°C to
0°C is

 Q = ms∆θ = (0.2 kg) (4200 J kg − 1 K − 1) (25 K) = 21000 J.

The amount of ice melted by this much heat is given by

 m = 
Q
L

 = 
21000 J

3.4 × 10 5 J kg − 1 = 62 g.

25.7 MEASUREMENT OF SPECIFIC LATENT
    HEAT OF FUSION OF ICE

An empty calorimeter (together with a stirrer) is
weighed. About two third of the calorimeter is filled
with water and is weighed again. Thus, one gets the
mass of the water. The initial temperature of the water
is measured with the help of a thermometer. A piece
of ice is taken and as it starts melting it is dried with
a blotting paper and put into the calorimeter. The
water is stirred keeping the ice always fully immersed
in it. The minimum temperature reached is recorded.
This represents the temperature when all the ice has
melted. The calorimeter with its contents is weighed
again. Thus, one can get the mass of the ice that has
melted in the calorimeter.

Calculation:

Let the mass of the calorimeter
      (with stirrer)              = m1

      mass of water = m2

      mass of ice = m3

initial temperature of the
calorimeter and the water (in Celsius) = θ1

   final temperature of the calorimeter
   and the water (in Celsius) = θ2 

temperature of the melting ice = 0°C
specific latent heat of fusion

   of ice = L

Calorimetry 41



specific heat capacity of the material
of the calorimeter (and stirrer) = s1

specific heat capacity of water = s2.

We have,
heat lost by the calorimeter (and the stirrer)
             = m1s1(θ1 − θ2)
heat lost by the water kept initially
in the calorimeter = m2s2(θ1 − θ2)
heat gained by the ice during

    its fusion to water = m3L

heat gained by this water in
coming from 0°C  to  θ2

          = m3s2θ2.

Assuming no loss of heat to the surrounding,
   m1s1(θ1 − θ2) + m2s2(θ1 − θ2) = m3L + m3s2θ2

or,   L = 
(m1s1 + m2s2) (θ1 − θ2)

m3
 − s2θ2.

Knowing the specific heat capacity of water and
that of the material of the calorimeter and the stirrer,
one can calculate the specific latent heat of fusion of
ice L.

25.8 MEASUREMENT OF SPECIFIC LATENT
    HEAT OF VAPORIZATION OF WATER

Figure (25.2) shows the arrangement used to
measure the specific latent heat of vaporization of
water. Steam is prepared by boiling water in a
boiler A. The cork of the boiler has two holes. A
thermometer T1 is inserted into one to measure the
temperature of the steam and the other contains a bent
glass tube to carry the steam to a steam trap B. A
tube C with one end bent and the other end terminated
in a jet is fitted in the steam trap. Another tube D is

fitted in the trap which is used to drain out the extra
steam and water condensed at the bottom.

To start the experiment, an empty calorimeter
(together with the stirrer) is weighed. About half of it
is filled with water and is weighed again. Thus, one
gets the mass of the water. The initial temperature of
the water and the calorimeter is measured by a
thermometer T2 . Water is kept in the boiler A and is
heated. As it boils, the steam passes to the steam trap
and then comes out through the tubes C and D. After
some steam has gone out (say for 5 minutes), the
temperature of the steam is noted. The calorimeter
with the water is kept below the tube C so that steam
goes into the calorimeter. The water in the calorimeter
is continuously stirred and the calorimeter is removed
after the temperature in it increases by about 5°C. The
final temperature of the water in the calorimeter is
noted. The calorimeter together with the water
(including the water condensed) is weighed. From this,
one gets the mass of the steam that condensed in the
calorimeter.
  Let the mass of the calorimeter
  (with the stirrer)                 = m1

  mass of the water = m2

  mass of the steam condensed = m3

  temperature of the steam = θ1

  initial temperature of the water in
  the calorimeter = θ2

  final temperature of the water in 
  the calorimeter                  = θ3

  specific latent heat of vaporization
  of water                        = L

  specific heat capacity of the material
  of the calorimeter (and the stirrer) = s1 
  specific heat capacity of water = s2.

We have,
  heat gained by the calorimeter
  (and the stirrer)  = m1s1(θ3 − θ2)
  heat gained by the water kept initially

  in the calorimeter = m2s2(θ3 − θ2)

  heat lost by the steam in condensing = m3L

  heat lost by the condensed water in cooling from 
  temperature  θ1 to θ3 = m3s2(θ1 − θ3).
  Assuming no loss of heat to the surrounding,

  m1s1(θ3 − θ2) + m2s2(θ3 − θ2) = m3L + m3s2(θ1 − θ3)

or, L = 
(m1s1 + m2s2) (θ3 − θ2)

m3
 − s2(θ1 − θ3).

Knowing the specific heat capacity of water and
that of the material of the calorimeter, one can
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calculate the specific latent heat of vaporization of
water L.

Example 25.4

   A calorimeter of water equivalent 15 g contains 165 g of
water at 25°C. Steam at 100°C is passed through the
water for some time. The temperature is increased to
30°C and the mass of the calorimeter and its contents is
increased by 1⋅5 g. Calculate the specific latent heat of
vaporization of water. Specific heat capacity of water is
1 cal g − 1 °C − 1.

Solution : Let L be the specific latent heat of vaporization
of water. The mass of the steam condensed is 1.5 g. Heat
lost in condensation of steam is

     Q1 = (1.5 g) L.

The condensed water cools from 100°C to 30°C. Heat
lost in this process is

Q2 = (1.5 g) (1 cal g − 1 °C − 1) (70°C) = 105 cal.

Heat supplied to the calorimeter and to the cold water
during the rise in temperature from 25°C to 30°C is

Q3 = (15 g + 165 g) (1 cal g − 1 °C − 1) (5°C) = 900 cal.

If no heat is lost to the surrounding,

         (1.5 g) L + 105 cal = 900 cal

or, L = 530 cal g − 1.

25.9 MECHANICAL EQUIVALENT OF HEAT

In early days heat was not recognised as a form
of energy. Heat was supposed to be something needed
to raise the temperature of a body or to change its
phase. Calorie was defined as the unit of heat. A
number of experiments were performed to show that
the temperature may also be increased by doing
mechanical work on the system. These experiments
established that heat is equivalent to mechanical
energy and measured how much mechanical energy is
equivalent to a calorie. If mechanical work W produces
the same temperature change as heat H, we write,

             W = JH … (25.3)

where J is called mechanical equivalent of heat. It is
clear that if W and H are both measured in the same
unit then J = 1. If W is measured in joule (work done
by a force of 1 N in displacing an object by 1 m in its
direction) and H in calorie (heat required to raise the
temperature of 1 g of water by 1°C) then J is expressed
in joule per calorie. The value of J gives how many joules
of mechanical work is needed to raise the temperature
of 1 g of water by 1°C. We describe below a laboratory
method to measure the mechanical equivalent of heat.

Searle’s Cone Method

Figure (25.3) shows the apparatus. A conical vessel
B just fits in another conical vessel A of the same
material. The outer vessel A is connected to a spindle
C which may be rotated at high speed by an electric
motor or by hand. The number of rotations made in a
given time can be recorded.

The inner vessel B is fitted with a grooved wooden
disc D. A cord is wound around the groove and is
connected to a hanging pan P after passing through a
fixed pulley. Weights can be put on this pan.

The wooden disc D contains two holes through
which a thermometer and a stirrer can pass into the
inner vessel. If the outer vessel is rotated, it tries to
drag the inner vessel with it due to the friction
between the surfaces of the cones. The friction
produces a net torque Γ about the central axis. The
hanging weights also produce a torque about the
central axis which is equal to Mgr where M is the total
mass of the pan and the weights on it. If the direction
of rotation is properly chosen, these torques may be
opposite to each other. Also, the value of M may be
adjusted for a given speed of the outer vessel so that
Mgr = Γ. In such a case the inner vessel does not move.

To start the experiment, a measured mass of water
is taken in the inner vessel and the thermometer and
the stirrer are placed in their positions. The masses of
the vessels A and B are also known. The outer vessel
A is rotated by rotating the spindle either by a motor
or by hand. The direction of rotation is chosen to make
sure that the frictional torque and the torque due to
the weight Mg oppose each other. The value of M is
so adjusted that the inner vessel does not move. The
temperature of the water is noted at an initial instant
after the adjustments are made. The water is
continuously stirred with the help of the stirrer and
the temperature is noted at the final instant when it
is increased roughly by 5°C. The number of revolutions
made by the spindle during this period is noted.
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Suppose,
   the mass of the water taken   = m1

   mass of the two vessels taken 
   together = m2

   mass of the pan and the
   weights on it = M

   initial temperature of water = θ1

   final temperature of water = θ2

   number of revolutions made
   by the outer vessel = n

   radius of the disc D = r

   specific heat capacity of water = s1

   specific heat capacity of the
   material of the vessels = s2.

   The torque due to friction
         =  The torque due to the weights = Mgr.
Work done by this torque as the outer vessel slides on
the inner one = Γθ

= Mgr.2πn.

The heat needed to raise the temperature of water
        = m1s1(θ2 − θ1).

Heat needed to raise the temperature of the vessels

           = m2s2(θ2 − θ1).

The total amount of heat needed to raise the
temperature is (m1s1 + m2s2) (θ2 − θ1). Thus, the
mechanical work 2πn Mgr produces the same effect as
the heat (m1s1 + m2s2) (θ2 − θ1).

Thus,    2πn Mgr = J (m1s1 + m2s2) (θ2 − θ1)

or, J = 
2πn Mgr

(m1s1 + m2s2) (θ2 − θ1)
 ⋅

Putting s1, s2 in cal gm − 1 °C − 1 (for water s = 1 cal g 
− 1

°C − 1), one gets J in joule per calorie. Experiments give

a value J = 4.186  J cal − 1.

Although heat is the energy in transit due to
temperature difference, the word “heat” is also used
for the mechanical work that raises the temperature
of a body or that which causes a phase change. Thus,
if a block slides on a rough surface, its kinetic energy
may be used to increase the temperature of the block
and the surface. We say that “heat is developed” when
the block slides on the surface. Such a use of the word
“heat” is made only due to tradition, though it is not
strictly correct. It is better to say that thermal energy
is produced.

Worked Out Examples

 1. Calculate the amount of heat required to convert 1.00 kg
of ice at −10°C into steam at 100°C at normal pressure.

Specific heat capacity of ice = 2100 J kg − 1 K − 1, latent

heat of fusion of ice = 3.36  × 10 5 J kg − 1, specific heat

capacity of water = 4200 J kg − 1 K − 1 and latent heat of

vaporization of water = 2.25 × 10 6  J kg − 1.

Solution : Heat required to take the ice from −10°C to
0°C

= (1 kg) (2100 J kg − 1 K − 1) (10 K) = 21000 J.

Heat required to melt the ice at 0°C to water

= (1 kg) (3.36 × 10 5 J kg − 1) = 336000 J.

Heat required to take 1 kg of water from 0°C to 100°C
= (1 kg) (4200 J kg − 1 K − 1) (100 K) = 420000 J.

Heat required to convert 1 kg of water at 100°C into
steam

= (1 kg) (2.25 × 10 6 J kg − 1) = 2.25 × 10 6 J.

Total heat required = 3.03 × 10 6 J.

 2. A 5 g piece of ice at −20°C is put into 10 g of water at
30°C. Assuming that heat is exchanged only between the
ice and the water, find the final temperature of the
mixture. Specific heat capacity of ice = 2100 J kg − 1 °C − 1,

specific heat capacity of water = 4200 J kg − 1 °C − 1 and
latent heat of fusion of ice = 3.36 × 10 5 J kg − 1.

Solution : The heat given by the water when it cools down
from 30°C to 0°C is

     (0.01 kg) (4200 J kg − 1 °C − 1) (30°C) = 1260 J.
The heat required to bring the ice to 0°C is

(0.005 kg) (2100 J kg − 1 °C − 1) (20°C) = 210 J.
The heat required to melt 5 g of ice is

(0.005 kg) (3.36 × 10 5 J kg − 1) = 1680 J.
We see that whole of the ice cannot be melted as the
required amount of heat is not provided by the water.
Also, the heat is enough to bring the ice to 0°C. Thus
the final temperature of the mixture is 0°C with some
of the ice melted.

 3. An aluminium container of mass 100 g contains 200 g of
ice at −20°C. Heat is added to the system at a rate of
100 cal s − 1. What is the temperature of the system after
4 minutes ? Draw a rough sketch showing the variation
in the temperature of the system as a function of time.
Specific heat capacity of ice = 0.5 cal g − 1 °C − 1, specific
heat capacity of aluminium = 0.2 cal g − 1 °C − 1, specific
heat capacity of water = 1 cal g − 1 °C − 1 and latent heat
of fusion of ice = 80 cal g − 1.
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Solution : Total heat supplied to the system in 4 minutes

is Q = 100 cal s − 1 × 240 s = 2.4 × 10 4 cal.

The heat required to take the system from
− 20°C to 0°C

      = (100 g) × (0.2 cal g − 1 °C − 1) × (20°C) + 

    (200 g) × (0.5 cal g − 1 °C − 1) × (20°C)
= 400 cal + 2000 cal = 2400 cal.

The time taken in this process = 
2400
100

 s = 24 s.

The heat required to melt the ice at 0°C

= (200 g) (80 cal g − 1) = 16000 cal.

The time taken in this process = 
16000
100

 s = 160 s.

If the final temperature is θ, the heat required to take
the system to the final temperature is

 = (100 g) (0.2 cal g − 1 °C − 1) θ + (200 g) (1 cal g − 1 °C − 1) θ.

Thus,

 2.4 × 10 4 cal = 2400 cal + 16000 cal + (220 cal °C − 1) θ

or,        θ = 
5600 cal

220 cal °C − 1 = 25.5°C.

The variation in the  temperature as a function of time
is sketched in figure (25-W1).

 4. A thermally isolated vessel contains 100 g of water at
0°C. When air above the water is pumped out, some of
the water freezes and some evaporates at 0°C itself.
Calculate the mass of the ice formed if no water is left
in the vessel. Latent heat of vaporization of water at
0°C = 2.10 × 10 6 J kg − 1 and latent heat of fusion of ice

= 3.36 × 10 5 J kg − 1.

Solution : Total mass of the water = M = 100 g.

Latent heat of vaporization of water at 0°C

        = L1 = 21.0 × 10 5 J kg − 1.

Latent heat of fusion of ice = L2 = 3.36 × 10 5 J kg − 1.

Suppose, the mass of the ice formed = m.

Then the mass of water evaporated = M − m.

Heat taken by the water to evaporate = (M − m) L1

and heat given by the water in freezing = mL2.

Thus, mL2 = (M − m)L1

or,      m = 
ML1

L1 + L2

 

= 
(100 g) (21.0 × 10 5 J kg − 1)
(21.0 + 3.36) × 10 5 J kg − 1  = 86 g.

 5. A lead bullet penetrates into a solid object and melts.
Assuming that 50% of its kinetic energy was used to heat
it, calculate the initial speed of the bullet. The initial
temperature of the bullet is 27°C and its melting point

is 327°C. Latent heat of fusion of lead = 2.5 × 10 4 J kg−1

and specific heat capacity of lead = 125 J kg 1 K 1.

Solution : Let the mass of the bullet = m.

Heat required to take the bullet from 27°C to 327°C 

= m × (125 J kg − 1 K − 1) (300 K)

= m × (3.75 × 10 4 J kg − 1).
Heat required to melt the bullet

= m × (2.5 × 10 4 J kg − 1).

If the initial speed be v, the kinetic energy is 1
2
 mv 2 and

hence the heat developed is 1
2
 



1
2
 mv 2


 = 1

4
 mv 2. Thus, 

       1
4
 mv 2 = m(3.75 + 2.5) × 10 4 J kg − 1

or, v = 500 m s − 1.

 6. A lead ball at 30°C is dropped from a height of 6.2 km.
The ball is heated due to the air resistance and it
completely melts just before reaching the ground. The
molten substance falls slowly on the ground. Calculate
the latent heat of fusion of lead. Specific heat capacity
of lead = 126 J kg − 1 °C − 1 and melting point of lead
= 330°C. Assume that any mechanical energy lost is used
to heat the ball. Use g = 10 m s − 2.

Solution : The initial gravitational potential energy of
the ball
       = mgh
       = m × (10 m s –2) × (6.2 × 10 3 m)
       = m × (6.2 × 10 4 m 2 s –2) = m × (6.2 × 10 4 J kg − 1).

All this energy is used to heat the ball as it reaches the
ground with a small velocity. Energy required to take
the ball from 30°C to 330°C is

   m × (126 J kg − 1 °C − 1) × (300°C)

= m × 37800 J kg − 1

and energy required to melt the ball at 330°C
= mL

where L =  latent heat of fusion of lead.

Thus,

m × (6.2 × 10 4 J kg − 1) = m × 37800 J kg − 1 + mL

or, L = 2.4 × 10 4 J kg − 1.
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QUESTIONS FOR SHORT ANSWER

 1. Is heat a conserved quantity ?

 2. The calorie is defined as 1 cal = 4.186 joule. Why not as
1 cal = 4 J to make the conversions easy ?

 3. A calorimeter is kept in a wooden box to insulate it
thermally from the surroundings. Why is it necessary ?

 4. In a calorimeter, the heat given by the hot object is
assumed to be equal to the heat taken by the cold object.
Does it mean that heat of the two objects taken together
remains constant ?

 5. In Regnault’s apparatus for measuring specific heat
capacity of a solid, there is an inlet and an outlet in the
steam chamber. The inlet is near the top and the outlet
is near the bottom. Why is it better than the opposite

choice where the inlet is near the bottom and the outlet
is near the top ?

 6. When a solid melts or a liquid boils, the temperature
does not increase even when heat is supplied. Where
does the energy go ?

 7. What is the specific heat capacity of (a) melting ice
(b) boiling water ?

 8. A person’s skin is more severely burnt when put in
contact with 1 g of steam at 100°C than when put in
contact with 1 g of water at 100°C. Explain.

 9. The atmospheric temperature in the cities on sea-coast
change very little. Explain.

10. Should a thermometer bulb have large heat capacity or
small heat capacity ?

OBJECTIVE I

 1. The specific heat capacity of a body depends on
(a) the heat given       (b) the temperature raised
(c) the mass of the body  (d) the material of the body.

 2. Water equivalent of a body is measured in 
(a) kg    (b) calorie    (c) kelvin    (d) m 3.

 3. When a hot liquid is mixed with a cold liquid, the
temperature of the mixture
(a) first decreases then becomes constant
(b) first increases then becomes constant
(c) continuously increases
(d) is undefined for some time and then becomes nearly
       constant.

 4. Which of the following pairs represent units of the same
physical quantity ?
(a) Kelvin and joule       (b) Kelvin and calorie
(c) Newton and calorie     (d) Joule and calorie

 5. Which of the following pairs of physical quantities may
be represented in the same unit ?
(a) Heat and temperature  (b) Temperature and mole
(c) Heat and work        (d) Specific heat and heat

 6. Two bodies at different temperatures are mixed in a
calorimeter. Which of the following quantities remains
conserved ?
(a) Sum of the temperatures of the two bodies
(b) Total heat of the two bodies
(c) Total internal energy of the two bodies
(d) Internal energy of each body

 7. The mechanical equivalent of heat
(a) has the same dimension as heat 
(b) has the same dimension as work
(c) has the same dimension as energy
(d) is dimensionless.

OBJECTIVE II

 1. The heat capacity of a body depends on
(a) the heat given      (b) the temperature raised
(c) the mass of the body  (d) the material of the body.

 2. The ratio of specific heat capacity to molar heat capacity
of a body
(a) is a universal constant
(b) depends on the mass of the body
(c) depends on the molecular weight of the body
(d) is dimensionless.

 3. If heat is supplied to a solid, its temperature
(a) must increase             (b) may increase
(c) may remain constant        (d) may decrease.

 4. The temperature of a solid object is observed to be
constant during a period. In this period
(a) heat may have been supplied to the body
(b) heat may have been extracted from the body

(c) no heat is supplied to the body
(d) no heat is extracted from the body.

 5. The temperature of an object is observed to rise in a
period. In this period
(a) heat is certainly supplied to it
(b) heat is certainly not supplied to it
(c) heat may have been supplied to it
(d) work may have been done on it.

 6. Heat and work are equivalent. This means,
(a) when we supply heat to a body we do work on it
(b) when we do work on a body we supply heat to it
(c) the temperature of a body can be increased by doing
       work on it
(d) a body kept at rest may be set into motion along a
       line by supplying heat to it.
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EXERCISES

 1. An aluminium vessel of mass 0.5 kg contains 0.2 kg of
water at 20°C. A block of iron of mass 0.2 kg at 100°C
is gently put into the water. Find the equilibrium
temperature of the mixture. Specific heat capacities of
aluminium, iron and water are 910 J kg − 1 K − 1,
470 J kg − 1 K − 1 and 4200 J kg − 1 K − 1 respectively.

 2. A piece of iron of mass 100 g is kept inside a furnace
for a long time and then put in a calorimeter of water
equivalent 10 g containing 240 g of water at 20°C. The
mixture attains an equilibrium temperature of 60°C.
Find the temperature of the furnace. Specific heat
capacity of iron = 470 J kg − 1 °C − 1.

 3. The temperatures of equal masses of three different
liquids A, B and C are 12°C, 19°C and 28°C respectively.
The temperature when A and B are mixed is 16°C, and
when B and C are mixed, it is 23°C. What will be the
temperature when A and C are mixed ?

 4. Four 2 cm × 2 cm × 2 cm cubes of ice are taken out from
a refrigerator and are put in 200 ml of a drink at 10°C.
(a) Find the temperature of the drink when thermal
equilibrium is attained in it. (b) If the ice cubes do not
melt completely, find the amount melted. Assume that
no heat is lost to the outside of the drink and that the
container has negligible heat capacity. Density of ice
= 900 kg m − 3, density of the drink = 1000 kg m − 3,
specific heat capacity of the drink = 4200 J kg − 1 K − 1,

latent heat of fusion of ice = 3.4 × 10 5 J kg − 1.

 5. Indian style of cooling drinking water is to keep it in a
pitcher having porous walls. Water comes to the outer
surface very slowly and evaporates. Most of the energy
needed for evaporation is taken from the water itself
and the water is cooled down. Assume that a pitcher
contains 10 kg of water and 0.2 g of water comes out
per second. Assuming no backward heat transfer from
the atmosphere to the water, calculate the time in
which the temperature decreases by 5°C. Specific heat
capacity of water = 4200 J kg − 1 °C − 1 and latent heat of
vaporization of water = 2.27 × 10 6 J kg − 1.

 6. A cube of iron (density = 8000 kg m − 3, specific heat
capacity = 470 J kg − 1 K − 1) is heated to a high
temperature and is placed on a large block of ice at 0°C.
The cube melts the ice below it, displaces the water and
sinks. In the final equilibrium position, its upper surface
just goes inside the ice. Calculate the initial temperature
of the cube. Neglect any loss of heat outside the ice and
the cube. The density of ice = 900 kg m − 3 and the latent
heat of fusion of ice = 3.36 × 10 5 J kg − 1.

 7. 1 kg of ice at 0°C is mixed with 1 kg of steam at 100°C.
What will be the composition of the system when
thermal equilibrium is reached ? Latent heat of fusion
of ice = 3.36 × 10 5 J kg − 1 and latent heat of vaporization
of water = 2.26 × 10 6 J kg − 1.

 8. Calculate the time required to heat 20 kg of water from
10°C to 35°C using an immersion heater rated 1000 W.
Assume that 80% of the power input is used to heat the
water. Specific heat capacity of water = 4200 J kg − 1 K − 1.

 9. On a winter day the temperature of the tap water is
20°C whereas the room temperature is 5°C. Water is
stored in a tank of capacity 0.5 m 3 for household use. If
it were possible to use the heat liberated by the water
to lift a 10 kg mass vertically, how high can it be lifted
as the water comes to the room temperature ? Take
g = 10 m s − 2.

10. A bullet of mass 20 g enters into a fixed wooden block
with a speed of 40 m s − 1 and stops in it. Find the change
in internal energy during the process.

11. A 50 kg man is running at a speed of 18 km h − 1. If all
the kinetic energy of the man can be used to increase
the temperature of water from 20°C to 30°C, how much
water can be heated with this energy ?

12. A brick weighing 4.0 kg is dropped into a 1.0 m deep
river from a height of 2.0 m. Assuming that 80% of the
gravitational potential energy is finally converted into
thermal energy, find this thermal energy in calorie.

13. A van of mass 1500 kg travelling at a speed of 54 km h 
− 1

is stopped in 10 s. Assuming that all the mechanical
energy lost appears as thermal energy in the brake
mechanism, find the average rate of production of
thermal energy in cal s − 1.

14. A block of mass 100 g slides on a rough horizontal
surface. If the speed of the block decreases from
10 m s − 1 to 5 m s − 1, find the thermal energy developed
in the process.

15. Two blocks of masses 10 kg and 20 kg moving at speeds
of 10 m s − 1 and 20 m s − 1 respectively in opposite
directions, approach each other and collide. If the
collision is completely inelastic, find the thermal energy
developed in the process.

16. A ball is dropped on a floor from a height of 2.0 m. After
the collision it rises up to a height of 1.5 m. Assume that
40% of the mechanical energy lost goes as thermal
energy into the ball. Calculate the rise in the
temperature of the ball in the collision. Heat capacity of
the ball is 800 J K − 1.

17. A copper cube of mass 200 g slides down on a rough
inclined plane of inclination 37° at a constant speed.
Assume that any loss in mechanical energy goes into the
copper block as thermal energy. Find the increase in the
temperature of the block as it slides down through
60 cm. Specific heat capacity of copper = 420 J kg − 1 K − 1.

18. A metal block of density 6000 kg m −3 and mass 1.2 kg
is suspended through a spring of spring constant
200 N m − 1. The spring–block system is dipped in water
kept in a vessel. The water has a mass of 260 g and the
block is at a height 40 cm above the bottom of the vessel.
If the support to the spring is broken, what will be the
rise in the temperature of the water. Specific heat
capacity of the block is 250 J kg − 1 K − 1 and that of water
is 4200 J kg − 1 K − 1. Heat capacities of the vessel and the
spring are negligible.
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ANSWERS

OBJECTIVE I

 1. (d)  2. (a)  3. (d)  4. (d)  5. (c)  6. (c)
 7. (d)

OBJECTIVE II

 1. (c), (d)  2. (c)  3. (b), (c)
 4. (a), (b)  5. (c), (d)  6. (c)

EXERCISES

 1. 25°C
 2. 950°C

 3. 20.3°C
 4. (a) 0°C (b) 25 g

 5. 7.7 min

 6. 80°C

 7. 665 g steam and 1.335 kg water

 8. 44 min

 9. 315 km

10. 16 J

11. 15 g

12. 23 cal

13. 4000 cal s − 1

14. 3.75 J

15. 3000 J

16. 2.5 × 10 − 3°C

17. 8.6 × 10 − 3°C

18. 0.003°C
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CHAPTER 26

LAWS OF THERMODYNAMICS

26.1 THE FIRST LAW OF THERMODYNAMICS

We have seen that heat is just a form of energy.
A system can be given energy either by supplying heat
to it (by placing it in contact with a hotter object) or
by doing mechanical work on it. Consider an ideal gas
in a cylindrical container fitted with a piston (figure
26.1). Suppose the piston is fixed in its position and
the walls of the cylinder are kept at a temperature
higher than that of the gas. The gas molecules strike
the wall and rebound. The average kinetic energy of a
wall molecule is larger than the average kinetic energy
of a gas molecule. Thus, on collision, the gas molecules
receive energy from the wall molecules. This increased
kinetic energy is shared by other molecules of the gas
and in this way the total internal energy of the gas
increases.

Next, consider the same initial situation but now
the walls are at the same temperature as the gas.
Suppose the piston is pushed slowly to compress the
gas. As a gas molecule collides with the piston coming
towards it, the speed of the molecule increases on
collision (assuming elastic collision, v2 = v1 + 2u in
figure 26.2). This way the internal energy of the
molecules increases as the piston is pushed in.

We see that the total internal energy of the gas
may be increased because of the temperature

difference between the walls and the gas (heat
transfer) or because of the motion of the piston (work
done on the gas).

In a general situation both modes of energy
transfer may go together. As an example, consider a
gas kept in a cylindrical can fitted with a movable
piston. If the can is put on a hot stove, heat is supplied
by the hot bottom to the gas and the piston is pushed
out to some distance. As the piston moves out, work
is done by the gas on it and the gas loses this much
amount of energy. Thus, the gas gains energy as heat
is supplied to it and it loses energy as work is done
by it.

Suppose, in a process, an amount ∆Q of heat is
given to the gas and an amount ∆W of work is done
by it. The total energy of the gas must increase by
∆Q − ∆W. As a result, the entire gas together with its
container may start moving (systematic motion) or the
internal energy (random motion of the molecules) of
the gas may increase. If the energy does not appear
as a systematic motion of the gas then this net energy
∆Q − ∆W must go in the form of its internal energy. If
we denote the change in internal energy by ∆U, we
get

∆U = ∆Q − ∆W

   or, ∆Q = ∆U + ∆W. … (26.1)

Equation (26.1) is the statement of the first law of
thermodynamics. In an ideal monatomic gas, the
internal energy of the gas is simply translational
kinetic energy of all its molecules. In general, the
internal energy may get contributions from the
vibrational kinetic energy of molecules, rotational
kinetic energy of molecules as well as from the potential
energy corresponding to the molecular forces. Equation
(26.1) represents a statement of conservation of energy
and is applicable to any system, however complicated.

Example 26.1

   A gas is contained in a vessel fitted with a movable
piston. The container is placed on a hot stove. A total of
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100 cal of heat is given to the gas and the gas does
40 J of work in the expansion resulting from heating.
Calculate the increase in internal energy in the process.

Solution : Heat given to the gas is ∆Q = 100 cal = 418 J.

Work done by the gas is ∆W = 40 J.

The increase in internal energy is

     ∆U = ∆Q − ∆W

= 418 J − 40 J = 378 J.

First law of thermodynamics may be viewed from
different angles. Equation (26.1) tells us that if we take
a system from an initial state i to a final state f by
several different processes, ∆Q − ∆W should be
identical in all the processes. This is because
∆Q − ∆W = ∆U = Uf − Ui depends only on the end states
i and f. Both ∆Q and ∆W may be different in different
processes, but ∆Q − ∆W is the same for all the
processes taking the system from i to f. Thus, we do
not write ∆Q = Qf − Qi or we do not write
∆W = Wf − Wi , but we do write ∆U = Uf − Ui . The first
law may be taken as a statement that there exists an
internal energy function U that has a fixed value in a
given state.

It should be remembered that when work is done
by the system, ∆W is positive. If work is done on the
system, ∆W is negative. When heat is given to the
system, ∆Q is positive. If heat is given by the system,
∆Q is negative. A positive ∆W decreases the internal
energy and a positive ∆Q increases it.

26.2 WORK DONE BY A GAS

Consider a gas contained in a cylinder of
cross-sectional area A fitted with a movable piston. Let
the pressure of the gas be p. The force exerted by the
gas on the piston is pA in outward direction. Suppose
the gas expands a little and the piston is pushed out
by a small distance ∆x. The work done by the gas on
the piston is

        ∆W = (pA) (∆x) = p ∆V,

where ∆V = A ∆x is the change in the volume of the
gas. For a finite change of volume from V1 to V2 , the
pressure may not be constant. We can divide the whole
process of expansion in small steps and add the work
done in each step. Thus, the total work done by the
gas in the process is

           W = ∫ 
V1

V2

 p dV. … (26.2)

If we show the process in a p–V diagram, the work
done is equal to the area bounded by the p–V curve,
the V-axis and the ordinates V = V1 and V = V2.

Equation (26.2) is derived for a cylindrical vessel
only for mathematical simplicity. It is equally true for
any shape of the vessel. It is also true for the
expansion of solids and liquids or even in
phase-changes.

Example 26.2

   Calculate the work done by a gas as it is taken from the
state a to b, b to c and c to a as shown in figure (26.5).

Solution : The work done by the gas in the process a to
b is the area of abde. This is

Wab = (120 kPa) (250 cc)
= 120 × 10 3 × 250 × 10 − 6 J = 30 J.

In the process b to c the volume remains constant and
the work done is zero.

In the process c to a the gas is compressed. The volume
is decreased and the work done by the gas is negative.
The magnitude is equal to the area of caed. This area
is cab + baed

= 
1
2

(80 kPa) (250 cc) + 30 J

= 10 J + 30 J = 40 J.

Thus, the work done in the process c to a is −40 J.

Work Done in an Isothermal Process on an Ideal Gas

Suppose an ideal gas has initial pressure, volume
and temperature as p1, V1 and T respectively. In a
process, the temperature is kept constant and its
pressure and volume are changed from
p1 , V1 to p2 , V2 . The work done by the gas is
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        W = ∫ 
V1

V2

 p dV.

   As pV= nRT, we have p = 
nRT

V
 ⋅

   Thus, W = ∫ 
V1

V2

 
nRT

V
 dV

= nRT ∫ 
V1

V2

 
dV
V

= nRT ln




V2

V1




 . … (26.3)

Work Done in an Isobaric Process

Suppose the pressure of a system remains constant
at a value p and the volume changes from V1 to V2.
The work done by the system is

W = ∫ 
V1

V2

 p dV

= p∫ 
V1

V2

 dV = p (V2 − V1).

Work Done in an Isochoric Process

In an isochoric process the volume remains
constant and no work is done by the system.

26.3 HEAT ENGINES

We have seen that when mechanical work is done
on a system, its internal energy increases (remember,
we assume that the system does not have any
systematic motion). The reverse process in which
mechanical work is obtained at the expense of internal
energy is also possible. Heat engines are devices to
perform this task. The basic activity of a heat engine
is shown in figure (26.6). It takes some heat from
bodies at higher temperature, converts a part of it into
the mechanical work and delivers the rest to bodies at
lower temperature.

The substance inside the engine comes back to the
original state. A process in which the final state of a
system is the same as its initial state, is called a cyclic
process. An engine works in cyclic process.

Efficiency

Suppose an engine takes an amount Q1 of heat from
high-temperature bodies, converts a part W of it into
work and rejects an amount Q2 of heat to low-
temperature bodies. If the final state of the substance
inside the engine is the same as the initial state, there
is no change in its internal energy. By first law of
thermodynamics, W = Q1 − Q2.

The efficiency of the engine is defined as

η = 
 work done by the engine 

heat supplied to it

= 
W
Q1

 = 
Q1 − Q2

Q1
 = 1 − 

Q2

Q1
 ⋅ … (26.4)

We now describe some of the heat engines in use.

Steam Engine

A steam engine takes heat from steam and
converts a part of it into mechanical motion of a piston
which is then used to move heavy objects, such as
trains. It is said that James Watt got the idea of steam
engine while watching the lid of a kettle being pushed
by the steam produced in the kettle in his kitchen.
There have been a number of important changes in
the design of steam engines, but the essential features
remain the same. The main parts of a steam engine
are shown in figure (26.7a).
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Description

It consists of a stout cylindrical vessel known as
the main cylinder. A tight-fitting, movable piston
separates the cylinder into two parts: upper part and
lower part. The piston is connected to a rod, known as
the piston-rod which comes out of the main cylinder.

Adjacent to the main cylinder, there is another
stout chamber known as the steam chest. The steam
chest and the cylinder have a common wall in which
there are three holes. The upper and the lower holes
open in the upper and the lower parts of the cylinder.
The middle hole is connected to a condenser (not shown
in the figure) through a pipe. Condenser is just a vessel
in which the steam cools down and condenses.

The steam chest contains a valve of the shape of
an open box. It slides on the surface of the common
wall between the steam chest and the main cylinder.
Together with the wall, the valve forms the shape of
“D” and hence it is called a D-Valve. Its size is such
that at any time it covers either the upper or the lower
hole and leaves the other open. The middle hole is
always covered. In the situation shown in the figure,
the upper hole is open and the middle and the lower
holes are covered. The valve is connected to a valve-
rod which comes out of the steam chest.

A flywheel is connected to a crankshaft. A crank is
fixed to this shaft. If a force is applied to the crank in
such a way that the force does not intersect the axis
of the shaft, a torque acts on the shaft and it rotates.
The flywheel and the crank also rotate with it.

A circular disc called eccentric is also connected to
the shaft. The axis of the disc does not coincide with
the axis of the shaft.

The piston-rod is connected to the crank by another
rod AB known as the crank-rod, which is hinged with
the piston-rod at the crosshead C1. If the piston moves
down, the crosshead C1 also moves down. The crank
has to rotate so as to move the end B of the crank-rod,
farther. Similarly, if the piston-rod moves up, the
crank rotates so as to move the end B of the crank-rod
closer.

Similarly, the valve-rod is connected to the
eccentric by another rod CD known as the
eccentric-rod, which is hinged with the valve-rod at the
crosshead C2. When the eccentric disc rotates, the
corsshead C2 has to move up and down.
Correspondingly, the D-valve slides up and down. The
arrangement is such that when the piston moves down,
the D-valve moves up and when the piston moves up,
the D-valve moves down.

Working

Water is boiled in a big boiler and the steam so
prepared is allowed to go into the steam chest. The
flow of steam into the steam chest is controlled by a
valve.

In the position shown in figure (26.7a), the piston
is near the top end of the cylinder and the D-valve is
near its lowest position. Steam is forced into the upper
part of the cylinder through the upper hole. The piston
is pushed down and the steam in the lower part passes
through the lower hole and then through the middle
hole to the condenser. As the piston comes down, the
crank rotates the shaft and the D-valve slides up.
When the piston reaches near the bottom end, the
D-valve closes the upper hole and opens the lower hole
(figure 26.7b). Thus, steam is forced into the lower part
of the cylinder which pushes the piston up. The steam
in the upper part passes through the upper hole and
then through the middle hole to the condenser. The
D-valve slides down. This process is repeated
continuously. The piston thus keeps on moving up and
down rotating the shaft and the flywheel. The kinetic
energy of the piston, flywheel and any part connected
to the engine comes from the internal energy of the
steam. Thus, a part of the internal energy is converted
into mechanical energy.

The efficiency of a steam engine is often measured
as the ratio of the mechanical work obtained to the
heat that could be produced in burning the fuel (to
produce steam in this case). The efficiency of a steam
engine is typically of the order of 3 to 10%.

Internal Combustion Engine

In a steam engine, there is a separate furnace to
boil water. There are engines in which there is no
separate furnace and heat is produced in the main
cylinder itself. Such engines are called internal
combustion engines. We will describe two types of
internal combustion engines: petrol engine and diesel
engine.

Petrol Engine

This engine was designed by Otto in 1876 and
hence is also called an Otto engine.

In this, petrol from a tank goes to a chamber
known as the carburettor, in the form of jets. In the
carburettor, the petrol is mixed with proper amount of
air and the mixture is allowed to go into the main
cylinder shown schematically in figure (26.8). The
cylinder is made of steel and is fitted with a movable
piston just fitting in the cylinder. Two valves
V1 and V2 are fixed at the top end of the cylinder. The
valve V1 is used for inlet into the cylinder and V2 is
used for outlet from the cylinder. Valves are opened
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and closed at proper times. The piston is rigidly
connected to a piston-rod which is connected to a
crankshaft much like that in a steam engine.

A spark plug is placed in the main cylinder and is
used to produce electric sparks. These sparks burn the
petrol–air mixture.

The working of the engine may be described in four
steps known as four strokes. Figure (26.8) is used to
explain these strokes.

(a) Charging Stroke

The valve V1 is opened and the mixture of petrol
vapour and air enters into the cylinder. The piston
goes down.

(b) Compression Stroke

Both the inlet and the outlet valves are closed and
the piston moves up in the cylinder. This compresses
the mixture to a high pressure and the temperature
increases to about 500°C.

(c) Working Stroke

The spark plug produces a spark at the end of the
compression stroke. Both the valves are closed. The
fuel mixture ignites. The temperature increases to
about 2000°C and the pressure to about 15 atm. The
piston is pushed down and this rotates the crankshaft
and the flywheel connected to it. This stroke provides
a large amount of mechanical energy and, therefore,
is called the working stroke.

(d) Exhaust Stroke

In this stroke, the valve V2 is opened and the burnt
gases are flushed out. The piston moves in and the
cycle is completed.

Diesel Engine

In a diesel engine, diesel is used as a fuel. Its
construction and working is similar to that of a petrol
engine.

The main action takes place in a cylinder fitted
with an inlet valve, an outlet valve and a valve that
allows the fuel to come into the cylinder. No spark
plug is used in it. The inlet valve is opened and air is
sucked in due to the forward motion of the piston.
When the piston moves backward, the inlet valve is
closed and the air gets compressed. Due to the
compression, the temperature rises to about 1000°C
and the pressure to about 36 atm. The fuel valve is
opened at this moment and fuel is injected into the
cylinder. The fuel ignites readily due to the high
temperature. The piston is pushed forward with a
great force. This is the working stroke of the engine
in which large amount of mechanical energy is
obtained. At the end of this stroke the outlet valve
opens and the burnt gases are expelled by the
backward motion of the piston.

Internal combustion engines have better efficiency
than steam engines. They occupy small space and are
used with scooters, motorcycles, etc. 

26.4 THE SECOND LAW OF THERMODYNAMICS

When a body at 100°C is kept in contact with a
similar body at 0°C, heat flows from the hotter body
to the colder body and both come to 50°C. Is the
reverse process possible ? That is, if we put two similar
bodies both at 50°C in contact, can heat flow from one
body to the other so that one body reaches 0°C and
the other 100°C ? A block moving at a speed v0 on a
rough table eventually stops and the table and the
block warm up. The kinetic energy of the block appears
as the internal energy of the table and the block. Can
the reverse process be possible ? That is, we heat the
block and the table and put the block on the table.
Can the bodies cool down and the block start sliding
with speed v0 on the table converting the internal
energy into kinetic energy ? Consider a container with
rigid walls divided in two parts by a partition having
a valve. A gas is put in one part and vacuum is created
in the other part. The valve is now opened. The gas
eventually occupies both the parts of the container. Is
the reverse process possible ? We put the gas
distributed in both the parts with the valve open. Can
the gas go into one part evacuating the other part all
by itself ?

The answer to all these questions is NO. Of course,
the first law of thermodynamics is not violated in any
of these proposed reverse processes. The energy is
conserved in the direct process as well as in the reverse
process. Still the reverse process is not possible. There
must be a law of nature other than the first law which
decides, whether a given process, allowed by the first
law, will actually take place or not. This law is the
second law of thermodynamics. This law may be stated
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in various ways. We give here one statement in terms
of working of heat engines. We know that a heat
engine takes Q1 amount of heat energy from a hot
body, converts a part of it into mechanical work and
rejects the rest amount Q2 to a cold body. The efficiency
of the engine is 1 − Q2 /Q1. The efficiency would be 1,
that is, 100% if Q2 = 0. Such an engine would not need
any “low-temperature body” to which it needs to reject
heat. Hence, it needs only one body at a single
temperature, from which it will take heat and convert
it completely into mechanical work. This temperature
can even be the temperature of the surrounding and
hence we will not have to burn any fuel to prepare
steam or gases at high temperature to run the engine.
A scooter could be run by an engine taking heat from
the body of the scooter without needing any petrol. A
ship could be run by an engine taking heat from the
ocean. However, all attempts to construct such a 100%
efficient engine failed. In fact, it is not possible to have
such an engine and this is one form of the second law
of thermodynamics stated more precisely as follows:

It is not possible to design a heat engine which
works in cyclic process and whose only result is to take
heat from a body at a single temperature and convert
it completely into mechanical work.

This statement of the second law is called the
Kelvin–Planck statement.

One can convert mechanical work completely into
heat but one cannot convert heat completely into
mechanical work. In this respect, heat and work are
not equivalent. We shall now study some other aspects
of the second law of thermodynamics.

26.5 REVERSIBLE AND IRREVERSIBLE PROCESSES

Consider a sample of an ideal gas kept in an
enclosure. The state of the gas is described by
specifying its pressure p, volume V and temperature
T. If these parameters can be uniquely specified at a
time, we say that the gas is in thermodynamic
equilibrium. If we put the enclosure on a hot stove, the
temperature of various parts of the gas will be different
and we will not be able to specify a unique temperature of
the gas. The gas is not in thermodynamic equilibrium in
such a case.

When we perform a process on a given system, its
state is, in general, changed. Suppose the initial state
of the system is described by the values p1, V1, T1 and
the final state by p2, V2, T2. If the process is performed
in such a way that at any instant during the process,
the system is very nearly in thermodynamic
equilibrium, the process is called quasi-static. This
means, we can specify the parameters p, V, T uniquely
at any instant during such a process.

Actual processes are not quasi-static. To change
the pressure of a gas, we can move a piston inside the
enclosure. The gas near the piston is acted upon by
greater force as compared to the gas away from the
piston. The pressure of the gas may not be uniform
everywhere while the piston is moving. However, we
can move the piston very slowly to make the process
as close to quasi-static as we wish. Thus, a quasi-static
process is an idealised process in which all changes
take place infinitely slowly.

A quasi-static process on a gas can be represented
by a curve on a p−V diagram (or a p−T or a V−T
diagram). This is because at any instant we have a
unique value of p and a unique value of V. Suppose
the curve in figure (26.9) shows such a quasi-static
process taking the system from an initial state i to a
final state f. Let AB be any arbitrary small part of this
process. Suppose in this part the gas takes an amount
∆Q of heat from its surrounding and performs an
amount ∆W of work on the surrounding. It may be
possible to design a reverse quasi-static process which
takes the system from the state f to the state i
satisfying the following conditions:

(a) the reverse process is represented by the same
curve as the direct process, with the arrow inverted,

(b) in the part BA, the system gives an amount
∆Q of heat to the surrounding and an amount ∆W of
work is performed on the system.

If such a reverse process is possible, the original
process is called reversible process. In the direct
process the system has passed through certain
equilibrium states in a sequence. When the process is
reversed, the system passes through the same states
in the reverse sequence. Also, in any small part of the
reverse process, it returns the same amount of heat to
the surrounding as was taken during the
corresponding part in the direct process. Similarly, any
work done by the system in the direct process is
compensated by the equal work done on the system in
the corresponding reverse process.

A process can be reversible if it satisfies two
conditions. The process must be quasi-static and it
should be nondissipative. This means, friction,
viscosity, etc., should be completely absent.

All processes described in this and the following
chapters will be assumed to be reversible unless stated
otherwise.
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Reversible Cycle

We know that if the state of a system at the end
of a process is the same as the state of the system at
the beginning, the process is called a cyclic process. If
all parts of a cyclic process are reversible, it is called
a reversible cycle.

26.6 ENTROPY

Like pressure, volume, temperature, internal
energy, etc., we have another thermodynamic variable
of a system, named entropy. In a given equilibrium
state, the system has a definite value of entropy. If
the system has a temperature T (in absolute scale) and
a small amount of heat ∆Q is given to it, we define
the change in the entropy of the system as

             ∆S = 
∆Q
T

 ⋅ … (26.5)

In general, the temperature of the system may
change during a process. If the process is reversible,
the change in entropy is defined as

Sf − Si = ∫ 
i

f

 
∆Q
T

 ⋅ … (26.6)

In an adiabatic reversible process, no heat is given
to the system. The entropy of the system remains
constant in such a process.

Entropy is related to the disorder in the system.
Thus, if all the molecules in a given sample of a gas
are made to move in the same direction with the same
velocity, the entropy will be smaller than that in the
actual situation in which the molecules move randomly
in all directions.

An interesting fact about entropy is that it is not
a conserved quantity. More interesting is the fact that
entropy can be created but cannot be destroyed. Once
some entropy is created in a process, the universe has
to carry the burden of that entropy for ever. The second
law of thermodynamics may be stated in terms of
entropy as follows:

It is not possible to have a process in which the
entropy of an isolated system is decreased.

26.7 CARNOT ENGINE

The French scientist N L Sadi Carnot, in 1824,
suggested an idealised engine which we call Carnot
engine and which has an intimate relation with the
second law of thermodynamics. To understand the
principle, let us consider an ideal gas taken in a
cylinder. The bottom of the cylinder is diathermic
whereas rest of it is adiabatic. An adiabatic piston is
fitted into the cylinder. Also, suppose we have two

large bodies, one at a constant high temperature T1

and the other at a lower temperature T2.

Figure (26.10a) shows the basic process of a Carnot
engine on a p−V diagram. The other parts of the figure
represent the process schematically. Suppose, the
cylinder is kept in contact with the high-temperature
body at temperature T1 in a compressed state. This
state is represented by the point a in the p−V diagram.
The gas is isothermally expanded to a state b (figure
26.10b). Work is done by the gas and Q1 amount of
heat is supplied to it by the body at temperature T1.
The cylinder is now kept on an adiabatic platform and
the gas is allowed to expand further to the state c
(figure 26.10c). This is an adiabatic expansion and the
temperature falls from T1 to T2. Work is done by the
gas. At this stage, the cylinder is put in contact with
the lower temperature body at temperature T2. It is
isothermally compressed to a state d (figure 26.10d).
Work is done on the gas and the gas rejects an amount
Q2 of heat to the body at the lower temperature T2.
Finally, it is kept on the adiabatic platform and is
further compressed to reach the state a where the
temperature is T1 (figure 26.10e).

The process represented by abcda in figure
(26.10a) is a cyclic process. If the piston is frictionless
and is always moved very slowly, the process is a
reversible cyclic process.

Efficiency of a Carnot Engine

The basic process of a Carnot engine, described
above, is again shown in figure (26.11) in a T−S
(temperature–entropy) diagram. The points a, b, c and
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d represent the same states as in figure (26.10a). Let
the entropy in state a be S1. An amount Q1 of heat is
supplied to the system in the isothermal process ab at
the temperature T1. The entropy increases in this part
as heat is supplied to the system. Also, by definition,

          S2 − S1 = 
Q1

T1
 ⋅ … (i)

The entropy remains constant in the part bc as it
describes an adiabatic process. So the entropy in state
c is S2. In the part cd, the system gives a heat Q2 at
the lower temperature T2 and its entropy is decreased.
The part da represents an adiabatic process and the
entropy remains constant. As the entropy in state a is
S1 , the entropy in state d is also S1. Using the
definition of change in entropy for the process cd,

S1 − S2 = 
−Q2

T2
 ⋅ … (ii)

From (i) and (ii),

             
Q1

T1
 = 

Q2

T2

   or, 
Q2

Q1
 = 

T2

T1
 .

The efficiency of the engine is

        η = 
W
Q1

 = 
Q1 − Q2

Q1

= 1 − 
Q2

Q1
 = 1 − 

T2

T1
 ⋅ … (26.7)

Thus, the efficiency of the engine depends only on the
temperatures of the hot and cold bodies between which
the engine works.

Carnot’s Theorem

Carnot engine is a reversible engine. It can be
proved from the second law of thermodynamics that:

All reversible engines operating between the same
two temperatures have equal efficiency and no engine
operating between the same two temperatures can have
an efficiency greater than this.

This theorem is called Carnot’s theorem. It is a
consequence of the second law and puts a theoretical

limit η = 1 − 
T2

T1
 to the maximum efficiency of heat

engines.

Refrigerator or Heat Pump

A heat engine takes heat from a hot body, converts
part of it into work and rejects the rest to a cold body.
The reverse operation is done by a refrigerator also
known as a heat pump. It takes an amount Q2 of heat
from a cold body, an amount W of work is done on it
by the surrounding and the total energy Q1 = Q2 + W
is supplied to a hot body in the form of heat. Thus,
heat is passed from the cold body to the hot body.
Figure (26.12) shows the process schematically. If the
heat is taken at a single low temperature T2, it is
rejected at a single high temperature T1 and all the
parts of the process are carried out reversibly, we get
a Carnot refrigerator. If the operating temperatures
are fixed, a Carnot refrigerator needs minimum
amount of work done to extract a given amount Q2 of
heat from the colder body.

In this case,

            
Q1

Q2
 = 

T1

T2

or,         
Q2 + W

Q2
 = 

T1

T2

or, W = Q2 




T1

T2
 − 1




 ⋅

A minimum of this much work has to be done by
the surrounding, if we wish to transfer heat Q2 from
the low-temperature body to the high-temperature
body. This leads to another statement of second law of
thermodynamics as follows:

It is not possible to design a refrigerator which
works in cyclic process and whose only result is to
transfer heat from a body to a hotter body.

This is known as the Claussius statement of the
second law.

Figure 26.12
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Worked Out Examples

 1. A sample of an ideal gas is taken through the cyclic
process abca (figure 26-W1). It absorbs 50 J of heat
during the part ab, no heat during bc and rejects 70 J
of heat during ca. 40 J of work is done on the gas during
the part bc. (a) Find the internal energy of the gas at b
and c if it is 1500 J at a. (b) Calculate the work done by
the gas during the part ca.

          
Solution : (a) In the part ab the volume remains constant.

Thus, the work done by the gas is zero. The heat
absorbed by the gas is 50 J. The increase in internal
energy from a to b is
             ∆U = ∆Q = 50 J.

As the internal energy is 1500 J at a, it will be 1550 J
at b. In the part bc, the work done by the gas is
∆W = −40 J and no heat is given to the system. The
increase in internal energy from b to c is

∆U = −∆W = 40 J.

As the internal energy is 1550 J at b, it will be 1590 J
at c.

(b) The change in internal energy from c to a is

      ∆U = 1500 J − 1590 J = −90 J.

The heat given to the system is ∆Q = −70 J.

Using ∆Q = ∆U + ∆W,

∆W = ∆Q − ∆U

= −70 J + 90 J = 20 J.

 2. A thermodynamic system is taken through the cycle
abcda (figure 26-W2). (a) Calculate the work done by the
gas during the parts ab, bc, cd and da. (b) Find the total
heat rejected by the gas during the process.

       
Solution : (a) The work done during the part ab,

= ∫ 
a

b

 p dV = (100 kPa) ∫ 
a

b

 dV

= (100 kPa) (300 cm 3 − 100 cm 3)

      = 20 J.

The work done during bc is zero as the volume does not
change. The work done during cd

= ∫ 
c

d

 p dV = (200 kPa) (100 cm 3 − 300 cm 3)

= −40 J.

The work done during da is zero as the volume does not
change.

(b) The total work done by the system during the cycle
abcda 

∆W = 20 J − 40 J = −20 J.

The change in internal energy ∆U = 0 as the initial state
is the same as the final state. Thus
∆Q = ∆U + ∆W = −20 J. So the system rejects 20 J of heat
during the cycle.

 3. Calculate the increase in internal energy of 1 kg of water
at 100°C when it is converted into steam at the same
temperature and at 1 atm (100 kPa). The density of water
and steam are 1000 kg m –3 and 0.6 kg m –3 respectively.
The latent heat of vaporization of water
= 2.25 × 10 6 J kg − 1.

Solution : The volume of 1 kg of water

   = 
1

1000
 m 3 and of 1 kg of steam = 

1
0.6

 m 3.

The increase in volume

      = 
1

0.6
 m 3 − 

1
1000

 m 3

= (1.7 − 0.001) m 3 ≈ 1.7 m 3.

The work done by the system is p∆V

        = (100 kPa) (1.7 m 3)

= 1.7 × 10 5 J.

The heat given to convert 1 kg of water into steam

= 2.25 × 10 6 J.

The change in internal energy is

∆U = ∆Q − ∆W

= 2.25 × 10 6 J − 1.7 × 10 5 J

= 2.08 × 10 6 J.

 4. The internal energy of a monatomic ideal gas is 1.5 nRT.
One mole of helium is kept in a cylinder of cross section
8.5 cm 2. The cylinder is closed by a light frictionless
piston. The gas is heated slowly in a process during
which a total of 42 J heat is given to the gas. If the
temperature rises through 2°C, find the distance moved
by the piston. Atmospheric pressure = 100 kPa.

Solution : The change in internal energy of the gas is
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        ∆U = 1.5 nR (∆T)

= 1.5 (1 mol) (8.3 J K − 1 mol − 1) (2 K)

= 24.9 J.

The heat given to the gas = 42 J.

The work done by the gas is

∆W = ∆Q − ∆U

= 42 J − 24.9 J = 17.1 J.

If the distance moved by the piston is x, the work done
is

∆W = (100 kPa) (8.5 cm 2) x..

Thus,

      (10 5 N m − 2) (8.5 × 10 − 4 m − 2) x = 17.1 J

or,         x = 0.2 m = 20 cm.

 5. A steam engine intakes 100 g of steam at 100°C per
minute and cools it down to 20°C. Calculate the heat
rejected by the steam engine per minute. Latent heat of
vaporization of steam = 540 cal g − 1.

Solution : Heat rejected during the condensation of steam
in one minute

    = (100 g) × (540 cal g − 1) = 5.4 × 10 4 cal.

Heat rejected during the cooling of water

  = (100 g) × (1 cal g − 1 °C − 1) (100°C − 20°C)

= 8000 cal.

Thus, heat rejected by the engine per minute

= 5.4 × 10 4 cal + 0.8 × 10 4 cal

= 6.2 × 10 4 cal.

 6. Figure (26-W3) shows a process ABCA performed on an
ideal gas. Find the net heat given to the system during
the process.

         
Solution : As the process is cyclic, the change in internal

energy is zero. The heat given to the system is then
equal to the work done by it.
The work done in part AB is W1 = 0 as the volume
remains constant. The part BC represents an isothermal
process so that the work done by the gas during this
part is

W2 = nR T2 ln(V2 /V1).

During the part CA, 

         V ∝ T.

So, V/T is constant and hence,

         p = 
nRT

V
  is constant.

The work done by the gas during the part CA is 

W3 = p (V1 − V2)

= nRT1 − nRT2

= −nR (T2 − T1).

The net work done by the gas in the process ABCA is

    W = W1 + W2 + W3 = nR [T2 ln
V2

V1

 − (T2 − T1)].

The same amount of heat is given to the gas.

 7. Consider the cyclic process ABCA on a sample of 2.0 mol
of an ideal gas as shown in figure (26-W4). The
temperatures of the gas at A and B are 300 K and
500 K respectively. A total of 1200 J heat is withdrawn
from the sample in the process. Find the work done by
the gas in part BC. Take R = 8.3 J K − 1 mol − 1.

           
Solution : The change in internal energy during the cyclic

process is zero. Hence, the heat supplied to the gas is
equal to the work done by it. Hence,

        WAB + WBC + WCA = −1200 J. … (i)

The work done during the process AB is 

        WAB = pA(VB − VA)

= nR(TB − TA)

= (2.0 mol) (8.3 J K − 1 mol − 1) (200 K)

= 3320 J.

The work done by the gas during the process CA is zero
as the volume remains constant. From (i),

3320 J + WBC = −1200 J

or, WBC = −4520 J.

≈ −4500 J.

 8. 2.00 mol of a monatomic ideal gas (U = 1.5 nRT) is
enclosed in an adiabatic, fixed, vertical cylinder fitted with
a smooth, light adiabatic piston. The piston is connected to
a vertical spring of spring constant 200 N m − 1 as shown
in figure (26-W5). The area of cross section of the cylinder
is 20.0 cm 2. Initially, the spring is at its natural length
and the temperature of the gas is 300 K. The atmospheric
pressure is 100 kPa. The gas is heated slowly for some
time by means of an electric heater so as to move the
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piston up through  10 cm. Find (a) the work done by the
gas (b) the final temperature of the gas and  (c) the heat
supplied by the heater.

Solution : (a) The force by the gas on the piston is
F = p0 A + kx

where p0 = 100 kPa is the atmospheric pressure,

A = 20 cm2 is the area of  cross section, k = 200 N m − 1 is
the spring constant and x is the compression of the
spring. The work done by the gas as the piston moves
through  l = 10 cm is

W = ∫ 
0

l

 F dx

= p0 Al + 
1
2

 kl 2

= (100 × 10 3 Pa) × (20 × 10 − 4 m 2) × (10 × 10 − 2 m)

            + 
1
2

 (200 N m − 1) × (100 ×10 − 4 m 2)

= 20 J + 1 J = 21 J.

(b) The initial temperature is T1 = 300 K. Let the final
temperature be T2. We have

    nRT1 = p0V0

and nRT2 = pV2 = 

p0 + 

kl
A




 (V0 + Al)

= nRT1 + p0 Al + kl 2 + 
kl nRT1

A p0

or, T2 = T1 + 
p0 Al + kl 2

nR
 + 

klT1

Ap0

= (300 K) + 
20 J + 2 J

(2.0 mol) (8.3 J K − 1 mol − 1)

          + 
(200 N m − 1) × (10 × 10 − 2 m) × (300 K)

(20 × 10 − 4 m 2) × (100 × 10 3 Pa)

= 300 K + 1.325 K + 30 K
≈ 331 K.

(c) The internal energy is U = 1.5 nRT.

The change in internal energy is

∆U = 1.5 nR ∆T

= 1.5 × (2.00 mol) × (8.3 J K − 1 mol − 1) × (31 K)
= 772 J.

From the first law,

         ∆Q = ∆U + ∆W
= 772 J + 21 J = 793 J.

 9. A sample of an ideal  gas has pressure p0 , volume V0

and temperature T0. It is isothermally expanded to twice
its original volume. It is then compressed at constant
pressure to have the original volume V0. Finally, the gas
is heated at constant volume to get the original
temperature. (a) Show the process in a V–T diagram
(b) Calculate the heat absorbed in the process.

Solution :

(a) The V−T diagram for the process is  shown in figure
(26-W6). The initial state is represented by the point a.
In the first step, it is isothermally expanded to a volume
2V0. This is shown by ab. Then the pressure is kept
constant and the gas is compressed to the volume V0.
From the ideal gas equation, V/T is constant at constant
pressure. Hence, the process is shown by a line bc which
passes through the origin. At point c, the volume is V0.
In the final step, the gas is heated at constant volume
to a temperature T0. This is shown by ca. The final state
is the same as the inital state.

(b) The process is cyclic so that the change in internal
energy is zero. The heat supplied is, therefore, equal to
the work done by the gas. The work done during ab is

     W1 = nRT0 ln 
2V0

V0

 = nRT0 ln 2 = p0V0 ln2.

Also from the ideal gas equation,

       paVa = pbVb

or,        pb = 
paVa

Vb
 = 

p0V0

2V0

 = 
p0

2
 ⋅

In the step bc,  the pressure remains constant. Hence,
the work done is,

W2 = 
p0

2
 (V0 − 2V0) = − 

p0V0

2
 ⋅

In the step ca, the volume remains constant and so the
work done is zero. The net  work done by the gas in the
cyclic process is

W = W1 + W2

= p0V0 [ln 2 − 0.5]

= 0.193 p0V0 .

Hence, the heat supplied to the gas is 0.193 p0V0.
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10. A sample of 100 g water is slowly heated from 27°C to
87°C. Calculate the change in the entropy of the water.

Specific heat capacity of water = 4200 J kg − 1 K − 1.

Solution : The  heat supplied to increase the temperature
of the sample from T to T + ∆T is

∆Q = ms ∆T,

where m = 100 g = 0.1 kg and C = 4200 J kg − 1 K − 1.

The change in entropy during this process is

∆S = 
∆Q
T

 = ms 
∆T
T

 .

The total change in entropy as the temperature rises
from T1 to T2 is,

S2 − S1 = ∫ 
T1

T2

 ms 
dT
T

= ms ln 
T2

T1

 ⋅

Putting T1 = 27°C = 300 K and T2 = 87°C = 360 K,

S2 − S1 = (0.1 kg) (4200 J kg − 1 K − 1) ln 
360
300

= 76.6 J K − 1.

11. A heat engine operates between a cold reservoir at
temperature T2 = 300 K and a hot reservoir at
temperature T1. It takes 200 J of heat from the hot
reservoir and delivers 120 J of heat to the cold reservoir
in a cycle. What could be the minimum temperature of
the hot reservoir ?

Solution : The work done by the engine in a cycle is

          W = 200 J − 120 J = 80 J.

The efficiency of the engine is

η = 
W
Q

 = 
80 J
200 J

 = 0.40.

From Carnot’s theorem, no engine can have an efficiency
greater than that of a Carnot engine.

Thus,       0.40 ≤ 1 − 
T2

T1

 = 1 − 
300 K

T1

or, 
300 K

T1

 ≤ 1 − 0.40 = 0.60

or,      T1 ≥ 
300 K
0.60

or, T1 ≥ 500 K.

The minimum temperature of the hot reservoir has to
be 500 K.

QUESTIONS FOR SHORT ANSWER

 1. Should the internal energy of a system necessarily
increase if heat is added to it ?

 2. Should the internal energy of a system necessarily
increase if its temperature is increased ?

 3. A cylinder containing a gas is lifted from the first floor
to the second floor. What is the amount of work done
on the gas ? What is the amount of work done by the
gas ? Is the internal energy of the gas increased ? Is the
temperature of the gas increased ?

 4. A force F is applied on a block of mass M. The block is
displaced through a distance d in the direction of the
force. What is the work done by the force on the block ?
Does the internal energy change because of this work ?

 5. The outer surface of a cylinder containing a gas is
rubbed vigorously by a polishing machine. The cylinder
and its gas become warm. Is the energy transferred to
the gas heat or work ?

 6. When we rub our hands they become warm. Have we
supplied heat to the hands ?

 7. A closed bottle contains some liquid. The bottle is shaken
vigorously for 5 minutes. It is found that the
temperature of the liquid is increased. Is heat
transferred to the liquid ? Is work done on the liquid ?
Neglect expansion on heating.

 8. The final volume of a system is equal to the initial
volume in a certain process. Is the work done by the
system necessarily zero ? Is it necessarily nonzero ?

 9. Can work be done by a system without changing its
volume ?

10. An ideal gas is pumped into a rigid container having
diathermic walls so that the temperature remains
constant. In a certain time interval, the pressure in the
container is doubled. Is the internal energy of the
contents of the container also doubled in the interval ?

11. When a tyre bursts, the air coming out is cooler than
the surrounding air. Explain.

12. When we heat an object, it expands. Is work done by
the object in this process ? Is heat given to the object
equal to the increase in its internal energy ?

13. When we stir a liquid vigorously, it becomes warm. Is
it a reversible process ?

14. What should be the condition for the efficiency of a
Carnot engine to be equal to 1 ?

15. When an object cools down, heat is withdrawn from it.
Does the entropy of the object decrease in this process ?
If yes, is it a violation of the second law of
thermodynamics stated in terms of increase in entropy ?
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OBJECTIVE I

 1. The first law of thermodynamics is a statement of
(a) conservation of heat
(b) conservation of work
(c) conservation of momentum
(d) conservation of energy.

 2. If heat is supplied to an ideal gas in an isothermal
process,
(a) the internal energy of the gas will increase
(b) the gas will do positive work
(c) the gas will do negative work
(d) the said process is not possible.

 3. Figure (26-Q1) shows two processes A and B on a
system. Let ∆Q1 and ∆Q2 be the heat given to the system
in processes A and B respectively. Then
(a) ∆Q1 > ∆Q2 (b) ∆Q1 = ∆Q2 (c) ∆Q1 < ∆Q2 (d) ∆Q1 ≤ ∆Q2.

 4. Refer to figure (26-Q1). Let ∆U1 and ∆U2 be the changes
in internal energy of the system in the processes A and
B. Then
(a) ∆U1 > ∆U2       (b) ∆U1 = ∆U2

(c) ∆U1 < ∆U2       (d) ∆U1 ≠ ∆U2.

 5. Consider the process on a system shown in figure
(26-Q2). During the process, the work done by the
system

    (a) continuously increases
(b) continuously decreases
(c) first increases then decreases
(d) first decreases then increases.

 6. Consider the following two statements.
(A) If heat is added to a system, its temperature must
    increase.

(B) If positive work is done by a system in a thermo-  
   dynamic process, its volume must increase.
(a) Both A and B are correct.
(b) A is correct but B is wrong.
(c) B is correct but A is wrong.
(d) Both A and B are wrong.

 7. An ideal gas goes from the state i to the state f as shown
in figure (26-Q3). The work done by the gas during the
process

    (a) is positive   (b) is negative   (c) is zero
(d) cannot be obtained from this information.

 8. Consider two processes on a system as shown in figure
(26-Q4).

   The volumes in the initial states are the same in the
two processes and the volumes in the final states are
also the same. Let ∆W1 and ∆W2 be the work done by the
system in the processes A and B respectively.
(a) ∆W1 > ∆W2.   (b) ∆W1 = ∆W2.   (c) ∆W1 < ∆W2.
(d) Nothing can be said about the relation between
   ∆W1 and ∆W2.

 9. A gas is contained in a metallic cylinder fitted with a
piston. The piston is suddenly moved in to compress the
gas and is maintained at this position. As time passes
the pressure of the gas in the cylinder
(a) increases      (b) decreases
(c) remains constant
(d) increases or decreases depending on the nature of
   the gas.

OBJECTIVE II

 1. The pressure p and volume V of an ideal gas both
increase in a process.

   (a) Such a process is not possible.

   (b) The work done by the system is positive.

   (c) The temperature of the system must increase.

   (d) Heat supplied to the gas is equal to the change in
   internal energy.

 2. In a process on a system, the initial pressure and volume
are equal to the final pressure and volume.

   (a) The initial temperature must be equal to the final
   temperature.
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(b) The initial internal energy must be equal to the final
   internal energy.
(c) The net heat given to the system in the process must
   be zero.
(d) The net work done by the system in the process must
   be zero.

 3. A system can be taken from the initial state p1, V1 to
the final state p2, V2 by two different methods. Let
∆Q and ∆W represent the heat given to the system and
the work done by the system. Which of the following
must be the same in both the methods ?
(a) ∆Q   (b) ∆W   (c) ∆Q + ∆W   (d) ∆Q − ∆W.

 4. Refer to figure (26-Q5). Let ∆U1 and ∆U2 be the change
in internal energy in processes A and B respectively,
∆Q be the net heat given to the system in process
A + B and ∆W be the net work done by the system in
the process A + B.

    (a) ∆U1 + ∆U2 = 0.        (b) ∆U1 − ∆U2 = 0.

(c) ∆Q − ∆W = 0.          (d) ∆Q + ∆W = 0.

 5. The internal energy of an ideal gas decreases by the
same amount as the work done by the system.
(a) The process must be adiabatic.
(b) The process must be isothermal.
(c) The process must be isobaric.
(d) The temperature must decrease.

EXERCISES

 1. A thermally insulated, closed copper vessel contains
water at 15°C. When the vessel is shaken vigorously for
15 minutes, the temperature rises to 17°C. The mass of
the vessel is 100 g and that of the water is 200 g. The
specific heat capacities of copper and water are
420 J kg − 1 K − 1 and 4200 J kg − 1 K − 1 respectively.
Neglect any thermal expansion. (a) How much heat is
transferred to the liquid–vessel system ? (b) How much
work has been done on this system ? (c) How much is
the increase in internal energy of the system ?

 2. Figure (26-E1) shows a paddle wheel coupled to a mass
of 12 kg through fixed frictionless pulleys. The paddle is
immersed in a liquid of heat capacity 4200 J K − 1 kept
in an adiabatic container. Consider a time interval in
which the 12 kg block falls slowly through 70 cm.
(a) How much heat is given to the liquid ? (b) How much
work is done on the liquid ? (c) Calculate the rise in the
temperature of the liquid neglecting the heat capacity
of the container and the paddle.

 3. A 100 kg block is started with a speed of 2.0 m s − 1 on
a long, rough belt kept fixed in a horizontal position.
The coefficient of kinetic friction between the block and
the belt is 0.20. (a) Calculate the change in the internal
energy of the block–belt system as the block comes to a
stop on the belt. (b) Consider the situation from a frame
of reference moving at 2.0 m s − 1 along the initial velocity
of the block. As seen from this frame, the block is gently
put on a moving belt and in due time the block starts

moving with the belt at 2.0 m s − 1. Calculate the increase
in the kinetic energy of the block as it stops slipping
past the belt. (c) Find the work done in this frame by
the external force holding the belt.

 4. Calculate the change in internal energy of a gas kept in
a rigid container when 100 J of heat is supplied to it.

 5. The pressure of a gas changes linearly with volume from
10 kPa, 200 cc to 50 kPa, 50 cc. (a) Calculate the work
done by the gas. (b) If no heat is supplied or extracted
from the gas, what is the change in the internal energy
of the gas ?

 6. An ideal gas is taken from an initial state i to a final
state f in such a way that the ratio of the pressure to
the absolute temperature remains constant. What will
be the work done by the gas ?

 7. Figure (26-E2) shows three paths through which a gas
can be taken from the state A to the state B. Calculate
the work done by the gas in each of the three paths.

 8. When a system is taken through the process abc shown
in figure (26-E3), 80 J of heat is absorbed by the system
and 30 J of work is done by it. If the system does 10 J
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of work during the process adc, how much heat flows
into it during the process ?

 9. 50 cal of heat should be supplied to take a system from
the state A to the state B through the path ACB as
shown in figure (26-E4). Find the quantity of heat to be
supplied to take it from A to B via ADB.

10. Calculate the heat absorbed by a system in going
through the cyclic process shown in figure (26-E5).

11. A gas is taken through a cyclic process ABCA as shown
in figure (26-E6). If 2.4 cal of heat is given in the process,
what is the value of J ?

12. A substance is taken through the process abc as shown
in figure (26-E7). If the internal energy of the substance
increases by 5000 J and a heat of 2625 cal is given to
the system, calculate the value of J.

13. A gas is taken along the path AB as shown in figure
(26-E8). If 70 cal of heat is extracted from the gas in the

process, calculate the change in the internal energy of
the system.

14. The internal energy of a gas is given by U = 1.5 pV. It
expands from 100 cm 3 to 200 cm 3 against a constant
pressure of 1.0 × 10 5 Pa. Calculate the heat absorbed by
the gas in the process.

15. A gas is enclosed in a cylindrical vessel fitted with a
frictionless piston. The gas is slowly heated for some
time. During the process, 10 J of heat is supplied and
the piston is found to move out 10 cm. Find the increase
in the internal energy of the gas. The area of cross
section of the cylinder = 4 cm 2 and the atmospheric
pressure = 100 kPa.

16. A gas is initially at a pressure of 100 kPa and its volume
is 2.0 m 3. Its pressure is kept constant and the volume
is changed from 2.0 m 3 to 2.5 m 3. Its volume is now
kept constant and the pressure is increased from
100 kPa to 200 kPa. The gas is brought back to its initial
state, the pressure varying linearly with its volume. (a)
Whether the heat is supplied to or extracted from the
gas in the complete cycle ? (b) How much heat was
supplied or extracted ?

17. Consider the cyclic process ABCA, shown in figure
(26-E9), performed on a sample of 2.0 mol of an ideal
gas. A total of 1200 J of heat is withdrawn from the
sample in the process. Find the work done by the gas
during the part BC.

18. Figure (26-E10) shows the variation in the internal
energy U with the volume V of 2.0 mol of an ideal gas
in a cyclic process abcda. The temperatures of the gas
at b and c are 500 K and 300 K respectively. Calculate
the heat absorbed by the gas during the process.

19. Find the change in the internal energy of 2 kg of water
as it is heated from 0°C to 4°C. The specific heat capacity

of water is 4200 J kg − 1 K − 1 and its densities at 0°C and

4°C are 999⋅9 kg m − 3 and 1000 kg m − 3 respectively.

Atmospheric pressure = 10 5 Pa.

20. Calculate the increase in the internal energy of 10 g of
water when it is heated from 0°C to 100°C and converted
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into steam at 100 kPa. The density of steam = 0.6 kg m –3.

Specific heat capacity of water = 4200 J kg − 1 °C − 1 and the

latent heat of vaporization of water = 2.25 × 10 6 J kg − 1.

21. Figure (26-E11) shows a cylindrical tube of volume V
with adiabatic walls containing an ideal gas. The
internal energy of this ideal gas is given by 1.5 nRT.
The tube is divided into two equal parts by a fixed
diathermic wall. Initially, the pressure and the
temperature are p1, T1 on the left and p2, T2 on the right.
The system is left for sufficient time so that the
temperature becomes equal on the two sides. (a) How

much work has been done by the gas on the left part ?
(b) Find the final pressures on the two sides. (c) Find
the final equilibrium temperature. (d) How much
heat has flown from the gas on the right to the gas on
the left ?

22. An adiabatic vessel of total volume V is divided into two
equal parts by a conducting separator. The separator is
fixed in this position. The part on the left contains one
mole of an ideal gas (U = 1.5 nRT) and the part on the
right contains two moles of the same gas. Initially, the
pressure on each side is p. The system is left for
sufficient time so that a steady state is reached. Find
(a) the work done by the gas in the left part during the
process, (b) the temperature on the two sides in the
beginning, (c) the final common temperature reached by
the gases, (d) the heat given to the gas in the right part
and (e) the increase in the internal energy of the gas in
the left part.

ANSWERS

OBJECTIVE I

 1. (d)  2. (b)  3. (a)  4. (b)  5. (a)  6. (c)
 7. (c)  8. (c)  9. (b)

OBJECTIVE II

 1. (b), (c) 2. (a), (b)  3. (d)  4. (a), (c)
 5. (a), (d)

EXERCISES

 1. (a) zero (b) 1764 J (c) 1764 J

 2. (a) zero (b) 84 J (c) 0.02°C
 3. (a) 200 J (b) 200 J (c) 400 J
 4. 100 J

 5. (a) −4.5 J (b) 4.5 J

 6. zero

 7. 0.30 J in AB, 0.450 J in ACB and 0.150 J in ADB
 8. 60 J
 9. 55 cal

10. 31.4 J

11. 4.17 J cal − 1

12. 4.19 J cal − 1

13. −241 J

14. 25 J
15. 6 J
16. (a) extracted (b) 25000 J

17. −4520 J

18. 2300 J

19. (33600 − 0.02) J

20. 2.5 × 10 4 J

21. (a) zero

   (b) 
p1T2 (p1 + p2)

λ
 on the left and 

p2T1 (p1 + p2)
λ

     on the right

   (c) 
T1T2 (p1 + p2)

λ

   (d) 
3p1p2 (T2 − T1) V

4λ
 where λ = p1T2 + p2T1

22. (a) zero (b) 
pV

(2 mol) R
 , 

pV
(4 mol) R

   (c) 
pV

(3 mol) R
(d) 

pV
4

(e) 
−pV

4
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CHAPTER 27

SPECIFIC HEAT CAPACITIES OF GASES

27.1 TWO KINDS OF SPECIFIC HEAT
     CAPACITIES OF GASES

The specific heat capacity of a substance is defined
as the heat supplied per unit mass of the substance
per unit rise in the temperature. If an amount ∆Q of
heat is given to a mass m of the substance and its
temperature rises by ∆T, the specific heat capacity s
is given by the equation

           s = 
∆Q

m ∆T
 ⋅ … (27.1)

This definition applies to any mode of the
substance, solid, liquid or gas.

Consider a mass m of a gas at pressure p1, volume
V1 and temperature T1. We show this state by the point
a in the p–V diagram of figure (27.1). The point b
represents another state in which the pressure is p2,
the volume is V2 and the temperature is T2. The change
in temperature as the system is taken from a to b is
∆T = T2 − T1. The internal energy of the gas at a is
U1 and at b it is U2. The change in internal energy as
the system is taken from a to b is ∆U = U2 − U1. If the
work done by the gas in taking it from a to b is ∆W
and the heat supplied is ∆Q, from the first law of
thermodynamics,

∆Q = ∆U + ∆W.

Now, the work done ∆W depends on the process by
which the gas is taken from a to b. For example, the
work done is smaller if the gas is taken through the
process acb and is larger if the process is adb.
Accordingly, ∆Q is smaller in the process acb and is
larger in the process adb. In both these processes, the

change in temperature ∆T is the same. So the heat
∆Q given to raise the temperature of a gas by ∆T,
depends on the process involved. From equation (27.1),
the specific heat capacity s also depends on the process.
Thus, to define the specific heat capacity of a gas the
process should also be specified.

Suppose, the volume of a gas of mass m is kept
constant and heat ∆Q is given to it. If its temperature
rises by ∆T, the specific heat capacity given by
equation (27.1) is called the specific heat capacity at
constant volume and is denoted by the symbol sV. Thus,

        sV = 




∆Q
m ∆T



 constant volume

. … (27.2)

Next suppose, the pressure of a gas of mass m is
kept constant and heat ∆Q is given to it. If the
temperature rises by ∆T, the specific heat capacity
given by equation (27.1) is called the specific heat
capacity at constant pressure and is denoted by the
symbol sp. Thus,

        sp = 




∆Q
m ∆T



 constant pressure

. … (27.3)

There can be many more processes, but these two
are more important and correspondingly two specific
heat capacities are defined for gases.

The above discussion is also valid for solids and
liquids. However, in these systems the expansion is
quite small and hence the work done in a process is
small. Thus, the specific heat capacity depends only
slightly on the process and the process is generally not
mentioned.

The molar heat capacities of a gas are defined as
the heat given per mole of the gas per unit rise in the
temperature. The molar heat capacity at constant
volume, denoted by CV, is

        CV = 




∆Q
n ∆T



 constant volume

… (27.4)

and the molar heat capacity at constant pressure,
denoted by Cp, is
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        Cp = 




∆Q
n ∆T



 constant pressure

… (27.5)

where n is the amount of the gas in number of moles.
Quite often, the term specific heat capacity or specific heat
is used for molar heat capacity. It is advised that the unit
be carefully noted to determine the actual meaning. The
unit of specific heat capacity is J kg − 1 K − 1 whereas that
of molar heat capacity is J K − 1 mol − 1.

Example 27.1

   0.32 g of oxygen is kept in a rigid container and is
heated. Find the amount of heat needed to raise the
temperature from 25°C to 35°C. The molar heat capacity
of oxygen at constant volume is 20 J K − 1 mol − 1.

Solution : The molecular weight of oxygen = 32 g mol − 1.

The amount of the gas in moles is

    n = 0.32 g
32 g mol 

− 1 = 0.01 mol.

The amount of heat needed is Q = nCV ∆T

   = (0.01 mol) (20 J K − 1 mol − 1) (10 K) = 2.0 J.

Example 27.2

   A tank of volume 0.2 m 3 contains helium gas at a
temperature of 300 K and pressure 1.0 × 10 5 N m –2. Find
the amount of heat required to raise the temperature to
400 K. The molar heat capacity of helium at constant
volume is 3.0 cal K − 1 mol − 1. Neglect any expansion in
the volume of the tank.

Solution : The amount of the gas in moles is

      n = 
pV
RT

= 
(1.0 × 10 5 N m − 2) (0.2 m 3)
(8.31 J K − 1 mol − 1) (300 K)

 = 8.0 mol.

The amount of heat required is

  ∆Q = nCV ∆T

= (8.0 mol) (3.0 cal mol − 1 K − 1) (100 K) = 2400 cal.

27.2 RELATION BETWEEN Cp AND CV

    FOR AN IDEAL GAS

Suppose, the volume of a gas is kept constant and
heat is supplied to it. The work done by the gas is
zero. The entire heat supplied goes as internal energy
of the gas and is used to increase the temperature.
Now consider a process in which the pressure is kept
constant. If heat is supplied to the gas, its volume
increases. A part of the heat supplied is used by the
gas to do work in the expansion. Only the remaining
part goes as increase in the internal energy which
increases the temperature. Thus, for a given amount
∆Q of heat, the rise in temperature of a gas at constant

pressure is smaller than the rise in temperature at
constant  volume. Thus, Cp > CV.

Consider an amount n (in moles) of an ideal gas
kept in a rigid container at an initial pressure p,
volume V and temperature T. An amount (dQ)V of heat
is supplied to the gas. Its temperature rises from T to
T + dT whereas the volume remains constant. The
work done by the gas is dW = 0. From the first law of
thermodynamics, the internal energy changes by dU
such that
             (dQ)V = dU. … (i)

Now suppose, the same sample of the gas is taken in
a vessel with a movable light piston of cross-sectional
area A (figure 27.2). The initial pressure, volume and
temperature are p, V and T. The piston is pushed by
a constant external force F = pA. The pressure inside
the gas thus remains constant at the value p.

The gas is given heat (dQ)p which raises the
temperature by the same amount dT. The piston
moves out so that the volume increases by dV. The
work done by the gas is p dV and from the first law
of thermodynamics,

(dQ)p = dU ′ + p dV. … (ii)

For an ideal gas, pV = nRT.
As the pressure remains constant,
      p(V + dV) = nR(T + dT)

and hence,
         p dV = nRdT.

From (ii),
(dQ)p = dU ′ + nR dT. … (iii)

As the temperature rises by the same amount in the
two cases and the internal energy of an ideal gas
depends only on its temperature,

dU = dU ′.
Thus, from (i) and (iii),

(dQ)p = (dQ)V + nR dT

   or, 
1
n

 
(dQ)p

dT
 = 

1
n

 
(dQ)V

dT
 + R. … (iv)

But (dQ)p is the heat given to increase the temperature
of the gas by dT at constant pressure. Thus, by
definition,       

Cp = 
1
n

 
(dQ)p

dT
 ⋅

Figure 27.2
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Similarly,    CV = 
1
n

 
(dQ)V

dT
and (iv) becomes

Cp = CV + R

   or, Cp − CV = R. … (27.6)

Relations of CV with energy

From (i),     (dQ)V = dU

or,
1
n

 
(dQ)V

dT
 = 

1
n

 
dU
dT

   or, CV = 
1
n

 
dU
dT

… (27.7)

or, dU = nCV dT.
Taking the energy to be zero at T = 0,

             U = nCV T. … (27.8)

Example 27.3

   The molar heat capacity of a gas at constant volume is
found to be 5 cal mol − 1 K − 1. Find the ratio γ = Cp /CV for

the gas. The gas constant R = 2 cal mol − 1 K − 1.

Solution : We have CV = 5 cal mol − 1 K − 1.

Thus, Cp = CV + R = 5 cal mol − 1 K − 1 + 2 cal mol − 1 K − 1

= 7 cal mol − 1 K − 1

or, 
Cp

CV

 = 
7
5

 = 1.4.

27.3 DETERMINATION OF Cp OF A GAS 

Figure (27.3) shows a schematic diagram of the
Regnault’s apparatus to measure Cp of a gas. The
experimental gas is taken at a high pressure in a large
tank A immersed in water at a constant temperature.
The tank is connected through a tube to two copper
coils C and D. A valve V in the tube opens or closes
the path for the gas to flow. The rate of flow can be
increased or decreased by adjusting a screw valve S.
The first copper coil C is immersed in a hot oil bath
E and the second copper coil D is immersed in a

calorimeter F containing water. Thermometers T1 and
T2 are provided in the bath E and the calorimeter F.
A manometer M connected close to the tank measures
the pressure of the gas in the tank. Another
manometer N connected after the screw valve S
measures the pressure of the gas flowing in the
calorimeter.

To do the experiment, the oil bath is heated with
a burner to keep it at a high temperature which is
measured by the thermometer T1. A measured mass
m of water is taken in the calorimeter. The calorimeter
should be almost full with water so that the gas
flowing through the coil D gets maximum time to
exchange heat with the water. The initial temperature
of the water is measured by T2. The difference in the
heights of mercury in the two arms of the manometer
M is noted. The valve V is opened to allow the gas to
flow through the system. As the amount of the gas in
the tank reduces, the pressure in it decreases and the
rate of flow tends to decrease. The screw valve S is
continuously adjusted to keep the rate of flow constant.
This is decided by keeping the difference in the levels
of mercury in manometer N constant. The pressure of
the gas going in the coil then remains constant. The
gas is allowed to flow for some time and the final
temperature of water and the final difference in the
mercury levels in the manometer M are noted.

Let the water equivalent of the calorimeter
together with the coil D       = W 
   mass of the water        = m
   temperature of the oil bath = θ1

   initial temperature of water = θ2

   final temperature of water = θ3

and the amount of the gas (in moles) passed through
the water = n.

The gas at temperature θ1 enters the coil D. In the
beginning of the experiment, the gas leaves the coil D
at temperature θ2. This temperature gradually
increases and at the end of the experiment it becomes
θ3. The average temperature of the gas leaving the coil

D is, therefore, 
θ2 + θ3

2
 ⋅ The heat lost by the gas is

         ∆Q = n Cp




θ1 − 

θ2 + θ3

2




. … (i)

This heat is used to increase the temperature of
the calorimeter, the water and the coil D from
θ2 to θ3. The heat received by them is

∆Q = (W + m)s (θ3 − θ2) … (ii)

where s is the specific heat capacity of water. From (i)
and (ii),

       nCp 



θ1 − 

θ2 + θ3

2




 = (W + m)s (θ3 − θ2)
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   or,    Cp = 
(W + m)s (θ3 − θ2)

n 



θ1 − 

θ2 + θ3

2




 ⋅ … (iii)

Determination of n

Suppose the difference in the mercury levels in the
manometer M is h and the atmospheric pressure is
equal to a height H of mercury. The pressure in the
tank is p, equal to a height H + h of mercury. By noting
the difference h at the beginning and at the end of the
experiment, the initial pressure p1 and the final
pressure p2 are determined. Assuming the gas to be
ideal,

          p1V = n1RT

and p2V = n2RT.

Here n1, n2 are the amounts of the gas (in moles) in
the tank at the beginning and at the end respectively,
V is the volume of the tank and T is the absolute
temperature of the tank. Thus,

(p1 − p2)V = (n1 − n2)RT

or, n = n1 − n2 = 
(p1 − p2)V

RT
 ⋅

Putting in (iii), one can find the value of Cp.

27.4 DETERMINATION OF CV OF A GAS

Figure (27.4) shows a schematic diagram of Joly’s
differential steam calorimeter used to measure Cv of a
gas. Two hollow copper spheres A and B are suspended
from the pans of a sensitive balance. The spheres are
enclosed in a steam chamber. The balance is placed
over the steam chamber. Two pans C and D are fitted
below the spheres.

Umbrella-like shields E, F are provided over the
spheres. Plaster of paris tubes are provided at the
holes in the steam chamber through which the
suspension wires pass. These are heated electrically
by the coils G, H. This ensures that when steam is
sent into the steam chamber, no drops are formed on

the wires and they move freely as the balance pans
oscillate. The shields E, F do not allow the drops to
fall on the spheres or on the pans. A thermometer is
fitted in the steam chamber.

To do the experiment, air is pumped out of the
spheres and the spheres are balanced. The
experimental gas is filled in one of the spheres, say B,
and additional weights are put on the balance pan so
that the spheres are again balanced. This gives the
mass of the gas. The temperature of the steam
chamber is noted. This gives the initial temperature
of the gas.

Steam is now passed through the steam chamber.
The steam condenses on the spheres and the water
formed is collected in the pans C and D. The
temperatures of the spheres rise. More steam
condenses on the pan which is below the sphere
containing the gas. This is because the steam has to
raise the temperature of the sphere as well as of the
gas. When the temperature becomes steady, the
spheres are again balanced by putting extra weights.
This extra weight gives the amount of steam needed
to raise the temperature of the gas only. The final
temperature in steady state is noted.

Suppose,

the mass of the gas taken = m1

   the mass of the extra steam condensed = m2

   initial temperature of the gas = θ1

   final temperature of the gas = θ2

   specific latent heat of vaporization
   of water = L.

If the molecular weight of the gas is M, the amount
of the gas in moles is n = m1 /M. The heat lost by the
steam is = m2L and the heat gained by the gas is
nCV(θ2 − θ1).

Thus, m2L = nCV (θ2 − θ1) = 
m1

M
 CV (θ2 − θ1)

or, CV = 
Mm2L

m1 (θ2 − θ1)
 ⋅

In this we have neglected the increase in the volumes
of the spheres as the temperature rises.

27.5 ISOTHERMAL AND ADIABATIC PROCESSES

Isothermal Process

A process on a system is called isothermal if the
temperature of the system remains constant. In case
of an ideal gas the internal energy remains constant
in such a process. The amount of heat supplied is equal
to the work done by the gas. The gas obeys Boyle’s
law and the work done by the gas is
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 W = ∫ 
Vi

Vf

p dV = ∫ 
Vi

Vf

n 
RT
V

 dV = nRT ln(Vf / Vi).

This is also the amount of heat given as the volume
of the gas is changed from Vi to Vf . As the change in
temperature is zero, the molar heat capacity in such
a process is

      Cisothermal = 
∆Q

n ∆T
 = infinity.

An isothermal process may be achieved by
immersing the system in a large reservoir and
performing the process very slowly. The temperature
of the system then remains equal to the temperature
of the reservoir. Heat may be exchanged between the
reservoir and the system if necessary.

As an example, if a gas is taken in a metal cylinder
(good conductor of heat) fitted with a piston and the
piston is moved slowly, the temperature of the gas does
not change. It remains equal to the temperature of the
surrounding air. If the temperature tends to increase,
heat is conducted from the gas to the air through the
metallic walls. Similarly, if the temperature tends to
decrease, heat is conducted from the surrounding air
to the gas through the metallic walls. Here the
surrounding air acts as a large reservoir.

Adiabatic Process

A process on a system is called adiabatic if no heat
is supplied to it or extracted from it. In such a case,
the temperature changes without adding any heat. The
molar heat capacity in such a process is

       Cadiabatic = 
∆Q

n ∆T
 = zero.

The work done by the gas in an adiabatic process
equals the decrease in its internal energy. Thus, if a
gas enclosed in a container with adiabatic walls
expands, the internal energy decreases and hence the
temperature falls. If the gas is compressed
adiabatically, the temperature rises.

27.6 RELATIONS BETWEEN p, V, T IN A
    REVERSIBLE ADIABATIC PROCESS

Relation between p and V

Consider an adiabatic process on an ideal gas.
During a short part of the process, the pressure, the
volume and the temperature change from p, V, T  to
p + dp, V + dV and T + dT respectively. The internal
energy changes from U to U + dU. As the amount of
heat supplied is zero, the first law of thermodynamics
gives
           0 = dU + p dV. … (i)

We have,        CV = 
1
n

 
dU
dT

or,        dU = nCVdT .

   Thus, from (i),
          nCVdT + p dV = 0. … (ii)

As the gas is ideal,
             pV = nRT

or, p dV + V dp = nRdT

or, dT = 
p dV + V dp

nR
 ⋅

Substituting this expression for dT in (ii),

        CV 



p dV + V dp

R




 + p dV = 0

or, (CV + R) p dV + CV V dp = 0

or,      Cp p dV + CV V dp = 0

or, 
Cp

CV
 
dV
V

 + 
dp
p

 = 0

or,             γ dV
V

 = − 
dp
p

where γ = Cp / CV.

Let the initial pressure and volume be pi  and  Vi
respectively and the final pressure and volume be pf
and Vf respectively. Then

        ∫ 
Vi

Vf

γ dV
V

 = − ∫ 
pi

pf
dp
p

.

or,        γ ln 
Vf

Vi
 = − ln 

pf

pi

or, ln




Vf

Vi





 γ

 = ln




pi

pf





or, 
Vf

 γ

Vi
 γ = 

pi

pf

or, piVi
 γ = pfVf

 γ

   or, pV γ = constant. … (27.9)

Thus, pV γ remains constant in a reversible
adiabatic process.

Relation between p and T

We have      pV = nRT

or, V = 
nRT

p
 ⋅

Putting in (27.9),

       p 



nRT

p




γ

 = constant

or,       p
1 − γ T γ = constant
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    or,        
T γ

p
γ − 1

 = constant. … (27.10)

Relation between V and T

We have      pV = nRT

   or, p = 
nRT

V
 ⋅

Putting in (27.9),




nRT
V




 V γ = constant

   or, TV γ − 1 = constant. … (27.11)

Example 27.4

   Dry air at 15°C and 10 atm is suddenly released at
atmospheric pressure. Find the final temperature of the
air [Cp /CV = 1.41].

Solution : As the air is suddenly released, it does not get
time to exchange heat with the surrounding. Thus the
process is adiabatic. Assuming the process to be reversible,

           
T γ

p γ − 1
 = constant

or, 
T1

 γ

p1
 γ − 1

 = 
T2

 γ

p2
 γ − 1

 

or, 




T2

T1





 γ

 = 




p2

p1





 γ − 1

or, T2 = T1 




p2

p1





 γ − 1

γ
.

Taking p1 = 10 atm, p2 = 1 atm, γ = 1.41 and
T1 = (273 + 15) K = 288 K, the final temperature is

T2 = 148 K.

27.7 WORK DONE IN AN ADIABATIC PROCESS

Suppose a sample of gas has initial pressure p1

and initial volume V1. In an adiabatic process, the
pressure and volume change to p2 and V2. We have

        pV γ = p1V1
 γ = p2V2

 γ = K. … (i)

Thus, p = 
K

V γ
 ⋅

The work done by the gas in the process is

      W = ∫ 
V1

V2

p dV = ∫ 
V1

V2

K

V γ
 dV

= 
1

1 − γ
 


K

V2
 γ − 1

 − 
K

V1
 γ − 1




 .

From (i), 
K

V2
 γ = p2 and 

K

V1
 γ = p1.

Thus, W = − 
1

γ − 1
 (p2V2 − p1V1)

          = 
p1V1 − p2V2

γ − 1
 ⋅

 … (27.12)

27.8 EQUIPARTITION OF ENERGY

When we assume the molecules of a gas to be like
hard spheres of negligible size, the energy of each
molecule may be written as

      E = 
1
2

 mvx
 2 + 

1
2

 mvy
 2 + 

1
2

mvz
 2.

There are three terms in this expression and each
may be treated independently. The above picture is
suitable for monatomic gases. In diatomic gases the
molecules are assumed to be in the shape of dumbbells,
two hard spheres of negligible size at a separation.
Apart from translational motion, the molecule can
rotate about its centre. The energy is the sum of
translational kinetic energy and rotational kinetic
energy. If the line joining the two particles is taken as
the z-axis, the rotational kinetic energy may be
written as

           
1
2

Ixωx
 2 + 

1
2

Iyωy
 2,

the first term describing the energy of rotation about
the x-axis and the second term describing the energy
of rotation about the y-axis. As the size of each atom
is assumed negligible, the moment of inertia Iz is

negligible and no term like 
1
2
 Izωz

 2 is added. The total

energy is then

   E = 
1
2

 mvx
 2 + 

1
2

 mvy
 2 + 

1
2

 mvz
 2 + 

1
2

 Ixωx
 2 + 

1
2

 Iyωy
 2.

The number of independent terms in this
expression is 5. If the two atoms of a diatomic molecule
vibrate along its length, additional energy results.
Such a vibration involves kinetic energy of vibration
as well as the potential energy of the pair of atoms.
The energy of vibration will be of the form

             
1
2

 µv 2 + 
1
2

 kr 2

�
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where r is the separation between the atoms and
v = ( dr/dt ). The constant µ is related to the mass of
the molecule and k is related to the force constant of
the system. The total energy of a molecule is

       E = 
1
2

 mvx
 2 + 

1
2

 mvy
 2 + 

1
2

 mvz
 2 +

1
2

 Ixωx
 2 + 

1
2

 Iyωy
 2 + 

1
2

 µv 2 + 
1
2

 kr 2.

There are 7 independent terms.
For a polyatomic molecule, the number of terms in

the rotational and vibrational energy depends on the
actual arrangement of atoms in the molecule.

The number of independent terms in the
expression of energy of a molecule is called its degree
of freedom. Thus, the degree of freedom is 3 for a
monatomic gas molecule, it is 5 for a diatomic molecule
if the molecule does not vibrate and is 7 if it vibrates.

Equipartition of energy states that the average
energy of a molecule in a gas associated with each
degree of freedom is 1

2
 kT where k is the Boltzmann

constant and T is its absolute temperature.
The theorem may be proved using more advanced

techniques of statistical mechanics.
According to the equipartition theorem, the

average energy of a molecule in a monatomic gas is
3
2
 kT as the degree of freedom is 3. This is also the

result of the kinetic theory of gases.
For diatomic gases, the average energy per

molecule is 5
2
 kT if the molecules translate and rotate

but do not vibrate, and is 7
2
 kT if they vibrate also.

Now, consider a sample of amount n (in moles) of
an ideal gas. The total number of molecules is nNA
where NA is the Avogadro number. If the gas is
monatomic, the internal energy of the gas is

       U = nNA 




3
2

 kT



 = n 

3
2

 RT.

The molar heat capacity at constant volume is

CV = 
1
n

 
dU
dT

 = 
3
2

 R .

The molar heat capacity at constant pressure is

Cp = CV + R = 
3
2

 R + R = 
5
2

 R .

Thus, γ = 
Cp

CV
 = 

5
3

 = 1.67.

For a sample of a diatomic gas,
U = nNA 





5
2

 kT



 = n 

5
2

 RT

if the molecules do not vibrate. In this case,

   CV = 
1
n

 
dU
dT

 = 
5
2

 R and Cp = CV + R = 
5
2

 R + R = 
7
2

 R .

Thus,  γ = 
Cp

CV
 = 

7
5

 = 1.40.

If the molecules do vibrate, U = n 
7
2

 RT

so that, CV = 
7
2

 R, Cp = 
9
2

 R and γ = 
Cp

CV
 = 

9
7

 = 1.29.

Our expectations about CV, Cp and γ are
summarized in table (27.1a) and the experimental
values for a number of gases are given in table (27.1b).

Table 27.1a: Expected values of CV , Cp and γγγγ

Nature of
the gas

   CV

  (J K − 1

  mol − 1)

   Cp

  (J K − 1

  mol − 1)

  Cp − CV

  (J K − 1

  mol − 1)

γ

Monatomic   12⋅5   20⋅8    8⋅31 1⋅67
Diatomic,
assuming
no vibrations

  20⋅8   29⋅1    8⋅31 1⋅40

Diatomic,
assuming
vibrations

  29⋅1   37⋅4    8⋅31 1⋅29

Table 27.1b: Experimental values of CV , Cp and γγγγ

Gas (15°C)    CV

 (J K − 1

 mol − 1)

   Cp

  (J K − 1

  mol − 1)

 Cp − CV

 (J K − 1

 mol − 1)

γ

He   12⋅5    20⋅8   8⋅30 1⋅66
Ne   12⋅7    20⋅8   8⋅12 1⋅64
Ar   12⋅5    20⋅8   8⋅30 1⋅67
Kr   12⋅3    20⋅8   8⋅49 1⋅69
Xe   12⋅6    21⋅0   8⋅36 1⋅67
H2   20⋅4    28⋅8   8⋅45 1⋅41
O2   21⋅0    29⋅3   8⋅32 1⋅40
N2   20⋅8    29⋅1   8⋅32 1⋅40
CO   20⋅6    29⋅0   8⋅45 1⋅41
HCl   21⋅0    29⋅6   8⋅61 1⋅41
CO2   28⋅2    36⋅5   8⋅32 1⋅30
H2O (200°C)   27⋅0    35⋅4   8⋅35 1⋅31
CH4   27⋅1    35⋅4   8⋅36 1⋅31

We find excellent agreement between the prediction
of the equipartition theorem and the experimental
values. The results also suggest that diatomic molecules
do not vibrate at ordinary temperatures. The table
suggests that the degree of freedom of polyatomic
molecules CO2, H2O and CH4 is 6.

According to the equipartition theorem, the molar
heat capacities should be independent of temperature.
However, variations in CV and Cp are observed as the
temperature changes. At very high temperatures,
vibrations are also important and that affects the
values of CV and Cp for diatomic and polyatomic gases.

While H2O and CH4  are nonlinear molecules,
CO2 is linear. Because of this the degree of freedom of
CO2 corresponding to rotation should be 2 just like
H2O and CH4. Then how can the specific heat
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capacities of CO2 be similar to CH4 and H2O? For
CO2, some fraction of molecules get into vibrations
even at room temperature or so. This extra
contribution from vibrations increases the specific
heats and it looks like having degree of freedom 6.

Example 27.5

   Calculate the internal energy of 1 g of oxygen at STP.

Solution : Oxygen is a diatomic gas. The average energy

per molecule is, therefore, 5
2
 kT and the average energy

per mole is 5
2
 RT. As the molecular weight of oxygen is

32 g mol − 1, 1 g of oxygen has

       n = 
1 g

32 g mol − 1 = 
1
32

 mol .

The temperature of oxygen is 273 K. Thus, the internal
energy is

   U = n 


5
2

 RT




= 


1
32

 mol

 


5
2




 (8.31 J K − 1 mol − 1) (273 K)

 = 177 J.

Worked Out Examples

 1. Calculate the value of mechanical equivalent of heat
from the following data. Specific heat capacity of air

at constant volume = 170 cal kg − 1 K − 1, γ = Cp /CV = 1.4
and the density of air at STP is 1.29 kg m –3. Gas

constant R = 8.3 J K − 1 mol − 1.

Solution : Using pV = nRT, the volume of 1 mole of air at
STP is

  V = 
nRT

p
 = 

(1 mol) × (8.3 J K − 1 mol − 1) × (273 K)
1.0 × 10 5 N m − 2

= 0.0224 m 3.

The mass of 1 mole is, therefore,

(1.29 kg m − 3) × (0.0224 m 3) = 0.029 kg.

The number of moles in 1 kg is 
1

0.029
 ⋅ The molar heat

capacity at constant volume is

          CV = 
170 cal

(1/0.029) mol K −1

= 4.93 cal K − 1 mol − 1.

Hence, Cp = γ CV = 1.4 ×  4.93 cal K − 1 mol − 1

or, Cp − CV = 0.4 × 4.93 cal K − 1 mol − 1

= 1.97 cal K − 1 mol − 1.
Also,

    Cp − CV = R = 8.3 J K − 1 mol − 1.

Thus, 8.3 J = 1.97 cal.

The mechanical equivalent of heat is

8.3 J
1.97 cal

 = 4.2 J cal − 1.

 2. An ideal gas has a molar heat capacity at constant
pressure Cp = 2.5 R. The gas is kept in a closed vessel of
volume 0.0083 m 3, at a temperature of 300 K and a
pressure of 1.6 × 10 6 N m –2. An amount 2.49 × 10 4 J of

heat energy is supplied to the gas. Calculate the final
temperature and pressure of the gas.

Solution : We have

    CV = Cp − R = 2.5 R − R = 1.5 R.

The amount of the gas (in moles) is n = pV
RT

= 
(1.6 × 10 6 N m − 2) × (0.0083 m 3)

(8.3 J K − 1 mol − 1) (300 K)
 = 5.3 mol.

As the gas is kept in a closed vessel, its volume is
constant. Thus, we have

∆Q = n CV ∆T

or, ∆T = 
∆Q
nCV

     = 
2.49 × 10 4 J

(5.3 mol) (1.5 × 8.3 J K − 1 mol − 1)
 = 377 K.

The final temperature is 300 K + 377 K = 677 K.
We have,

          
p1V1

T1

 = 
p2V2

T2

 ⋅

Here V1 = V2. Thus,

   p2 = 
T2

T1

 p1 = 
677
300

 × 1.6 × 10 6 N m − 2

     = 3.6 × 10 6 N m − 2.

 3. A sample of ideal gas (γ = 1.4) is heated at constant
pressure. If an amount 140 J of heat is supplied to the
gas, find (a) the change in internal energy of the gas,
(b) the work done by the gas.

Solution : Suppose the sample contains n moles. Also,
suppose the volume changes from V1 to V2 and the
temperature changes from T1 to T2.

The heat supplied is

           ∆Q = nCp(T2 − T1).

(a) The change in internal energy is
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      ∆U = nCV (T2 − T1) = 
CV

Cp
 nCp (T2 − T1)

= 
CV

Cp
 ∆Q = 

140 J
1.4

 = 100 J.

(b) The work done by the gas is

∆W = ∆Q − ∆U

= 140 J − 100 J = 40 J.

 4. An experiment is performed to measure the molar heat
capacity of a gas at constant pressure using Regnault’s
method. The gas is initially contained in a cubical
reservoir of size 40 cm × 40 cm × 40 cm at 600 kPa at
27°C. A part of the gas is brought out, heated to 100°C
and is passed through a calorimeter at constant pressure.
The water equivalent of the calorimeter and its contents
is 100 g. The temperature of the calorimeter and its
contents increases from 20°C to 30°C during the
experiment and the pressure in the reservoir decreases to
525 kPa. Specific heat capacity of water
= 4200 J kg − 1 K − 1. Calculate the molar heat capacity
Cp from these data.

Solution : We have pV = nRT or, n = pV
RT

 ⋅ The amount of

the gas in the reservoir is n1 = 
p1V
RT

 before the gas is taken

out and n2 = 
p2V
RT

 after the gas is taken out. The amount

taken out is

     ∆n = n1 − n2 = (p1 − p2) 
V

RT

   = 
(600 − 525) × 10 3 N m − 2 × (40 × 10 − 2 m) 3

 (8.3 J K − 1 mol − 1) × (300 K ) 

= 1.925 mol.

The gas is heated to 100°C and cools down as it passes
through the calorimeter. The average final temperature

of the gas is 
20°C + 30°C

2
 = 25°C. Thus, the average

decrease in temperature of the gas is

∆T = (100°C − 25°C) = 75°C. 

or, ∆T = 75 K.

The heat lost by the gas is
∆Q = ∆n Cp ∆T.

The heat gained by the calorimeter and its contents is

(100 g) (4200 J kg − 1 K − 1) (30 − 20)°C = 4200 J.

Thus, ∆n Cp ∆T = 4200 J

or, Cp = 
4200 J

(1.925 mol) (75 K)
 = 29 J K − 1 mol − 1.

 5. A quantity of air is kept in a container having walls
which are slightly conducting. The initial temperature
and volume are 27°C (equal to the temperature of the
surrounding) and 800 cm 3 respectively. Find the rise in

the temperature if the gas is compressed to 200 cm 3 (a) in
a short time (b) in a long time. Take γ = 1.4.

Solution : (a) When the gas is compressed in a short time,
the process is adiabatic. Thus,

       T2V2 
γ − 1 = T1V1 

γ − 1

or, T2 = T1 




V1

V2





 γ − 1

= (300 K) × 



800
200





 0⋅4

 = 522 K.

Rise in temperature = T2 − T1 = 222 K.

(b) When the gas is compressed in a long time, the process
is isothermal. Thus, the temperature remains equal to
the temperature of the surrounding that is 27°C. The
rise in temperature = 0.

 6. A sample of gas (γ = 1.5) is taken through an adiabatic
process in which the volume is compressed from
1600 cm 3 to 400 cm 3. If the initial pressure is 150 kPa,
(a) what is the final pressure and (b) how much work is
done by the gas in the process ?

Solution : (a) For an adiabatic process,

         p1V1
 γ = p2V2

 γ.

Thus,

p2 = p1





V1

V2





 γ

    = (150 kPa) 




1600 cm 3

400 cm 3





 3/2

 = 1200 kPa.

(b) Work done by the gas in an adiabatic process is

W = 
p1V1 − p2V2

γ − 1

= 
(150 kPa) (1600 cm 3) − (1200 kPa) (400 cm 3)

1.5 − 1

= 
240 J − 480 J

0.5
 = − 480 J.

 7. Two moles of helium gas ( γ = 5/3 ) are initially at
27°C and occupy a volume of 20 litres. The gas is first
expanded at constant pressure until the volume is
doubled. Then it undergoes an adiabatic change until the
temperature returns to its initial value. (a) Sketch the
process in a p−V diagram. (b) What is the final volume
and pressure of the gas ? (c) What is the work done by
the gas ?

Solution : (a) The process is shown in figure (27-W1).
During the part ab, the pressure is constant.
We have,

             
paVa

Ta
 = 

pbVb

Tb
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or,        Tb  
Vb

Va
 Ta  2Ta  600 K.

During the part bc, the gas is adiabatically returned to
the temperature Ta . The point a and the point c are on
the same isotherm. Thus, we draw an adiabatic curve
from b and an isotherm from a and look for the point
of intersection c. That is the final state.

(b) From the isotherm ac,
             paVa  pcVc  (i)

and from the adiabatic curve bc,

pbVb
   pcVc

 

   or, pa2Va 
  pcVc

 .  (ii)

Dividing (ii) by (i),

2 Va 
  1  Vc 

  1

or, Vc  2 /  1Va  42Va  113 litres.

From (i), pc  
paVa

Vc
  

nRTa

Vc

 
2 mol  8.3 J K  1 mol  1  300 K

113  10   3 m 3  

          4.4  10 4 Pa.

(c) Work done by the gas in the part ab
 paVb  Va

      pbVb  paVa

 nRT2  nRT1

      2 mol  8.3 J K  1 mol  1  600 K  300 K
 4980 J.

The work done in the adiabatic part bc

 
pbVb  pcVc 

  1

 
nR T2  T1

  1

 
4980 J
5/3  1

  7470 J.

The net work done by the gas

 4980 J  7470 J  12450 J.

 8. An ideal gas enclosed in a vertical cylindrical container
supports a freely moving piston of mass M. The piston
and the cylinder have equal cross-sectional area A. When
the piston is in equilibrium, the volume of the gas is V0

and its pressure is p0. The piston is slightly displaced
from the equilibrium position and released. Assuming
that the system is completely isolated from its
surrounding, show that the piston executes simple
harmonic motion and find the frequency of oscillations.

Solution : Suppose the piston is displaced through a
distance x above the equilibrium position. The volume
of the gas increases by V  Ax. As the system is
completely isolated from its surrounding, the process is
adiabatic. Thus,

           pV   constant

or, ln p   lnV  constant

or,
p
p

   
V
V

  0

or, p   
p
V

 V.

As the piston is only slightly pushed, we can write

p   
p0

V0

 V.

The resultant force acting on the piston in this position is

F  Ap   A
p0

V0

 V

  
A 2 p0

V0

 x  kx

where k  
A 2p0

V0

 

Thus, the motion of the piston is simple harmonic. The
angular frequency  is given by

           k
M

  A 
2 
p0

MV0

and the frequency is   

2

  
1
2

 A 2 p0

MV0

 

 9. Two vessels of volumes V1 and V2 contain the same ideal
gas. The pressures in the vessels are p1 and p2 and the
temperatures are T1 and T2 respectively. The two vessels
are now connected to each other through a narrow tube.
Assuming that no heat is exchanged between the
surrounding and the vessels, find the common pressure
and temperature attained after the connection.

Solution :

The amount of the gas in vessel 1 is n1  
p1V1

RT1

p

V

a b

c

adiabaticisotherm

20 litre 40 litre

Figure 27-W1
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Figure 27-W2
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and that in vessel 2 is n2 = 
p2V2

RT2

 ⋅

If p′ and T ′ be the common pressure and temperature
after the connection is made, the amounts are

         n1′ = 
p′V1

RT ′
  and  n2′ = 

p′V2

RT ′
 .

We have n1 + n2 = n1′ + n2′

or,     
p1V1

RT1

 + 
p2V2

RT2

 = 
p′V1

RT ′
 + 

p′V2

RT ′

or, 
p′
T ′

 = 
1

V1 + V2

 




p1V1

T1

 + 
p2V2

T2





   or, 
T ′
p′

 = 
T1T2(V1 + V2)

p1V1T2 + p2V2T1

 ⋅ … (i)

  As the vessels have fixed volume, no work is done by
the gas plus the vessels system. Also, no heat is
exchanged with the surrounding. Thus, the internal
energy of the total system remains constant.
The internal energy of an ideal gas is

U = nCVT

= CV 
pV
R

 ⋅

The internal energy of the gases before the connection

= 
CV p1V1

R
 + 

CV p2V2

R
and after the connection

= 
CV p′(V1 + V2)

R
 ⋅

Neglecting the change in internal energy of the vessels
(the heat capacity of the vessels is assumed negligible),

     
CV p1V1

R
 + 

CV p2V2

R
 = 

CV p′(V1 + V2)
R

or,         p′ = 
p1V1 + p2V2

V1 + V2

 ⋅

From (i), T ′ = 
T1T2(p1V1 + p2V2)
p1V1T2 + p2V2T1

 ⋅ .

10. 4 mol of an ideal gas having γ = 1.67 are mixed with
2 mol of another ideal gas having γ = 1.4. Find the
equivalent value of γ for the mixture.

Solution : Let,
 C′V = molar heat capacity of the first gas,

C′′V = molar heat capacity of the second gas,

CV = molar heat capacity of the mixture
and similar symbols for other quantities. Then,

          γ = 
C′p
C′V

 = 1.67

and C′p = C′V + R.

This gives C′V = 
3
2

 R and C′p = 
5
2

 R. 

Similarly, γ = 1.4 gives C′′V = 
5
2

 R and C′′p = 
7
2

 R.

Suppose the temperature of the mixture is increased by
dT. The increase in the internal energy of the first gas
= n1C′VdT. The increase in internal energy of the second

gas = n2C′′VdT and the increase in internal energy of the

mixture = (n1 + n2)CVdT. Thus,

    (n1 + n2) CVdT = n1C′VdT + n2C′′VdT

   or, CV = 
n1C′V + n2C′′V

n1 + n2

 ⋅ … (i)

      Cp = CV + R = 
n1C′V + n2C′′V

n1 + n2

 + R

= 
n1(C′V + R) + n2(C′′V + R)

n1 + n2

= 
n1C′p + n2C′′p

n1 + n2

 ⋅ … (ii)

From (i) and (ii), γ = 
Cp

CV
 = 

n1C′p + n2C′′p
n1C′V + n2C′′V

= 
4 × 

5
2

 R + 2 × 
7
2

 R

4 × 
3
2

 R + 2 × 
5
2

 R
 = 1.54.

11. A diatomic gas (γ = 1.4) does 200 J of work when it is
expanded isobarically. Find the heat given to the gas in
the process.

Solution : For a diatomic gas, CV = 5
2
 R and Cp = 7

2
 R. The

work done in an isobaric process is

W = p(V2 − V1)
= nRT2 − nRT1

or, T2 − T1 = 
W
nR

 ⋅

The heat given in an isobaric process is

 Q = nCp(T2 − T1)

= nCp 
W
nR

 = 
7
2

 W

= 
7
2

 × 200 J = 700 J.

12. Calculate the ratio Cp /CV of oxygen from the following

data. Speed of sound in oxygen at 0°C = 315 m s − 1,

molecular weight of oxygen = 32 g mol − 1 and the gas

constant R = 8.3 J K − 1 mol − 1.

Solution : The speed of sound in a gas is given by

v = √γP
ρ

 = √γRT
M

or, γ = 
Mv 2

RT

= 
(32 × 10 − 3 kg mol − 1) (315 m s − 1) 2

 (8.3 J K − 1 mol − 1) (273 K) 
 = 1.4.
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QUESTIONS FOR SHORT ANSWER

 1. Does a gas have just two specific heat capacities or more
than two ? Is the number of specific heat capacities of a
gas countable ?

 2. Can we define specific heat capacity at constant
temperature ?

 3. Can we define specific heat capacity for an adiabatic
process ?

 4. Does a solid also have two kinds of molar heat capacities
Cp and CV ? If yes, do we have Cp > CV ? Is Cp  CV  R ?

 5. In a real gas the internal energy depends on
temperature and also on volume. The energy increases
when the gas expands isothermally. Looking into the

derivation of Cp  CV  R, find whether Cp  CV will be
more than R, less than R or equal to R for a real gas.

 6. Can a process on an ideal gas be both adiabatic and
isothermal ?

 7. Show that the slope of p–V diagram is greater for an
adiabatic process as compared to an isothermal process.

 8. Is a slow process always isothermal ? Is a quick process
always adiabatic ?

 9. Can two states of an ideal gas be connected by an
isothermal process as well as an adiabatic process ?

10. The ratio Cp /CV for a gas is 1.29. What is the degree
of freedom of the molecules of this gas ?

OBJECTIVE I

 1. Work done by a sample of an ideal gas in a process A
is double the  work done in another process B. The
temperature rises through the same amount in the two
processes. If CA and CB be the molar heat capacities for
the two processes,
(a) CA  CB        (b) CA < CB

(c) CA > CB        (d) CA and CB cannot be defined.
 2. For a solid with a small expansion coefficient,

(a) Cp  CV  R            (b) Cp  CV 
(c) Cp is slightly greater than CV 
(d) Cp is slightly less than CV.

 3. The value of Cp  CV is 1.00 R for a gas sample in state
A and is 1.08 R in state B. Let pA , pB denote the
pressures and TA and TB denote the temperatures of the
states A and B respectively. Most likely
(a) pA < pB and TA > TB     (b) pA > pB and TA < TB

(c) pA  pB and TA < TB     (d) pA > pB and TA  TB

 4. Let CV and Cp denote the molar heat capacities of an
ideal gas at constant volume and constant pressure
respectively. Which of the following is a universal
constant ?

(a) 
Cp

CV
    (b) CpCV     (c) Cp  CV    (d) Cp  CV

 5. 70 calories of heat is required to raise the temperature
of 2 mole of an ideal gas at constant pressure from 30C
to 35C. The amount of heat required to raise the
temperature of the same gas through the same range at
constant volume is
(a) 30 calories                (b) 50 calories 
(c) 70 calories                (d) 90 calories.

 6. Figure (27-Q1) shows a process on a gas in which
pressure and volume both change. The molar heat
capacity for this process is C.
(a) C  0    (b) C  CV   (c) C > CV   (d) C < CV

 7. The molar heat capacity for the process shown in figure
(27-Q2) is
(a) C  Cp   (b) C  CV   (c) C > CV   (d) C  0.

 8. In an isothermal process on an ideal gas, the pressure
increases by 0.5%. The volume decreases by about
(a) 0.25%     (b) 0.5%     (c) 0.7%     (d) 1%.

 9. In an adiabatic process on a gas with  1.4, the
pressure is increased by 0.5%. The volume decreases by
about
(a) 0.36%     (b) 0.5%     (c) 0.7%     (d) 1%.

10. Two samples A and B are initially kept in the same
state. The sample A is expanded through an adiabatic
process and the sample B through an isothermal process.
The final volumes of the samples are the same. The final
pressures in A and B are pA and pB respectively.
(a) pA > pB       (b) pA  pB       (c) pA < pB

(d) The relation between pA and pB cannot be deduced.

11. Let Ta and Tb be the final temperatures of the samples
A and B respectively in the previous question.
(a) Ta < Tb       (b) Ta  Tb       (c) Ta > Tb

(d) The relation between Ta and Tb cannot be deduced.

12. Let Wa and Wb be the work done by the systems A
and B respectively in the previous question.
(a) Wa > Wb     (b) Wa  Wb     (c) Wa < Wb

�

�

Figure 27-Q1
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V

Figure 27-Q2
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(d) The  relation  between  ∆Wa  and  ∆Wb  cannot  be
  deduced.

13. The molar heat capacity of oxygen gas at STP is nearly
2.5 R. As the temperature is increased, it gradually
increases and approaches 3.5 R. The most appropriate
reason for this behaviour is that at high temperatures

(a) oxygen does not behave as an ideal gas
(b) oxygen molecules dissociate in atoms
(c) the molecules collide more frequently
(d) molecular vibrations gradually become effective.

OBJECTIVE II

 1. A gas kept in a container of finite conductivity is
suddenly compressed. The process
(a) must be very nearly adiabatic
(b) must be very nearly isothermal
(c) may be very nearly adiabatic
(d) may be very nearly isothermal.

 2. Let Q and W denote the amount of heat given to an
ideal gas and the work done by it in an isothermal
process.
(a) Q = 0    (b) W = 0    (c) Q ≠ W    (d) Q = W

 3. Let Q and W denote the amount of heat given to an
ideal gas and the work done by it in an adiabatic process.
(a) Q = 0    (b) W = 0    (c) Q = W    (d) Q ≠ W

 4. Consider the processes A and B shown in figure (27-Q3).
It is possible that

(a) both the processes are isothermal
(b) both the processes are adiabatic
(c) A is isothermal and B is adiabatic
(d) A is adiabatic and B is isothermal.

 5. Three identical adiabatic containers A, B and C contain
helium, neon and oxygen respectively at equal pressure.
The gases are pushed to half their original volumes.
(a) The final temperatures in the three containers will
   be the same.
(b) The final pressures in the three containers will be
       the same.
(c) The pressures of helium and neon will be the same
   but that of oxygen will be different.
(d) The temperatures of helium and neon will be the
       same but that of oxygen will be different.

 6. A rigid container of negligible heat capacity contains one
mole of an ideal gas. The temperature of the gas
increases by 1°C if 3.0 cal of heat is added to it. The
gas may be
(a) helium  (b) argon  (c) oxygen  (d) carbon dioxide.

 7. Four cylinders contain equal number of moles of argon,
hydrogen, nitrogen and carbon dioxide at the same
temperature. The energy is minimum in
(a) argon (b) hydrogen (c) nitrogen (d) carbon dioxide.

EXERCISES

 1. A vessel containing one mole of a monatomic ideal gas
(molecular weight = 20 g mol − 1) is moving on a floor at
a speed of 50 m s − 1. The vessel is stopped suddenly.
Assuming that the mechanical energy lost has gone into
the internal energy of the gas, find the rise in its
temperature.

 2. 5 g of a gas is contained in a rigid container and is
heated from 15°C to 25°C. Specific heat capacity of the
gas at constant volume is 0.172 cal g − 1 °C − 1 and the
mechanical equivalent of heat is 4.2 J cal − 1. Calculate
the change in the internal energy of the gas.

 3. Figure (27-E1) shows a cylindrical container containing
oxygen (γ = 1.4) and closed by a 50 kg frictionless piston.
The area of cross section is 100 cm 2, atmospheric
pressure is 100 kPa and g is 10 m s − 2. The cylinder is
slowly heated for some time. Find the amount of heat
supplied to the gas if the piston moves out through a
distance of 20 cm.

 4. The specific heat capacities of hydrogen at constant
volume  and at  constant pressure are 2.4 cal g − 1 °C − 1

and 3.4 cal g − 1 °C − 1 respectively. The molecular weight

of hydrogen is 2 g mol − 1 and the gas constant
R = 8.3 × 10 7 erg °C − 1 mol − 1. Calculate the value of J.

 5. The ratio of the molar heat capacities of an ideal gas is
Cp /CV = 7/6. Calculate the change in internal energy of
1.0 mole of the gas when its temperature is raised by

�
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Figure 27-Q3
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Figure 27-E1
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50 K (a) keeping the pressure constant, (b) keeping the
volume constant and (c) adiabatically.

 6. A sample of air weighing 1.18 g occupies 1.0 × 10 3 cm 3

when kept at 300 K and 1.0 × 10 5 Pa. When 2.0 cal of
heat is added to it at constant volume, its temperature
increases by 1°C. Calculate the amount of heat needed
to increase the temperature of air by 1°C at constant
pressure if the mechanical equivalent of heat is
4.2 × 10 − 7 erg cal − 1. Assume that air behaves as an
ideal gas.

 7. An ideal gas expands from 100 cm 3 to 200 cm 3  at a
constant pressure of  2.0 × 10 5 Pa when 50 J of heat is
supplied to it. Calculate (a) the change in internal
energy of the gas, (b) the number of moles in the gas if
the initial temperature is 300 K, (c) the molar heat
capacity Cp at constant pressure and (d) the molar heat
capacity CV at constant volume.

 8. An amount Q of heat is added to a monatomic ideal gas
in a process in which the gas performs a work Q/2 on
its surrounding. Find the molar heat capacity for the
process.

 9. An ideal gas is taken through a process in which the
pressure and the volume are changed according to the
equation p = kV. Show that the molar heat capacity of

the gas  for  the process is given by C = CV + 
R
2

 ⋅

10. An ideal gas (Cp /CV = γ) is taken through a process in

which the pressure and the volume vary as p = aV b.
Find the value of b for which the specific heat capacity
in the process is zero.

11. Two ideal gases have the same value of Cp /CV = γ. What
will be the value of this ratio for a mixture of the two
gases in the ratio 1 : 2 ?

12. A mixture contains 1 mole of helium (Cp = 2.5 R,
CV = 1.5 R) and 1 mole of hydrogen (Cp = 3.5 R,
CV = 2.5 R). Calculate the values of Cp, CV  and  γ for the
mixture.

13. Half mole of an ideal gas (γ = 5/3) is taken through the
cycle abcda as shown in figure (27-E2). Take

R = 25
3

 J K − 1 mol − 1. (a) Find the temperature of the gas

in the states a, b, c and d. (b) Find the amount of heat
supplied in the processes ab and bc. (c) Find the amount
of heat liberated in the processes cd and da.

14. An ideal gas (γ = 1.67) is taken through the process abc
shown in figure (27-E3). The temperature at the point
a is 300 K. Calculate (a) the temperatures at b and c,
(b) the work done in the process, (c) the amount of heat

supplied in the path ab and in the path bc and (d) the
change in the internal energy of the gas in the process.

15. In Joly’s differential steam calorimeter, 3 g of an ideal
gas is contained in a rigid closed sphere at 20°C. The
sphere is heated by steam at 100°C and it is found that
an extra 0.095 g of steam has condensed into water as
the temperature of the gas becomes constant. Calculate
the specific heat capacity of the gas in J g − 1 K − 1. The
latent heat of vaporization of water = 540 cal g − 1.

16. The volume of an ideal gas (γ = 1.5) is changed
adiabatically from 4.00 litres to 3.00 litres. Find the ratio
of (a) the final pressure to the initial pressure and
(b) the final temperature to the initial temperature.

17. An ideal gas at pressure 2.5 × 10 5 Pa and temperature
300 K occupies 100 cc. It is adiabatically compressed to
half its original volume. Calculate (a) the final pressure,
(b) the final temperature and (c) the work done by the
gas in the process. Take γ = 1.5.

18. Air (γ = 1.4) is pumped at 2 atm pressure in a motor tyre
at 20°C. If the tyre suddenly bursts, what would be the
temperature of the air coming out of the tyre. Neglect
any mixing  with the atmospheric air.

19. A gas is enclosed in a cylindrical can fitted with a piston.
The walls of the can and the piston are adiabatic. The
initial pressure, volume and temperature of the gas are
100 kPa, 400 cm 3 and 300 K respectively. The ratio of
the specific heat capacities of the gas is Cp /CV = 1.5.
Find the pressure and the temperature of the gas if it
is (a) suddenly compressed (b)  slowly  compressed to
100 cm 3.

20. The initial pressure and volume of a given mass of a
gas (Cp /CV = γ) are p0 and V0. The gas can exchange heat
with the surrounding. (a) It is slowly compressed to a
volume V0 /2 and then suddenly compressed to V0 /4.
Find the final pressure. (b) If the gas is suddenly
compressed from the volume V0 to V0 /2 and then slowly
compressed to V0 /4, what will be the final pressure ?

21. Consider a given sample of an ideal gas (Cp /CV = γ)
having initial pressure p0 and volume V0. (a) The gas is
isothermally taken to a pressure p0 /2 and from there
adiabatically to a pressure p0 /4. Find the final volume.
(b) The gas is brought back to its initial state. It is
adiabatically taken to a pressure p0 /2 and from there
isothermally to a pressure p0 /4. Find the final volume.

22. A sample of an ideal gas (γ = 1.5) is compressed
adiabatically from a volume of 150 cm 3 to 50 cm 3. The
initial pressure and the initial temperature are 150 kPa
and 300 K. Find (a) the number of moles of the gas in
the sample, (b) the molar heat capacity at constant
volume, (c) the final pressure and temperature, (d) the
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work done by the gas in the process and (e) the change
in internal energy of the gas.

23. Three samples A, B  and  C of the same gas ( 1.5) have
equal volumes and temperatures. The volume of each
sample is doubled, the process being isothermal for A,
adiabatic for B and isobaric for C. If the final pressures
are equal for the three samples, find the ratio of the
initial pressures.

24. Two samples A and B of the same gas have equal
volumes and pressures. The gas in sample A is expanded
isothermally to double its volume and the gas in B is
expanded adiabatically to double its volume. If the work
done by the gas is the same for the two cases, show that
 satisfies the equation 1  2 1 –     1 ln2 .

25. 1 litre of an ideal gas ( 1.5) at 300 K is suddenly
compressed to half its original volume. (a) Find the ratio
of the final pressure to the initial pressure. (b) If the
original pressure is 100 kPa, find the  work done  by
the gas in the process. (c) What is the change in internal
energy ?  (d) What is the final temperature ? (e) The gas
is now cooled to 300 K keeping its pressure constant.
Calculate the work done during the process. (f) The gas
is now expanded isothermally to achieve its original
volume of 1 litre. Calculate the work done by the gas.
(g) Calculate the total work done in the cycle.

26. Figure (27-E4) shows a cylindrical tube with adiabatic
walls and fitted with an adiabatic separator. The
separator can be slid into the tube by an external
mechanism. An ideal gas ( 1.5) is injected in the two
sides at equal pressures and temperatures. The
separator remains in equilibrium at the middle. It is
now slid to a position where it divides the tube in the
ratio 1 : 3. Find the ratio of the temperatures in the two
parts of the vessel.

27. Figure (27-E5) shows two rigid vessels A and B, each of
volume 200 cm 3 containing an ideal gas (CV  12.5
J K  1 mol  1). The vessels are connected to a manometer
tube containing mercury. The pressure in both the vessels
is 75 cm of mercury and the temperature is 300 K. (a)
Find the number of moles of the gas in each vessel. (b)
5.0 J of heat is supplied to the gas in the vessel A and
10 J to the gas in the vessel B. Assuming no appreciable
transfer of heat from A to B calculate the difference in
the heights of mercury in the two sides of the manometer.
Gas constant R  8.3 J K  1 mol  1.

28. Figure (27-E6) shows two vessels with adiabatic walls,
one containing 0.1 g of helium ( 1.67, M  4 g mol  1)
and the other containing some amount of hydrogen
( 1.4, M  2 g mol 1). Initially, the temperatures of
the two gases are equal. The gases are electrically
heated for some time during which equal amounts of
heat are given to the two gases. It is found that the
temperatures rise through the same amount in the two
vessels. Calculate the mass of hydrogen.

29. Two vessels A and B of equal volume V0  are connected
by a narrow tube which can be closed by a valve. The
vessels are fitted with pistons which can be moved to
change the volumes. Initially, the valve is open and the
vessels contain an ideal gas (Cp /CV  ) at atmospheric
pressure p0 and atmospheric temperature T0 . The walls
of the vessel A are diathermic and those of B are
adiabatic. The valve is now closed and the pistons are
slowly pulled out to increase the volumes of the vessels
to double the original value. (a) Find the temperatures
and pressures in the two vessels. (b) The valve is now
opened for sufficient time so that the gases acquire a
common temperature and pressure. Find the new values
of the temperature and the pressure.

30. Figure (27-E7) shows an adiabatic cylindrical tube of
volume V0 divided in two parts by a frictionless adiabatic
separator. Initially, the separator is kept in the middle,
an ideal gas at pressure p1 and temperature T1 is
injected into the left part and another ideal gas at
pressure p2 and temperature T2 is injected into the right
part. Cp /CV   is the same for both the gases. The
separator is slid slowly and is released at a position
where it can stay in equilibrium. Find (a) the volumes
of the two parts, (b) the heat given to the gas in the left
part and (c) the final common pressure of the gases.

31. An adiabatic cylindrical tube of cross-sectional area
1 cm 2 is closed at one end and fitted with a piston at
the other end. The tube contains 0.03 g of an ideal gas.
At 1 atm pressure and at the temperature of the
surrounding, the length of the gas column is 40 cm. The
piston is suddenly pulled out to double the length of the
column. The pressure of the gas falls to 0.355 atm. Find
the speed of sound in the gas at atmospheric
temperature.
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32. The speed of sound in hydrogen at 0°C is  1280 m s −1.
The density of hydrogen at STP is 0.089 kg m –3.
Calculate the  molar heat capacities Cp and CV of

hydrogen.

33. 4.0 g of helium occupies 22400 cm 3  at STP. The specific
heat capacity of helium at constant pressure is

5.0 cal K − 1 mol − 1. Calculate the speed of sound in
helium at STP.

34. An ideal gas having density 1.7 × 10 – 3 g cm –3  at a
pressure 1.5 × 10 5 Pa is filled in a Kundt tube. When
the gas is resonated at a frequency of 3.0 kHz, nodes are
formed at a separation of 6.0 cm. Calculate the molar
heat capacities Cp and CV of the gas.

35. Standing waves of frequency 5.0 kHz are produced in a
tube filled with oxygen at 300 K. The separation
between  the consecutive nodes is 3.3 cm. Calculate the
specific  heat capacities Cp and CV of the gas.

ANSWERS

OBJECTIVE I

 1. (c)  2. (c)  3. (a)  4. (c)  5. (b)  6. (c)
 7. (d)  8. (b)  9. (a) 10. (c)  11. (a) 12. (c)
13. (d)

OBJECTIVE II

 1. (c), (d)  2. (d)  3. (a, (d)
 4. (c)  5. (c), (d)  6. (a), (b)
 7. (a)

EXERCISES

 1. 2.0 K
 2. 36 J
 3. 1050 J

 4. 4.15 × 10 7 erg cal −1

 5. 2490 J in all cases

 6. 2.08 cal

 7. (a) 30 J (b) 0.008

   (c) 20.8 J K − 1 mol − 1 (d) 12.5 J K − 1 mol − 1

 8. 3 R
10. −γ
11. γ

12. 3 R, 2 R, 1.5
13. (a) 120 K, 240 K, 480 K, 240 K
   (b) 1250 J, 1500 J (c) 2500 J, 750 J
14. (a) 600 K, 900 K (b) 10 J

   (c) 14.9 J, 24.9 J (d) 29.8 J

15. 0.90 J g − 1 K − 1

16. (a) 1.54   (b) 1.15

17. (a) 7.1 × 10 5 Pa (b) 424 K (c) − 21 J

18. 240 K
19. 800 kPa, 600 K in both cases

20. 2 γ + 1 p0 in both cases

21. 2 (γ + 1)/γ V0 in each case

22. (a) 0.009 (b) 2 R = 16.6 J K − 1 mol − 1

   (c) 780 kPa, 520 K (d) –33 J (e) 33 J

23. 2 : 2√2 : 1

25. (a) 2√2 (b) –82 J
   (c) 82 J (d) 424 K

   (e) −41.4 J (f) 103 J

   (g) −23.4 J

26. √3 : 1

27. (a) 0.008 (b) 12.5 cm

28. 0.03 g

29. (a) T0,  
p0

2
 in vessel A and T0 /2 

γ – 1
,  p0 /2 

γ
 in vessel B

   (b) T0,  p0 /2

30. (a) 
p1

 1 / γV0

A
 ,   

p2
 1 / γV0

A
    (b) zero

   (c) (A / 2) γ where A = p1
 1 / γ + p2

 1 / γ

31. 447 m s − 1

32. 18.0 J K − 1 mol − 1, 26.3 J K − 1 mol − 1

33. 960 m s − 1

34. 26 J K − 1 mol − 1, 17.7 J K − 1 mol − 1

35. 29.0 J K − 1 mol − 1, 20.7 J K − 1 mol − 1
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CHAPTER 28

HEAT TRANSFER

Heat can be transferred from one place to another
by three different methods, namely, conduction,
convection and radiation. Conduction usually takes
place in solids, convection in liquids and gases, and no
medium is required for radiation.

28.1 THERMAL CONDUCTION 

If one end of a metal rod is placed in a stove, the
temperature of the other end gradually increases. Heat
is transferred from one end of the rod to the other end.
This transfer takes place due to molecular collisions
and the process is called heat conduction. The
molecules at one end of the rod gain heat from the
stove and their average kinetic energy increases. As
these molecules collide with the neighbouring
molecules having less kinetic energy, the energy is
shared between these two groups. The kinetic energy
of these neighbouring molecules increases. As they
collide with their neighbours on the colder side, they
transfer energy to them. This way, heat is passed along
the rod from molecule to molecule. The average
position of a molecule does not change and hence, there
is no mass movement of matter.

Thermal Conductivity

The ability of a material to conduct heat is
measured by thermal conductivity (defined below) of
the material.

Consider a slab of uniform cross section A and
length x. Let one face of the slab be maintained at
temperature T1 and the other at T2. Also, suppose the

remaining surface is covered with a nonconducting

material so that no heat is transferred through the
sides. After sufficient time, steady state is reached and
the temperature at any point remains unchanged as
time passes. In such a case, the amount of heat
crossing per unit time through any cross section of the
slab is equal. If ∆Q amount of heat crosses through
any cross section in time ∆t, ∆Q/∆t is called the heat
current. It is found that in steady state the heat
current is proportional to the area of cross section A,
proportional to the temperature difference (T1 − T2)
between the ends and inversely proportional to the
length x. Thus,

          
∆Q
∆t

 = K 
A(T1 − T2)

x
… (28.1)

where K is a constant for the material of the slab and
is called the thermal conductivity of the material.

 If the area of cross section is not uniform or if the
steady-state conditions are not reached, the equation
can only be applied to a thin layer of material
perpendicular to the heat flow. If A be the area of cross
section at a place, dx be a small thickness along the
direction of heat flow, and dT be the temperature
difference across the layer of thickness dx, the heat
current through this cross section is

∆Q
∆t

 = −KA 
dT
dx

 ⋅ … (28.2)

The quantity dT/dx is called the temperature
gradient. The minus sign indicates that dT/dx is
negative along the direction of the heat flow.   

The unit of thermal conductivity can be easily
worked out using equation (28.1) or (28.2). The SI unit
is Js−1m−1K−1 or Wm−1K−1. As a change of 1 K and a
change of 1°C are the same, the unit may also be

written as Wm−1°C−1.

Example 28.1

   One face of a copper cube of edge 10 cm is maintained
at 100°C and the opposite face is maintained at 0°C. All
other surfaces are covered with an insulating material.
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Find the amount of heat flowing per second through the
cube. Thermal conductivity of copper is 385 Wm −1°C −1.

Solution : The heat flows from the hotter face towards the
colder face. The area of cross section perpendicular to
the heat flow is

A = (10 cm) 2.

The amount of heat flowing per second is

   
∆Q
∆t

 = KA 
T1 − T2

x

= (385 Wm −1°C −1) × (0.1 m)  2 × 
(100°C − 0°C)

0.1 m
= 3850 W.

In general, solids are better conductors than
liquids and liquids are better conductors than gases.
Metals are much better conductors than nonmetals.
This is because, in metals we have a large number of
“free electrons” which can move freely anywhere in the
body of the metal. These free electrons help in carrying
the thermal energy from one place to another in a
metal.

Table (28.1) gives thermal conductivities of some
materials.

Table 28.1 : Thermal conductivities

  Material    K(Wm−1K−1)
  Aluminium     209
  Brass     109
  Copper     385
  Silver     414
  Steel      46⋅0
  Water     0⋅585

  Transformer oil     0⋅176

  Air     0⋅0238

  Hydrogen     0⋅167

  Oxygen     0⋅0242

  Brick     0⋅711

  Celotex
  (Sugarcane fibre)

    0⋅50

  Concrete     1⋅30

  Glass     0⋅669

  Masonite     0⋅046

  Rock & Galls wool     0⋅042

  Wood (oak)     0⋅146

  Wood (pine)     0⋅117

We can now understand why cooking utensils are
made of metals whereas their handles are made of
plastic or wood. When a rug is placed in bright sun on
a tiled floor, both the rug and the floor acquire the
same temperature. But it is much more difficult to stay
bare foot on the tiles than to stay on the rug. This is
because the conductivity of the rug is lesser than the
tiles, and hence, the heat current going into the foot
is smaller.

Thermal Resistance

The quantity x
KA

 in equation (28.1) is called the

thermal resistance R. Writing the heat current
∆Q/∆t as i, we have

i = 
T1 − T2

R
 ⋅ … (28.3)

This is mathematically equivalent to Ohm’s law to
be introduced in a later chapter. Many results derived
from Ohm’s law are also valid for thermal conduction.

Example 28.2

   Find the thermal resistance of an aluminium rod of
length 20 cm and area of cross section 1 cm 2. The heat
current is along the length of the rod. Thermal
conductivity of aluminium = 200 Wm −1K −1.

Solution : The thermal resistance is

  R = 
x

KA
 = 

20 × 10 − 2 m

(200 Wm −1K −1) (1 × 10 − 4 m 2)
 = 10 KW −1.

28.2 SERIES AND PARALLEL
    CONNECTION OF RODS

(a) Series Connection

Consider two rods of thermal resistances R1 and

R2 joined one after the other as shown in figure (28.3).

The free ends are kept at temperatures T1 and T2 with

T1 > T2. In steady state, any heat that goes through

the first rod also goes through the second rod. Thus,
the same heat current passes through the two rods.
Such a connection of rods is called a series connection.
Suppose, the temperature of the junction is T. From

Figure 28.2
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equation (28.3), the heat current through the first
rod is

         i = 
∆Q
∆t

 = 
T1 − T

R1

   or, T1 − T = R1i … (i)

and that through the second rod is

i = 
∆Q
∆t

 = 
T − T2

R2

   or,     T − T2 = R2i. … (ii)

Adding (i) and (ii),
T1 − T2 = (R1 + R2) i

or, i = 
T1 − T2

R1 + R2
 .

Thus, the two rods together is equivalent to a
single rod of thermal resistance R1 + R2.

If more than two rods are joined in series, the
equivalent thermal resistance is given by 

R = R1 + R2 + R3 + …

(b) Parallel Connection

Now, suppose the two rods are joined at their ends
as shown in figure (28.4). The left ends of both the
rods are kept at temperature T1 and the right ends
are kept at temperature T2. So the same temperature
difference is maintained between the ends of each rod.
Such a connection of rods is called a parallel
connection. The heat current going through the first
rod is

           i1 = 
∆Q1

∆t
 = 

T1 − T2

R1

and that through the second rod is

i2 = 
∆Q2

∆t
 = 

T1 − T2

R2
 ⋅

   The total heat current going through the left end is
i = i1 + i2

= (T1 − T2) 




1
R1

 + 
1
R2





   or, i = 
T1 − T2

R

   where 
1
R

 = 
1
R1

 + 
1
R2

 . … (i)

Thus, the system of the two rods is equivalent to
a single rod of thermal resistance R given by (i).

If more than two rods are joined in parallel, the
equivalent thermal resistance R is given by

       
1
R

 = 
1
R1

 + 
1
R2

 + 
1
R3

 + …

28.3 MEASUREMENT OF THERMAL
    CONDUCTIVITY OF A SOLID

Figure (28.5) shows Searle’s apparatus to measure
the thermal conductivity of a solid. The solid is taken
in the form of a cylindrical rod. One end of the rod
goes into a steam chamber. A copper tube is coiled
around the rod near the other end of the rod. A steady
flow of water is maintained in the copper tube. Water
enters the tube at the end away from the steam
chamber and it leaves at the end nearer to it.
Thermometers T3 and T4 are provided to measure the
temperatures of the outgoing and incoming water. Two
holes are drilled in the rod and mercury is filled in
these holes to measure the temperature of the rod at
these places with the help of thermometers T1 and
T2. The whole apparatus is covered properly with
layers of an insulating material like wool or felt so as
to prevent any loss of heat from the sides.

 Steam is passed in the steam chamber and a
steady flow of water is maintained. The temperatures
of all the four thermometers rise initially and
ultimately become constant in time as the steady state
is reached. The readings θ1, θ2, θ3 and θ4 are noted in
steady state.

A beaker is weighed and the water coming out of
the copper tube is collected in it for a fixed time t
measured by a stop clock. The beaker together with
the water is weighed. The mass m of the water
collected is then calculated. The area of cross section
of the rod is calculated by measuring its radius with
a slide calipers. The distance between the holes in the
rod is measured with the help of a divider and a
metre scale.
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Let the length of the rod between the holes be x
and the area of cross section of the rod be A. If the
thermal conductivity of the material of the rod is K,
the rate of heat flow (heat current) from the steam
chamber to the rod is

         
∆Q
∆t

 = K 
A(θ1 − θ2)

x
 ⋅

In a time t, the chamber supplies a heat 

Q = K 
A(θ1 − θ2)

x
 t . … (i)

As the mass of the water collected in time t is m,
the heat taken by the water is

Q = ms(θ3 − θ4) … (ii)

where s is the specific heat capacity of water.
As the entire rod is covered with an insulating

material and the temperature of the rod does not
change with time at any point, any heat given by the
steam chamber must go into the flowing water. Hence,
the same Q is used in (i) and (ii). Thus,

K 
A(θ1 − θ2)

x
 t = ms(θ3 − θ4)

   or, K = 
x ms(θ3 − θ4)
A(θ1 − θ2)t

 ⋅ … (28.4)

28.4 CONVECTION

In convection, heat is transferred from one place
to the other by the actual motion of heated material.
For example, in a hot air blower, air is heated by a
heating element and is blown by a fan. The air carries
the heat wherever it goes. When water is kept in a
vessel and heated on a stove, the water at the bottom
gets heat due to conduction through the vessel’s
bottom. Its density decreases and consequently it rises.
Thus, the heat is carried from the bottom to the top
by the actual movement of the parts of the water. If
the heated material is forced to move, say by a blower
or a pump, the process of heat transfer is called forced
convection. If the material moves due to difference in
density, it is called natural or free convection.

Natural convection and the anomalous expansion
of water play important roles in saving the lives of
aquatic animals like fishes when the atmospheric
temperature goes below 0°C. As the water at the
surface is cooled, it becomes denser and goes down.
The less cold water from the bottom rises up to the
surface and gets cooled. This way the entire water is
cooled to 4°C. As the water at the surface is further
cooled, it expands and the density decreases. Thus, it
remains at the surface and gets further cooled. Finally,
it starts freezing. Heat is now lost to the atmosphere
by the water only due to conduction through the ice.
As ice is a poor conductor of heat, the further freezing

is very slow. The temperature of the water at the
bottom remains constant at 4°C for a large period of
time. The atmospheric temperature ultimately
improves and the animals are saved.

The main mechanism for heat transfer inside a
human body is forced convection. Heart serves as the
pump and blood as the circulating fluid. Heat is lost to
the atmosphere through all the three processes
conduction, convection and radiation. The rate of loss
depends on the clothing, the tiredness and perspiration,
atmospheric temperature, air current, humidity and
several other factors. The system, however, transports
the just required amount of heat and hence maintains
a remarkably constant body temperature.

28.5 RADIATION

The process of radiation does not need any
material medium for heat transfer. Energy is emitted
by a body and this energy travels in the space just like
light. When it falls on a material body, a part is
absorbed and the thermal energy of the receiving body
is increased. The energy emitted by a body in this way
is called radiant energy, thermal radiation or simply
radiation. Thus, the word “radiation” is used in two
meanings. It refers to the process by which the energy
is emitted by a body, is transmitted in space and falls
on another body. It also refers to the energy itself
which is being transmitted in space. The heat from the
sun reaches the earth by this process, travelling
millions of kilometres of empty space.

28.6 PRE
′′′′
VOST THEORY OF EXCHANGE

Way back in 1792, Pierre Pre′ vost put forward the
theory of radiation in a systematic way now known as
the theory of exchange. According to this theory, all
bodies radiate thermal radiation at all temperatures.
The amount of thermal radiation radiated per unit
time depends on the nature of the emitting surface, its
area and its temperature. The rate is faster at higher
temperatures. Besides, a body also absorbs part of the
thermal radiation emitted by the surrounding bodies
when this radiation falls on it. If a body radiates
more than what it absorbs, its temperature falls. If a
body radiates less than what it absorbs, its
temperature rises.

Now, consider a body kept in a room for a long
time. One finds that the temperature of the body
remains constant and is equal to the room
temperature. The body is still radiating thermal
radiation. But it is also absorbing part of the radiation
emitted by the surrounding objects, walls, etc. We thus
conclude that when the temperature of a body is equal
to the temperature of its surroundings, it radiates at
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the same rate as it absorbs. If we place a hotter body
in the room, it radiates at a faster rate than the rate
at which it absorbs. Thus, the body suffers a net loss
of thermal energy in any given time and its
temperature decreases. Similarly, if a colder body is
kept in a warm surrounding, it radiates less to
the surrounding than what it absorbs from
the surrounding. Consequently, there is a net increase
in the thermal energy of the body and the
temperature rises.

28.7 BLACKBODY RADIATION 

Consider two bodies of equal surface areas
suspended in a room. One of the bodies has polished
surface and the other is painted black. After sufficient
time, the temperature of both the bodies will be equal
to the room temperature. As the surface areas of the
bodies are the same, equal amount of radiation falls
on the two surfaces. The polished surface reflects a
large part of it and absorbs a little, while the
black-painted surface reflects a little and absorbs a
large part of it. As the temperature of each body
remains constant, we conclude that the polished
surface radiates at a slower rate and the black-painted
surface radiates at a faster rate. So, good absorbers of
radiation are also good emitters.

A body that absorbs all the radiation falling on it
is called a blackbody. Such a body will emit radiation
at the fastest rate. The radiation emitted by a
blackbody is called blackbody radiation. The radiation
inside an enclosure with its inner walls maintained at
a constant temperature has the same properties as the
blackbody radiation and is also called blackbody
radiation. A blackbody is also called an ideal radiator.
A perfect blackbody, absorbing 100% of the radiation
falling on it, is only an ideal concept. Among the
materials, lampblack is close to a blackbody. It reflects
only about 1% of the radiation falling on it. If an
enclosure is painted black from inside and a small hole
is made in the wall (figure 28.6) the hole acts as a
very good blackbody.

Any radiation that falls on the hole goes inside.
This radiation has little chance to come out of the hole

again and it gets absorbed after multiple reflections.
The cone directly opposite to the hole (figure 28.6)
ensures that the incoming radiation is not directly
reflected back to the hole.

28.8 KIRCHHOFF’S LAW

We have learnt that good absorbers of radiation
are also good radiators. This aspect is described
quantitatively by Kirchhoff’s law of radiation. Before
stating the law let us define certain terms.

Emissive Power

Consider a small area ∆A of a body emitting
thermal radiation. Consider a small solid angle ∆ω (see
the chapter “Gauss’s Law”) about the normal to the
radiating surface. Let the energy radiated by the area
∆A of the surface in the solid angle ∆ω in time ∆t be
∆U. We define emissive power of the body as

       E = 
∆U

(∆A) (∆ω) (∆t)
 ⋅

Thus, emissive power denotes the energy radiated
per unit area per unit time per unit solid angle along
the normal to the area.

Absorptive Power

Absorptive power of a body is defined as the
fraction of the incident radiation that is absorbed by
the body. If we denote the absorptive power by a,

a = 
energy absorbed
energy incident

 ⋅

As all the radiation incident on a blackbody is
absorbed, the absorptive power of a blackbody is unity.

Note that the absorptive power is a dimensionless
quantity but the emissive power is not.

Kirchhoff’s Law

The ratio of emissive power to absorptive power is
the same for all bodies at a given temperature and is
equal to the emissive power of a blackbody at that
temperature. Thus,

E(body)
a(body)

 = E(blackbody) .

Kirchhoff ’s law tells that if a body has high
emissive power, it should also have high absorptive

Figure 28.6
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power to have the ratio E/a same. Similarly, a body
having low emissive power should have low absorptive
power. Kirchhoff’s law may be easily proved by a
simple argument as described below.

Consider two bodies A and B of identical
geometrical shapes placed in an enclosure. Suppose A
is an arbitrary body and B is a blackbody. In thermal
equilibrium, both the bodies will have the same
temperature as the temperature of the enclosure.
Suppose an amount ∆U of radiation falls on the body
A in a given time ∆t. As A and B have the same
geometrical shapes, the radiation falling on the
blackbody B is also ∆U. The blackbody absorbs all of
this ∆U. As the temperature of the blackbody remains
constant, it also emits an amount ∆U of radiation in
that time. If the emissive power of the blackbody is
E0, we have

         ∆U ∝ E0 or ∆U = kE0 … (i)

where k is a constant.
Let the absorptive power of A be a. Thus, it absorbs

an amount a∆U of the radiation falling on it in time
∆t. As its temperature remains constant, it must also
emit the same amount a∆U in that time. If the
emissive power of the body A is E, we have

a∆U = kE. … (ii)

The same proportionality constant k is used in (i)
and (ii) because the two bodies have identical
geometrical shapes and radiation emitted in the same
time ∆t is considered.

From (i) and (ii),

               a = 
E
E0

   or, 
E
a

 = E0

   or, 
E(body)
a(body)

 = E(blackbody) .

This proves Kirchhoff ’s law.

28.9 NATURE OF THERMAL RADIATION

Thermal radiation, once emitted, is an
electromagnetic wave like light. It, therefore, obeys all
the laws of wave theory. The wavelengths are still
small compared to the dimensions of usual obstacles
encountered, so the rules of geometrical optics are
valid, i.e., it travels in a straight line, casts shadow,
is reflected and refracted at the change of medium,

etc. The radiation emitted by a body is a mixture of
waves of different wavelengths. However, only a small
range of wavelength has significant contribution in the
total radiation. The radiation emitted by a body at a
temperature of 300 K (room temperature) has
significant contribution from wavelengths around
9550 nm which is in long infrared region (visible light
has a range of about 380–780 nm). As the temperature
of the emitter increases, this dominant wavelength
decreases. At around 1100 K, the radiation has a good
contribution from red region of wavelengths and the
object appears red. At temperatures around 3000 K,
the radiation contains enough shorter wavelengths and
the object appears white. Even at such a high
temperature most significant contributions come from
wavelengths around 950 nm.

The relative importance of different wavelengths
in a thermal radiation can be studied qualitatively
from figure (28.9). Here the intensity of radiation near
a given wavelength is plotted against the wavelength
for different temperatures. We see that as the
temperature is increased, the wavelength
corresponding to the highest intensity decreases. In
fact, this wavelength λm is inversely proportional to
the absolute temperature of the emitter. So,

            λmT =  b … (28.5)

where b is a constant.

This equation is known as the Wien’s displacement
law. For a blackbody, the constant b appearing in
equation (28.5) is measured to be 0.288 cmK and is
known as the Wien constant.

Example 28.3

   The light from the sun is found to have a maximum
intensity near the wavelength of 470 nm. Assuming that
the surface of the sun emits as a blackbody, calculate the
temperature of the surface of the sun.

Solution : For a blackbody, λmT = 0.288 cmK.

Thus, T = 
0.288 cmK

470 nm
 = 6130 K.
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Distribution of radiant energy among different
wavelengths has played a very significant role in the
development of quantum mechanics and in our
understanding of nature in a new way. Classical
physics had predicted a very different and unrealistic
wavelength distribution. Planck put forward a bold
hypothesis that radiation can be emitted or absorbed
only in discrete steps, each step involving an amount
of energy given by E = nhν where ν is the frequency
of the radiation and n  is an integer.  A new
fundamental constant h named as Planck constant was
introduced in physics. This opened the gateway of
modern physics through which we look into the atomic
and subatomic world.

28.10 STEFAN–BOLTZMANN LAW 

The energy of thermal radiation emitted per unit
time by a blackbody of surface area A is given by

            u = σAT 4 … (28.6)

where σ is a universal constant known as  Stefan–
Boltzmann constant and T is its temperature on
absolute scale. The measured value of σ is 5.67 × 10 – 8

Wm –2K –4. Equation (28.6) itself is called the
Stefan–Boltzmann law. Stefan had suggested this law
from experimental data available on radiation and
Boltzmann derived it from thermodynamical
considerations. The law is also quoted as Stefan’s law
and the constant σ as Stefan constant.

A body which is not a blackbody, emits less
radiation than given by equation (28.6). It is, however,
proportional to T 4. The energy emitted by such a body
per unit time is written as

           u = eσAT 4 … (28.7)

where e is a constant for the given surface having a
value between 0 and 1. This constant is called the
emissivity of the surface. It is zero for completely
reflecting surface and is unity for a blackbody.

Using Kirchhoff’s law,
E(body)

E(blackbody)
 = a … (i)

where a is the absorptive power of the body. The
emissive power E is proportional to the energy
radiated per unit time, that is, proportional to u. Using
equations (28.6) and (28.7) in (i),

eσAT 4

σAT 4
 = a  or  e = a.

Thus, emissivity and absorptive power have the
same value.

Consider a body of emissivity e kept in thermal
equilibrium in a room at temperature T0. The energy
of radiation absorbed by it per unit time should be

equal to the energy emitted by it per unit time. This
is because the temperature remains constant. Thus,
the energy of the radiation absorbed per unit time is

         u = eσAT0
 4.

Now, suppose the temperature of the body is
changed to T but the room temperature remains T0.
The energy of the thermal radiation emitted by the
body per unit time is

u = eσAT 4.

The energy absorbed per unit time by the body is

u0 = eσAT0
 4.

Thus, the net loss of thermal energy per unit time
is

∆u = u − u0

= eσA(T 4 − T0
 4). … (28.8)

Example 28.4

   A blackbody of surface area 10 cm 2 is heated to 127°C
and is suspended in a room at temperature 27°C.
Calculate the initial rate of loss of heat from the body to
the room.

Solution : For a blackbody at temperature T, the rate of
emission is u = σAT 4. When it is kept in a room at

temperature T0, the rate of absorption is u0 = σAT0
 4.

The net rate of loss of heat is u − u0 = σA(T 4 − T0
 4).

Here A = 10 × 10 – 4 m 2, T = 400 K and T0 = 300 K . Thus,

u − u0

= (5.67 × 10 − 8 Wm −2K −4) (10 × 10 − 4 m 2) (400 4 − 300 4) K 4

= 0.99 W.

28.11 NEWTON’S LAW OF COOLING

Suppose, a body of surface area A at an absolute
temperature T is kept in a surrounding having a lower
temperature T0. The net rate of loss of thermal energy
from the body due to radiation is

        ∆u1 = eσA(T 4 − T0
 4).

If the temperature difference is small, we can write
T = T0 + ∆T

or, T 4 − T0
 4 = (T0 + ∆T) 4 − T0

 4

    = T0
 4


1 + 

∆T
T0





 4

 − T0
 4

= T0
 4 




1 + 4 

∆T
T0

 + higher powers of 
∆T
T0




 − T0

 4

≈ 4 T0
 3∆T = 4 T0

 3(T − T0).

Thus, ∆u1 = 4 eσAT0
 3(T − T0)
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            = b1 A(T − T0).
The body may also lose thermal energy due to

convection in the surrounding air. For small
temperature difference, the rate of loss of heat due to
convection is also proportional to the temperature
difference and the area of the surface. This rate may,
therefore, be written as

        ∆u2 = b2A(T − T0).
The net rate of loss of thermal energy due to

convection and radiation is
     ∆u = ∆u1 + ∆u2 = (b1 + b2)A(T − T0).
If s be the specific heat capacity of the body and

m its mass, the rate of fall of temperature is

      
− dT
  dt

 = 
∆u
ms

 = 
b1 + b2

ms
 A(T − T0)

= bA(T − T0).
Thus, for small temperature difference between a

body and its surrounding, the rate of cooling of the
body is directly proportional to the temperature
difference and the surface area exposed. We can write

          
dT
dt

 = − bA(T − T0). … (28.9)

This is known as Newton’s law of cooling. The
constant b depends on the nature of the surface
involved and the surrounding conditions. The minus
sign indicates that if T > T0, dT/dt is negative, that
is, the temperature decreases with time. As the
difference in temperature is the same for absolute and
Celsius scale, equation (28.9) may also be written as

      
dθ
dt

 = − bA(θ − θ0) = −k(θ − θ0)

where θ refers to temperature in Celsius scale.

Example 28.5

   A liquid cools from 70°C to 60°C in 5 minutes . Calculate
the time taken by the liquid to cool from 60°C to 50°C,
if the temperature of the surrounding is constant at
30°C.

Solution : The average temperature of the liquid in the
first case is

θ1 = 
70°C + 60°C

2
 = 65°C.

The average temperature difference from the
surrounding is

        θ1 − θ0 = 65°C − 30°C = 35°C.

The rate of fall of temperature is

− 
dθ1

dt
 = 

70°C − 60°C
5 min

 = 2°C min−1 .

From Newton’s law of cooling,

2°C min−1 = bA(35°C)

   or,        bA = 
2

35 min
 ⋅ … (i)

In the second case, the average temperature of the liquid
is 

         θ2 = 
60°C + 50°C

2
 = 55°C

so that, θ2 − θ0 = 55°C − 30°C = 25°C.

If it takes a time t to cool down from 60°C to 50°C, the
rate of fall of temperature is

− 
dθ2

dt
 = 

60°C − 50°C
t

 = 
10°C

t
 ⋅

From Newton’s law of cooling and (i),

10°C
t

 = 
2

35 min
 × 25°C

or, t = 7 min.

28.12 DETECTION AND MEASUREMENT
     OF RADIATION 

Several instruments are used to detect and
measure the amount of thermal radiation. We describe
two of them here, a bolometer and a thermopile.

Bolometer

The bolometer is based on the theory of
Wheatstone bridge which was introduced while
discussing resistance thermometer. A thin (a small
fraction of a millimetre) foil of platinum is taken and
strips are cut from it to leave a grid-type structure as
shown in figure (28.10a). Four such grids, identical in
all respect, are prepared and joined with a battery and
a galvanometer to form a Wheatstone bridge (figure
28.10b). Grid 1 faces the radiation to be detected or
measured. The particular arrangement of the four
grids ensures that the radiation passing through the
empty spaces in grid 1 falls on the strips of grid 4.
Grids 2 and 3 are protected from the radiation.

When no radiation falls on the bolometer, all the
grids have the same resistance so that
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R1 = R2 = R3 = R4. Thus, 
R1

R2
 = 

R3

R4
 and the bridge is

balanced. There is no deflection in the galvanometer.
When radiation falls on the bolometer, grids 1 and 4
get heated. As the temperature increases, the
resistances R1 and R4 increase and hence the product
R1 R4 increases. On the other hand, R2 R3 remains
unchanged. Thus,

         R1 R4 > R2 R3

   or, 
R1

R2
 > 

R3

R4
 ⋅

The bridge becomes unbalanced and there is a
deflection in the galvanometer which indicates the
presence of radiation. The magnitude of deflection is
related to the amount of radiation falling on the
bolometer.

The bolometer is usually enclosed in a glass bulb
evacuated to low pressures. This increases the
sensitivity.

Thermopile

A thermopile is based on the principle of Seebeck
effect. Figure (28.11) illustrates the principle. Two
dissimilar metals A and B are joined to form two
junctions J1 and J2. A galvanometer is connected

between the junctions through the metal B. If the
junctions are at the same temperature, there is no
deflection in the galvanometer. But if the temperatures
of the junctions are different, the galvanometer
deflects. Such an instrument is called a thermocouple.

In a thermopile, a number of thermocouples are
joined in series. The thermocouples are made from
antimony and bismuth metals. The free ends are joined
to a galvanometer (figure 28.12). The series connection
of thermocouples increases the sensitivity of the system.

The junctions are arranged in such a way that all
the hot junctions lie on a plane face and all the cold
junctions lie on the opposite plane face. The face of the
hot junctions is blackened so that it may absorb large
fraction of radiation falling on it. This face is exposed
to the radiation and the other face is protected from
it by a metallic cover. A metallic cone generally
concentrates the radiation on the hot face.

The radiation is detected and measured by
observing the deflection in the galvanometer.

Worked Out Examples

 1. The lower surface of a slab of stone of face-area 3600 cm 2

and thickness 10 cm is exposed to steam at 100°C. A block

of ice at 0°C rests on the upper surface of the slab. 4.8 g

of ice melts in one hour. Calculate the thermal

conductivity of the stone. Latent heat of fusion of ice

= 3.36 × 10 5 J kg−1.

Solution : The amount of heat transferred through the
slab to the ice in one hour is

        Q = (4.8 × 10 − 3 kg) × (3.36 × 10 5 J kg−1)

= 4.8 × 336 J.

Using the equation

          Q = 
KA(θ1 − θ2)t

x
 ,

4.8 × 336 J = 
K(3600 cm 2) (100°C) × (3600 s)

10 cm

or,       K = 1.24 × 10 − 3 W m−1°C−1.

 2. An icebox made of 1.5 cm thick styrofoam has dimensions
60 cm × 60 cm × 30 cm. It contains ice at 0°C and is kept
in a room at 40°C. Find the rate at which the ice is

melting. Latent heat of fusion of ice = 3.36 × 10 5 J kg−1.

and thermal conductivity of styrofoam = 0.04 W m−1°C−1.

Solution : The total surface area of the walls
= 2(60 cm × 60 cm + 60 cm × 30 cm + 60 cm × 30 cm)
= 1.44 m 2.
The thickness of the walls = 1.5 cm = 0.015 m.
The rate of heat flow into the box is

    
∆Q
∆t

 = 
KA(θ1 − θ2)

x

= 
(0.04 W m−1°C−1)  (1.44 m 2)  (40°C)

0.015 m
 = 154 W.

The rate at which the ice melts is 

      = 
154 W

3.36 × 10 5 J kg−1 = 0.46 g s−1.
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 3. A closed cubical box is made of perfectly insulating
material and the only way for heat to enter or leave the
box is through two solid cylindrical metal plugs, each of
cross sectional area 12 cm 2 and length 8 cm fixed in the
opposite walls of the box. The outer surface of one plug
is kept at a temperature of 100°C while the outer surface
of the other plug is maintained at a temperature of
4°C. The thermal conductivity of the material of the plug

is 2.0 Wm −1°C −1. A source of energy generating 13 W is
enclosed inside the box. Find the equilibrium temperature
of the inner surface of the box assuming that it is the
same at all points on the inner surface.

Solution :

The situation is shown in figure (28-W1). Let the
temperature inside the box be θ. The rate at which heat
enters the box through the left plug is

∆Q1

∆t
 = 

KA(θ1 − θ)
x

 ⋅

The rate of heat generation in the box = 13 W. The rate
at which heat flows out of the box through the right plug
is

∆Q2

∆t
 = 

KA(θ − θ2)
x

 .

In the steady state   

∆Q1

∆t
 + 13 W = 

∆Q2

∆t

or, 
KA
x

(θ1 − θ) + 13 W = 
KA
x

(θ − θ2)

or, 2 
KA
x

 θ = 
KA
x

(θ1 + θ2) + 13 W

or, θ = 
θ1 + θ2

2
 +  

(13 W) x
2KA

   = 
100°C + 4°C

2
 + 

(13 W) × 0.08 m

2 × (2.0 W m −1°C −1) (12 × 10 − 4 m 2)

   = 52°C + 216.67°C ≈ 269°C.

 4. A bar of copper of length 75 cm and a bar of steel of
length 125 cm are joined together end to end. Both are
of circular cross section with diameter 2 cm. The free ends
of the copper and the steel bars are maintained at
100°C and 0°C respectively. The curved surfaces of the
bars are thermally insulated. What is  the temperature
of the copper–steel junction ? What is the amount of
heat transmitted per unit  time  across  the  junction ?

Thermal conductivity of copper is 386 J s −1 m −1°C −1 and

that of steel is 46 J s −1 m −1°C −1.

Solution :

The situation is shown in figure (28-W2). Let the
temperature at the junction be θ (on Celsius scale). The
same heat current passes through the copper and the
steel rods. Thus,

      
∆Q
∆t

 = 
Kcu A(100°C − θ)

75 cm
 = 

Ksteel Aθ
125 cm

or, 
Kcu (100°C − θ)

75
 = 

Ksteel θ
125

or, 
100°C − θ

θ
 = 

75 Ksteel

125 Kcu
 = 

3
5

 × 
46
386

or, θ = 93°C.

The rate of heat flow is

      
∆Q
∆t

 = 
KsteelAθ
125 cm

         = 
(46 J s −1 m −1°C −1) (π × 1 cm 2) × 93°C

125 cm

= 1.07 J s −1.

 5. Two parallel plates A and B are joined together to form
a compound plate (figure 28-W3). The thicknesses of the
plates are 4.0 cm and 2.5 cm respectively and the area of
cross section is 100 cm 2 for each plate. The thermal
conductivities are KA = 200 W m −1°C −1 for the plate A and

KB = 400 W m −1°C −1 for the plate B. The outer surface of

the plate A is maintained at 100°C and the outer surface
of the plate B is maintained at 0°C. Find (a) the rate of
heat flow through any cross section, (b) the temperature
at the interface and (c) the equivalent thermal
conductivity of the compound plate.

Solution : (a) Let the temperature of the interface be θ.

The area of cross section of each plate is A = 100 cm 2

= 0.01 m 2. The thicknesses are xA = 0.04 m and

xB = 0.025 m.

The thermal resistance of the plate A is

             R1 = 
1

KA

 
xA

A

and that of the plate B is
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        R2 = 
1

KB

 
xB

A
 .

The equivalent thermal resistance is

R = R1 + R2 = 
1
A

 




xA

KA

 + 
xB

KB




 . … (i)

Thus, 
∆Q
∆t

 = 
θ1 − θ2

R

= 
A(θ1 − θ2)

xA/KA + xB/KB

= 
(0.01 m 2) (100°C)

(0.04 m)/(200 W m −1°C −1) + (0.025 m)/(400 W m −1°C −1)

= 3810 W.

(b) We have 
∆Q
∆t

 = 
A(θ − θ2)

xB/KB

or,   3810 W = 
(0.01 m 2) (θ − 0°C)

(0.025 m)/(400 W m −1°C −1)

or, θ = 24°C.

(c) If K is the equivalent thermal conductivity of the
compound plate, its thermal resistance is 

R = 
1
A

 
xA + xB

K
 ⋅

Comparing with (i), 

xA + xB

K
 = 

xA

KA

 + 
xB

KB

or, K = 
xA + xB

xA/KA + xB/KB

 

          = 248 W m −1°C −1.

 6. A room has a 4 m × 4 m × 10 cm concrete roof (K = 1.26
Wm −1°C −1). At some instant, the temperature outside is
46°C and that inside is 32°C. (a) Neglecting convection,
calculate the amount of heat flowing per second into the
room through the roof. (b) Bricks (K = 0.65 Wm −1°C −1) of
thickness 7.5 cm are laid down on the roof. Calculate the
new rate of heat flow under the same temperature
conditions.

Solution : The area of the roof

           = 4 m × 4 m = 16 m 2.

The thickness x = 10 cm = 0.10 m.

(a) The thermal resistance of the roof is

     R1 = 
1
K

 
x
A

 = 
1

1.26 W m −1°C −1 
0.10 m
16 m 2

= 4.96 × 10 − 3 °C W −1.

The heat current is

∆Q
∆t

 = 
θ1 − θ2

R1

 = 
46°C − 32°C

4.96 × 10 −3 °C W −1

   = 2822 W.

(b) The thermal resistance of the brick layer is

      R2 = 
1
K

 
x
A

 = 
1

0.65 W m −1°C −1 
7.5 × 10 − 2 m

16 m 2

= 7.2 × 10 − 3 °C W −1.

The equivalent thermal resistance is

       R = R1 + R2 = (4.96 + 7.2) × 10 − 3 °C W −1

= 1.216 × 10 − 2 °C W −1.

The heat current is

∆Q
∆t

 = 
θ1 − θ2

R
 = 

46°C − 32°C
1.216 × 10 − 2 °C W −1 ⋅

= 1152 W.

 7. An electric heater is used in a room of total wall area
137 m 2 to maintain a temperature of 20°C inside it, when
the outside temperature is − 10°C. The walls have three
different layers  of materials. The innermost layer is of
wood of thickness 2.5 cm, the middle layer is of cement
of thickness 1.0 cm and the outermost layer is of brick of
thickness 25.0 cm. Find the power of the electric heater.
Assume that there is no heat loss through the floor and
the ceiling. The thermal conductivities of wood, cement
and brick are 0.125 Wm −1°C −1, 1.5 Wm −1°C −1 and
1.0 Wm −1°C −1 respectively.

Solution :

The situation is shown in figure (28-W4).

The thermal resistances of the wood, the cement and
the brick layers are

     RW = 
1
K

 
x
A

     = 
1

0.125 W m −1°C −1 
2.5 × 10 − 2 m

137 m 2  

= 
0.20
137

 °C W −1,

RC = 
1

1.5 W m −1°C −1 
1.0 × 10 − 2 m

137 m 2  

= 
0.0067

137
 °C W −1

and  RB = 
1

1.0 W m −1°C −1 
25.0 × 10 − 2 m

137 m 2  

= 
0.25
137

 °C W −1.

  As the layers are connected in series, the equivalent
thermal resistance is

R = RW + RC + RB
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       = 
0.20 + 0.0067 + 0.25

137
 °C W −1

 = 3.33 × 10 − 3 °C W −1.

The heat current is

i = 
θ1 − θ2

R

= 
20°C − (− 10°C)

3.33 × 10 − 3 °C W −1 ≈ 9000 W.

The heater must supply 9000 W to compensate the
outflow of heat.

 8. Three rods of material x and three of material y are
connected as shown in figure (28-W5). All the rods are
identical in length and cross sectional area. If the end
A is maintained at 60°C and the junction E at 10°C,
calculate the temperature of the junction B. The thermal
conductivity of x is 800 W m −1°C −1 and that of y is

400 W m −1°C −1.

Solution : It is clear from the symmetry of the figure that
the points C and D are equivalent in all respect and
hence, they are at the same temperature, say θ. No heat
will flow through the rod CD. We can, therefore, neglect
this rod in further analysis.
Let l and A be the length and the area of cross section
of each rod. The thermal resistances of AB, BC and BD
are equal. Each has a value

              R1 = 
1
Kx

 
l
A

 ⋅ … (i)

Similarly, thermal resistances of CE and DE are equal,
each having a value

R2 = 
1
Ky

 
l
A

 ⋅ … (ii)

As the rod CD has no effect, we can say that the rods
BC and CE are joined in series. Their equivalent thermal
resistance is

         R3 = RBC + RCE = R1 + R2.

Also, the rods BD and DE together have an equivalent
thermal resistance R4 = RBD + RDE = R1 + R2.

The resistances R3 and R4 are joined in parallel and
hence their equivalent thermal resistance is given by

1
R5

 = 
1
R3

 + 
1
R4

 = 
2
R3

 

or,          R5 = 
R3

2
 = 

R1 + R2

2
 ⋅

This resistance R5 is connected in series with AB. Thus,
the total arrangement is equivalent to a thermal
resistance

     R = RAB + R5 = R1 + 
R1 + R2

2
 = 

3R1 + R2

2
 ⋅

Figure (28-W6) shows the successive steps in this
reduction.

The heat current through A is

i = 
θA − θE

R
 = 

2(θA − θE)
3R1 + R2

 ⋅

This current passes through the rod AB. We have

i = 
θA − θB

RAB

or, θA − θB = (RAB)i

= R1 
2(θA − θE)
3R1 + R2

 .

Putting from (i) and (ii),

θA − θB = 
2Ky (θA − θE)

Kx + 3Ky
 

= 
2 × 400

800 + 3 × 400
 × 50°C = 20°C

or, θB = θA − 20°C = 40°C.

 9. A rod CD of thermal resistance 5.0 K W −1 is joined at the
middle of an identical rod AB as shown in figure
(28-W7). The ends A, B and D are maintained at 100°C,
0°C and 25°C respectively. Find the heat current in CD.

Solution : The thermal resistance of AC is equal to that
of CB and is equal to 2.5 K W −1. Suppose, the
temperature at C is θ. The heat currents through AC,
CB and CD are

          
∆Q1

∆t
 = 

100°C − θ
2.5 K W −1 ,
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∆Q2

∆t
 = 

θ − 0°C
2.5 K W −1

and        
∆Q3

∆t
 = 

θ − 25°C
5.0 K W −1 ⋅

We also have

∆Q1

∆t
 = 

∆Q2

∆t
 + 

∆Q3

∆t

or, 
100°C − θ

2.5
 = 

θ − 0°C
2.5

 + 
θ − 25°C

5

or, 225°C = 5θ

or, θ = 45°C.

Thus, 
∆Q3

∆t
 = 

45°C − 25°C
5.0 K W −1  = 

20 K
5.0 K W −1

= 4.0 W.

10. Two thin metallic spherical shells of radii r1 and r2

(r1 < r2) are placed with their centres coinciding. A
material of thermal conductivity K is filled in the space
between the shells. The inner shell is maintained at
temperature θ1  and the outer shell at temperature θ2

(θ1 < θ2). Calculate the rate at which heat flows radially
through the material.

Solution :

Let us draw two spherical shells of radii x and x + dx
concentric with the given system. Let the temperatures
at these shells be θ and θ + dθ respectively. The amount
of heat flowing radially inward through the material
between x and x + dx is

∆Q
∆t

 = 
K 4πx 2 dθ

dx
 ⋅

Thus,

          K 4π ∫
θ1

θ2

 dθ = 
∆Q
∆t

 ∫ 
r1

r2

dx
x 2

or, K 4π(θ2 − θ1) = 
∆Q
∆t

 


1
r1

 − 
1
r2





or, 
∆Q
∆t

 = 
4πKr1r2(θ2 − θ1)

r2 − r1

 ⋅

11. On a cold winter day, the atmospheric temperature is
− θ (on Celsius scale) which is below 0°C. A cylindrical
drum of height h made of a bad conductor is completely
filled with water at 0°C and is kept outside without any
lid. Calculate the time taken for the whole mass of water

to freeze. Thermal conductivity of ice is K and its latent
heat of fusion is L. Neglect expansion of water on
freezing.

Solution :

Suppose, the ice starts forming at time t = 0 and a
thickness x is formed at time t. The amount of heat flown
from the water to the surrounding in the time interval
t to t + dt is

         ∆Q = 
KAθ

x
 dt.

The mass of the ice formed due to the loss of this amount
of heat is

dm = 
∆Q
L

 = 
KAθ
xL

 dt.

The thickness dx of ice formed in time dt is

dx = 
dm
Aρ

 = 
Kθ
ρxL

 dt

or, dt = 
ρL
Kθ

 x dx.

Thus, the time T taken for the whole mass of water to
freeze is given by

∫ 
0

T

dt = 
ρL
Kθ

 ∫ 
0

h

xdx

or, T = 
ρLh 2

2Kθ
 ⋅

12. Figure (28-W10) shows a large tank of water at a
constant temperature θ0 and a small vessel containing a

mass m of water at an initial temperature θ1(< θ0). A
metal rod of length L, area of cross section A and thermal
conductivity K connects the two vessels. Find the time
taken for the temperature of the water in the smaller
vessel to become θ2(θ1 < θ2 < θ0). Specific heat capacity of
water is s and all other heat capacities are negligible.
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Solution : Suppose, the temperature of the water in the
smaller vessel is θ at time t. In the next time interval
dt, a heat ∆Q is transferred to it where

           ∆Q = 
KA
L

 (θ0 − θ) dt. … (i)

This heat increases the temperature of the water of mass
m  to  θ + dθ where

               ∆Q = ms dθ. … (ii)

From (i) and (ii),

      
KA
L

 (θ0 − θ) dt = ms dθ

or,          dt = 
Lms
KA

  
dθ

θ0 − θ

or, ∫ 
0

T

dt = 
Lms
KA

 ∫ 
θ1

θ2
dθ

θ0 − θ

where T is the time required for the temperature of the
water to become θ2.

Thus, T = 
Lms
KA

 ln 
θ0 − θ1

θ0 − θ2

 ⋅

13. One mole of an ideal monatomic gas is kept in a rigid
vessel. The vessel is kept inside a steam chamber whose
tempreature is 97°C. Initially, the temperature of the gas
is 5.0°C. The walls of the vessel have an inner surface
of area 800 cm 2 and thickness 1.0 cm. If the temperature
of the gas increases to 9.0°C in 5.0 seconds, find the
thermal conductivity of the material of the walls.

Solution : The initial temperature difference is
97°C − 5°C = 92°C and at 5.0 s the temperature
difference becomes 97°C − 9°C = 88°C. As the change in
the temperature difference is small, we work with the
average temperature difference

        
92°C + 88°C

2
 = 90°C = 90 K.

The rise in the temperature of the gas is

        9.0°C – 5.0°C = 4°C = 4 K.

The heat supplied to the gas in 5.0 s is

     ∆Q = nCv ∆T

= (1 mol) × 


3
2

 × 8.3 JK −1 mol −1


 × (4 K)

= 49.8 J.

If the thermal conductivity is K,

   49.8 J = 
K(800 × 10 − 4 m 2) × (90 K)

1.0 × 10 − 2 m
 × 5.0 s

or, K = 
49.8 J

3600 msK
 = 0.014 J s −1 m −1 K −1.

14. A monatomic ideal gas is contained in a rigid container
of volume V with walls of total inner surface area A,
thickness x and thermal conductivity K. The gas is at an

initial temperature T0 and pressure p0 . Find the pressure
of the gas as a function of time if the temperature of the
surrounding air is Ts. All temperatures are in absolute
scale.

Solution : As the volume of the gas is constant, a heat
∆Q given to the gas increases its temperature by

∆T = ∆Q/Cv. Also, for a monatomic gas, Cv = 3
2
 R. If the

temperature of the gas at time t is T, the heat current
into the gas is

          
∆Q
∆t

 = 
KA(Ts − T)

x

or,          
∆T
∆t

 = 
2 KA
3 xR

 (Ts − T)

or, ∫ 
T0

T

dT
Ts − T

 = ∫ 
0

t
2 KA
3 xR

 dt

or, ln 
Ts − T0

Ts − T
 = 

2 KA
3 xR

 t

or, Ts − T = (Ts − T0) e 
− 

2 KA

3xR
 t

or, T = Ts − (Ts − T0) e 
− 

2 KA

3xR
 t
.

As the volume remains constant,

p

T
 = 

p0

T0

 

or, p = 
p0

T0

 T

      = 
p0

T0

 Ts − (Ts − T0) e 
− 

2 KA

3 xR
 t
 .

15. Consider a cubical vessel of edge a having a small hole
in one of its walls. The total thermal resistance of the
walls is r. At time t = 0, it contains air at atmospheric
pressure pa and temperature T0. The temperature of the
surrounding air is Ta(> T0). Find the amount of the gas
(in moles) in the vessel at time t. Take Cv of air to be
5 R/2.

Solution : As the gas can leak out of the hole, the pressure
inside the vessel will be equal to the atmospheric
pressure pa. Let n be the amount of the gas (moles) in

the vessel at time t. Suppose an amount ∆Q of heat is
given to the gas in time dt. Its temperature increases
by dT where
             ∆Q = nCpdT.

If the temperature of the gas is T at time t, we have

∆Q
dt

 = 
Ta − T

r

   or, (Cpr)n dT = (Ta − T)dt. … (i)

We have, pa a 3 = nRT

or, n dT + T dn = 0

   or, n dT = − T dn. … (ii)
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   Also,          T = 
paa 3

nR
 ⋅ … (iii)

Using (ii) and (iii) in (i),

      
− Cp r paa 3

nR
 dn = 




Ta − 

pa a 3

nR




 dt

or, 
dn

nR 



Ta − 

paa 3

nR





 = − 
dt

Cp r paa 3 

or, ∫ 
n0

n
dn

nRTa − paa 3 = − ∫ 
0

t
dt

Cp r pa a 3

where n0 = 
paa 

3

RT0

 is the initial amount of the gas in the

vessel. Thus,

       
1

RTa
 ln 

nRTa − pa a 3

n0RTa − paa 3 = − 
t

Cp r paa 3 

or,     nRTa − paa 3 = (n0RTa − paa 3) e 
− 

RTa
Cprpa a 3

 t
.

Writing n0 = 
paa 3

RT0

  and  Cp = Cv + R = 
7R
2

 ,

      n = 
paa 3

RTa
 



1 + 





Ta

T0

 − 1



 e 

− 
2 Ta

7 rpa a 3
 t


 .

16 A blackbody of surface area 1 cm 2 is placed inside an
enclosure. The enclosure has a constant temperature
27°C and the blackbody is maintained at 327°C by
heating it electrically. What electric power is needed to
maintain the temperature ? σ = 6.0 × 10 − 8 W m −2 K −4.

Solution : The area of the blackbody is A = 10 − 4 m 2, its
temperature is T1 = 327°C = 600 K and the temperature
of the enclosure is T2 = 27°C = 300 K. The blackbody

emits radiation at the rate of AσT1
 4. The radiation falls

on it (and gets absorbed) at the rate of AσT2
 4. The net

rate of loss of energy is Aσ(T1
 4 − T2

 4). The heater must
supply this much of power. Thus, the power needed is
Aσ(T1

 4 − T2
 4)

= (10 − 4 m 2) (6.0 × 10 − 8 W m −2 K −4) [(600 K) 4 − (300 K) 4]

= 0.73 W.

17. An electric heater emits 1000 W of thermal radiation. The
coil has a surface area of 0.020 m 2. Assuming that the
coil radiates like a blackbody, find its temperature.
σ = 6.00 × 10 – 8 W m –2 K –4.

Solution : Let the temperature of the coil be T. The coil
will emit radiation at a rate AσT 4. Thus,

  1000 W = (0.020 m 2) × (6.0 × 10 − 8 W m −2 K −4) × T 4

or, T 4 = 
1000

0.020 × 6.00 × 10 − 8
 K 4

= 8.33 × 10 11 K 4

or, T = 955 K.

18. The earth receives solar radiation at a rate of
8.2 J cm −2 min −1. Assuming that the sun radiates like a
blackbody, calculate the surface temperature of the sun.
The angle subtended by the sun on the earth is 0.53° and
the Stefan constant σ = 5.67 × 10  – 8 W m –2 K –4.

Solution :

Let the diameter of the sun be D and its distance from
the earth be R. From the question,

         
D
R

 ≈ 0.53 × 
π

180

= 9.25 × 10 − 3. … (i)

The radiation emitted by the surface of the sun per unit
time is

4π 


D
2





 2

σT 4 = πD 2σT 4.

At distance R, this radiation falls on an area 4πR 2  in
unit time. The radiation received at the earth’s surface
per unit time per unit area is, therefore,

πD 2σT 4

4πR 2  = 
σT 4

4
 


D
R





 2

.

Thus, 
σT 4

4
 


D
R





 2

 = 8.2 J cm −2 min −1

or,    
1
4

 × (5.67 × 10 − 8 W m −2 K −4) T 4 × (9.25 × 10 − 3) 2

       = 
8.2

10 − 4 × 60
 W m −2 

or, T = 5794 K ≈ 5800 K.

19. The temperature of a body falls from 40°C  to  36°C in
5 minutes when placed in a surrounding of constant
temperature 16°C. Find the time taken for the
temperature of the body to become 32°C.

Solution : As the temperature differences are small, we
can use Newton’s law of cooling.

          
dθ
dt

 = − k(θ − θ0)

   or, 
dθ

θ − θ0

 = − kdt … (i)

where k is a constant, θ is the temperature of the body
at time t and θ0 = 16°C is the temperature of the
surrounding. We have,
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         ∫  
40°C

 36°C dθ
θ − θ0

 = − k(5 min)

or, ln 
36°C − 16°C
40°C − 16°C

 = − k(5 min)

or, k = − 
ln(5/6)
5 min

 ⋅

If t be the time required for the temperature to fall from
36°C  to  32°C then by (i),

∫  
36°C

 32°C dθ
θ − θ0

 = − kt

or, ln 
32°C − 16°C
36°C − 16°C

 = 
ln(5/6)t
5 min

or, t = 
ln (4/5)
ln (5/6)

 × 5 min

= 6.1 min.

Alternative method

The mean temperature of the body as it cools from

40°C to 36°C is 
40°C + 36°C

2
 = 38°C. The rate of decrease

of temperature is 
40°C − 36°C

5 min
 = 0.80°C min −1.

Newton’s law of cooling is

          
dθ
dt

 = − k(θ − θ0)

or, − 0.8°C min −1 = − k( 38°C − 16°C ) = − k( 22°C )

or, k = 
0.8
22

 min − 1. 

Let the time taken for the temperature to become
32°C be t. 

During this period,

       
dθ
dt

 = − 
36°C − 32°C

t
 = − 

4°C
t

 ⋅

The mean temperature is 
36°C + 32°C

2
 = 34°C. 

Now,

         
dθ
dt

 = − k(θ − θ0)

or,    
− 4°C

t
 = − 

0.8
22

 × ( 34°C − 16°C ) min −1

or, t = 
22 × 4

0.8 × 18
 min = 6.1 min .

20. A hot body placed in air is cooled down according to
Newton’s law of cooling, the rate of decrease of
temperature being k times the temperature difference
from the surrounding. Starting from t = 0, find the time
in which the body will lose half the maximum heat it
can lose.

Solution : We have,

          
dθ
dt

 = − k(θ − θ0)

where θ0 is the temperature of the surrounding and θ is
the temperature of the body at time t. Suppose θ = θ1

at t = 0.

Then,

∫ 
θ1

θ
dθ

θ − θ0

 = − k ∫ 
0

t

dt

or,          ln 
θ − θ0

θ1 − θ0

 = − kt

   or, θ − θ0 = (θ1 − θ0) e − kt. … (i)

The body continues to lose heat till its temperature
becomes equal to that of the surrounding. The loss of
heat in this entire period is

∆Qm = ms(θ1 − θ0).

This is the maximum heat the body can lose. If the body
loses half this heat, the decrease in its temperature will
be,

∆Qm

2 ms
 = 

θ1 − θ0

2
 ⋅

If the body loses this heat in time t1, the temperature
at t1 will be

θ1 − 
θ1 − θ0

2
 = 

θ1 + θ0

2
 ⋅

Putting these values of time and temperature in (i),

θ1 + θ0

2
 − θ0 = (θ1 − θ0) e − kt1

or, e − kt1 = 
1
2

or, t1 = 
ln 2

k
 ⋅

QUESTIONS FOR SHORT ANSWER

 1. The heat current is written as 
∆Q
∆t

 ⋅  Why don’t we write

dQ
dt

 ?

 2. Does a body at 20°C radiate in a room, where the room
temperature is 30°C ? If yes, why does its temperature
not fall further ?
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 3. Why does blowing over a spoonful of hot tea cools it ?
Does evaporation play a role ? Does radiation play a
role ?

 4. On a hot summer day we want to cool our room by
opening the refrigerator door and closing all the windows
and doors. Will the process work ?

 5. On a cold winter night you are asked to sit on a chair.
Would you like to choose a metal chair or a wooden
chair ? Both are kept in the same lawn and are at the
same temperature.

 6. Two identical metal balls one at T1 = 300 K and the other
at T2 = 600 K are kept at a distance of 1 m in vacuum.
Will the temperatures equalise by radiation ? Will the
rate of heat gained by the colder sphere be proportional
to T2

 4 − T1
 4 as may be expected from the Stefan’s law ?

 7. An ordinary electric fan does not cool the air, still it
gives comfort in summer. Explain.

 8. The temperature of the atmosphere at a high altitude
is around 500°C. Yet an animal there would freeze to
death and not boil. Explain.

 9. Standing in the sun is more pleasant on a cold winter
day than standing in shade. Is the temperature of air
in the sun considerably higher than that of the air in
shade ? 

10. Cloudy nights are warmer than the nights with clean
sky. Explain.

11. Why is a white dress more comfortable than a dark dress
in summer ?

OBJECTIVE I

 1. The thermal conductivity of a rod depends on 
(a) length              (b) mass
(c) area of cross section     (d) material of the rod.

 2. In a room containing air, heat can go from one place to
another
(a) by conduction only     (b) by convection only
(c) by radiation only      (d) by all the three modes.

 3. A solid at temperature T1 is kept in an evacuated
chamber at temperature T2 > T1. The rate of increase of
temperature of the body is proportional to
(a) T2 − T1             (b) T2

 2 − T1
 2

(c) T2
 3 − T1

 3            (d) T2
 4 − T1

 4.

 4. The thermal radiation emitted by a body is proportional
to T n where T is its absolute temperature. The value of
n is exactly 4 for
(a) a blackbody           (b) all bodies 
(c) bodies painted black only  (d) polished bodies only.

 5. Two bodies A and B having equal surface areas are
maintained at temperatures 10°C and 20°C. The thermal
radiation emitted in a given time by A and B are in the
ratio

(a) 1 : 1.15             (b) 1 : 2
(c) 1 : 4               (d) 1 : 16. 

 6. One end of a metal rod is kept in a furnace. In steady
state, the temperature of the rod
(a) increases             (b) decreases 
(c) remains constant        (d) is nonuniform.

 7. Newton’s law of cooling is a special case of
(a) Wien’s displacement law    (b) Kirchhoff ’s law
(c) Stefan’s law            (d) Planck’s law.

 8. A hot liquid is kept in a big room. Its temperature is
plotted as a function of time. Which of the following
curves may represent the plot ?

 9. A hot liquid is kept in a big room. The logarithm of the
numerical value of the temperature difference between
the liquid and the room is plotted against time. The plot
will be very nearly
(a) a straight line           (b) a circular arc
(c) a parabola               (d) an ellipse.

10. A body cools down from 65°C to 60°C in 5 minutes. It

will cool down from 60°C to 55°C in
(a) 5 minutes            (b) less than 5 minutes
(c) more than 5 minutes
(d) less than or more than 5 minutes depending on
       whether its mass is more than or less than 1 kg.

OBJECTIVE II

 1. One end of a metal rod is dipped in boiling water and
the other is dipped in melting ice.
(a) All parts of the rod are in thermal equilibrium with
   each other.
(b) We can assign a temperature to the rod.
(c) We can assign a temperature to the rod after steady

       state is reached.
(d) The state of the rod does not change after steady
       state is reached.

 2. A blackbody does not
(a) emit radiation          (b) absorb radiation
(c) reflect radiation         (d) refract radiation.
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 3. In summer, a mild wind is often found on the shore of
a calm river. This is caused due to
(a) difference in thermal conductivity of water and soil
(b) convection currents
(c) conduction between air and the soil
(d) radiation from the soil.

 4. A piece of charcoal and a piece of shining steel of the
same surface area are kept for a long time in an open
lawn in bright sun.
(a) The steel will absorb more heat than the charcoal.
(b) The temperature of the steel will be higher than that
       of the charcoal.
(c) If both are picked up by bare hands, the steel will
       be felt hotter than the charcoal.
(d) If the two are picked up from the lawn  and kept in
       a cold chamber, the charcoal will lose heat at a faster
       rate than the steel.

 5. A heated body emits radiation which has maximum
intensity near the frequency ν0 . The emissivity of the
material is 0.5. If the absolute temperature of the body

is doubled,
(a) the maximum intensity of radiation will be near the
       frequency 2ν0

(b) the maximum intensity of radiation will  be near the
       frequency ν0 /2
(c) the total energy emitted will increase by a factor
       of 16
(d) the total energy emitted will increase by a factor
       of 8.

 6. A solid sphere and a hollow sphere of the same material
and of equal radii are heated to the same temperature.
(a) Both will emit equal amount of radiation per unit
       time in the biginning.
(b) Both will absorb equal amount of radiation from the
       surrounding in the biginning.
(c) The initial rate of cooling (dT/dt) will be the same
       for the two spheres.
(d) The two spheres will have equal temperatures at any
       instant.

EXERCISES

 1. A uniform slab of dimension 10 cm × 10 cm × 1 cm is
kept between two heat reservoirs at temperatures
10°C and 90°C. The larger surface areas  touch  the
reservoirs.  The  thermal conductivity of the material is
0.80 W m −1°C −1. Find the amount of heat flowing through
the slab per minute.

 2. A liquid-nitrogen container is made of a 1-cm thick
styrofoam sheet having thermal conductivity
0.025 J s −1 m −1°C −1. Liquid nitrogen at 80 K is kept in
it. A total area of 0.80 m 2  is in contact with the liquid
nitrogen. The atmospheric temperature is 300 K.
Calculate the rate of heat flow from the atmosphere to
the liquid nitrogen.

 3. The normal body-temperature of a person is 97°F.
Calculate the rate at which heat is flowing out of his
body through the clothes assuming the following values.
Room temperature = 47°F, surface of the body under
clothes = 1.6 m 2, conductivity of the cloth
= 0.04 J s −1 m −1°C −1, thickness of the cloth = 0.5 cm.

 4. Water is boiled in a container having a bottom of surface
area 25 cm 2, thickness 1.0 mm and thermal conductivity
50 W m −1°C −1.  100 g of water is converted into steam per
minute in the steady state after the boiling starts.
Assuming that no heat is lost to the atmosphere,
calculate the temperature of the lower surface of the
bottom. Latent heat of vaporization of water
= 2.26 × 10 6 J kg −1.

 5. One end of a steel rod (K = 46 J s −1 m −1°C −1) of length
1.0 m is kept in ice at 0°C and the other end is kept in
boiling water at 100°C. The area of cross section of the
rod is 0.04 cm 2. Assuming no heat loss to the
atmosphere, find the mass of the ice melting per second.
Latent heat of fusion of ice = 3.36 × 10 5 J kg −1.

 6. An icebox almost completely filled with ice at 0°C is
dipped into a large volume of water at 20°C. The box

has walls of surface area 2400 cm 2, thickness 2.0 mm
and thermal conductivity 0.06 W m −1°C −1. Calculate the
rate at which the ice melts in the box. Latent heat of
fusion of ice = 3.4 × 10 5 J kg −1.

 7. A pitcher with 1-mm thick porous walls contains 10 kg
of water. Water comes to its outer surface and
evaporates at the rate of 0.1 g s −1. The surface area of
the pitcher (one side) = 200 cm 2. The room temperature
= 42°C, latent heat of vaporization = 2.27 × 10 6 J kg −1,
and the thermal conductivity of the porous walls = 0.80
J s −1 m −1°C −1. Calculate the temperature of water in the
pitcher when it attains a constant value.

 8. A steel frame (K = 45 W m −1°C −1) of total  length 60 cm
and cross sectional area 0.20 cm 2, forms three sides of
a square. The free ends are maintained at 20°C and
40°C. Find the rate of heat flow through a cross section
of the frame.

 9. Water at 50°C is filled in a closed cylindrical vessel of
height 10 cm and cross sectional area 10 cm 2. The walls
of the vessel are adiabatic but the flat parts are made
of 1-mm thick aluminium (K = 200 J s −1 m −1°C −1).
Assume that the outside temperature is 20°C. The
density of water is 1000 kg m −3, and the specific heat
capacity of water = 4200 J k g −1°C −1. Estimate the time
taken for the temperature to fall by 1.0°C. Make any
simplifying assumptions you need but specify them.

10. The left end of a copper rod (length = 20 cm, area of
cross section = 0.20 cm2) is maintained at 20°C and the
right end is maintained at 80°C. Neglecting any loss of
heat through radiation, find (a) the temperature at a
point 11 cm from the left end and (b) the heat current
through the rod. Thermal conductivity of copper
= 385 W m −1°C −1.
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11. The ends of a metre stick are maintained at 100°C and
0°C. One end of a rod is maintained at 25°C. Where
should its other end be touched on the metre stick so
that there is no heat current in the rod in steady state ?

12. A cubical box of volume 216 cm 3 is made up of 0.1 cm
thick wood. The inside is heated electrically by a 100 W
heater. It is found that the temperature difference
between the inside and the outside surface is 5°C in
steady state. Assuming that the entire electrical energy
spent appears as heat, find the thermal conductivity of
the material of the box.

13. Figure (28-E1) shows water in a container having
2.0-mm thick walls made of a material of thermal
conductivity 0.50 W m −1°C −1. The container is kept in a
melting-ice bath at 0°C. The total surface area in contact
with water is 0.05 m 2. A wheel is clamped inside the
water and is coupled to a block of mass M as shown in
the figure. As the block goes down, the wheel rotates. It
is found that after some time a steady state is reached
in which the block goes down with a constant speed of
10 cm s −1 and the temperature of the water remains
constant at 1.0°C. Find the mass M of the block. Assume
that the heat flows out of the water only through the
walls in contact. Take g = 10 m s −2.

14. On a winter day when the atmospheric temperature
drops to −10°C, ice forms on the surface of a lake.
(a) Calculate the rate of increase of thickness of the ice
when 10 cm of ice is already formed. (b) Calculate the
total time taken in forming 10 cm of ice. Assume that
the temperature of the entire water reaches 0°C before
the ice starts forming. Density of water = 1000 kg m −3,
latent heat of fusion of ice = 3.36 × 10 5 J kg −1 and
thermal conductivity of ice = 1.7 W m −1°C −1. Neglect the
expansion of water on freezing.

15. Consider the situation of the previous problem. Assume
that the temperature of the water at the bottom of the
lake remains constant at 4°C as the ice forms on the
surface (the heat required to maintain the temperature
of the bottom layer may come from the bed of the lake).
The depth of the lake is 1.0 m. Show that the thickness
of the ice formed attains a steady state maximum value.
Find this value. The thermal conductivity of water
= 0.50 W m −1°C −1. Take other relevant data from the
previous problem.

16. Three rods of lengths 20 cm each and area of cross
section 1 cm 2 are joined to form a triangle ABC. The
conductivities of the rods are KAB = 50 J s −1 m −1°C −1,
KBC = 200 J s −1 m −1°C −1 and KAC = 400 J s −1 m −1°C −1. The
junctions A, B and C are maintained at 40°C, 80°C and

80°C respectively. Find the rate of heat flowing through
the rods AB, AC and BC.

17. A semicircular rod is joined at its end to a straight rod
of the same material and the same cross-sectional area.
The straight rod forms a diameter of the other rod. The
junctions are maintained at different temperatures. Find
the ratio of the heat transferred through a cross section
of the semicircular rod to the heat transferred through
a cross section of the straight rod in a given time.

18. A metal rod of cross sectional area 1.0 cm 2 is being
heated at one end. At one time, the temperature
gradient is 5.0°C cm −1 at cross section A and is 2.5°Ccm−1

at cross section B. Calculate the rate at which the
temperature is increasing in the part AB of the rod. The
heat capacity of the part AB = 0.40 J°C −1, thermal
conductivity of the material of the rod = 200 W m −1°C −1.
Neglect any loss of heat to the atmosphere.

19. Steam at 120°C is continuously passed through a 50-cm
long rubber tube of inner and outer radii 1.0 cm and
1.2 cm. The room temperature is 30°C. Calculate the
rate of heat flow through the walls of the tube. Thermal
conductivity of rubber = 0.15 J s −1 m −1°C −1.

20. A hole of radius r1 is made centrally in a uniform circular
disc of thickness d and radius r2. The inner surface ( a
cylinder of length d and radius r1) is maintained at a
temperature θ1  and the outer surface (a cylinder of
length d and radius r2) is maintained at a temperature
θ2(θ1 > θ2). The thermal conductivity of the material of
the disc is K. Calculate the heat flowing per unit time
through the disc.

21. A hollow tube has a length l, inner radius R1 and outer
radius R2. The material has a thermal  conductivity K.
Find the heat flowing through the walls of the tube if
(a) the flat ends are maintained at temperatures T1 and
T2(T2 > T1) (b) the inside of the tube is maintained at
temperature T1 and the outside is maintained at T2.

22. A composite slab is prepared by pasting two plates of
thicknesses L1  and  L2 and thermal conductivities K1 and
K2. The slabs have equal cross-sectional area. Find the
equivalent conductivity of the composite slab.

23. Figure (28-E2) shows a copper rod joined to a steel rod.
The rods have equal length and equal cross sectional
area. The free end of the copper rod is kept at 0°C and
that of the steel rod is kept at 100°C. Find the
temperature at the junction of the rods. Conductivity of
copper = 390 W m−1°C−1 and that of steel = 46 W m−1°C−1.

24. An aluminium rod and a copper rod of equal length

1.0 m and cross-sectional area 1 cm 2 are welded
together as shown in figure (28-E3). One end is kept at
a temperature of 20°C and the other at 60°C. Calculate
the amount of heat taken out per second from the
hot end. Thermal conductivity of aluminium

= 200 Wm −1°C −1 and of copper = 390 W m −1°C −1.

-
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25. Figure (28-E4) shows an aluminium rod joined to a
copper rod. Each of the rods has a length of 20 cm and
area of cross section 0.20 cm 2. The junction is
maintained at a constant temperature 40°C and the two
ends are maintained at 80°C. Calculate the amount of
heat taken out from the cold junction in one minute after
the steady state is reached. The conductivities are
KAl = 200 W m −1°C −1 and KCu = 400 W m −1°C −1.

26. Consider the situation shown in figure (28-E5). The
frame is made of the same material and has a uniform
cross-sectional area everywhere. Calculate the amount
of heat flowing per second through a cross section of the
bent part if the total heat taken out per second from the
end at 100°C is 130 J.

27. Suppose the bent part of the frame of the previous
problem has a thermal conductivity of
780 J s −1 m −1°C −1 whereas it is 390 J s −1 m −1°C −1 for the
straight part. Calculate the ratio of the rate of heat flow
through the bent part to the rate of heat flow through
the straight part.

28. A room has a window fitted with a single 1.0 m × 2.0 m
glass of thickness 2 mm. (a) Calculate the rate of heat
flow through the closed window when the temperature
inside the room is 32°C and that outside is 40°C. (b) The
glass is now replaced by two glasspanes, each having a
thickness of 1 mm and separated by a distance of 1 mm.
Calculate the rate of heat flow under the same
conditions of temperature. Thermal conductivity of
window glass = 1.0 J s −1 m −1°C −1 and that of air
= 0.025 J s −1 m −1°C −1.

29. The two rods shown in figure (28-E6)  have  identical
geometrical dimensions. They are in contact with two
heat baths at temperatures 100°C and 0°C. The
temperature of the junction is 70°C. Find the
temperature of the junction if the rods are interchanged.

30. The three rods shown in figure (28-E7) have identical
geometrical dimensions. Heat flows from the hot end at
a rate of 40 W in the arrangement (a). Find the rates of

heat flow when the rods are joined as in arrangement
(b) and in (c). Thermal conductivities of aluminium
and copper are 200 W m −1°C −1 and 400 W m −1°C −1

respectively.

31. Four identical rods AB, CD, CF and DE are joined as
shown in figure (28-E8). The length, cross-sectional
area and thermal conductivity of each rod are l, A and
K respectively. The ends A, E and F are maintained at
temperatures T1, T2  and  T3 respectively. Assuming no
loss of heat to the atmosphere, find the temperature
at B.

32. Seven rods A, B, C, D, E, F and G are joined as shown
in figure (28-E9). All the rods have equal cross-sectional
area A and length l. The thermal conductivities of the
rods are KA = KC = K0, KB = KD = 2K0, KE = 3K0, KF = 4K0

and KG = 5K0. The rod E is kept at a constant
temperature T1 and the rod G is kept at a constant
temperature T2(T2 > T1). (a) Show that the rod F has a
uniform temperature T = (T1 + 2T2)/3. (b) Find the rate
of heat flowing from the source which maintains the
temperature T2 .

33. Find the rate of heat flow through a cross section of the
rod shown in figure (28-E10) (θ2 > θ1). Thermal
conductivity of the material of the rod is K.
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34. A rod of negligible heat capacity has length 20 cm, area
of cross section 1.0 cm 2 and thermal conductivity
200 W m −1°C −1. The temperature of one end is
maintained at 0°C and that of the other end is slowly
and linearly varied from 0°C to 60°C in 10 minutes.
Assuming no loss of heat through the sides, find the
total heat transmitted through the rod in these
10 minutes.

35. A hollow metallic sphere of radius 20 cm surrounds a
concentric metallic sphere of radius 5 cm. The space
between the two spheres is filled with a nonmetallic
material. The inner and outer spheres are maintained
at 50°C and 10°C respectively and it is found that 100 J
of heat passes from the inner sphere to the outer sphere
per second. Find the thermal conductivity of the material
between the spheres.

36. Figure (28-E11) shows two adiabatic vessels, each
containing a mass m of water at different temperatures.
The ends of a metal rod of length L, area of cross section
A and thermal conductivity K, are inserted in the water
as shown in the figure. Find the time taken for the
difference between the temperatures in the vessels to
become half of the original value. The specific heat
capacity of water is s. Neglect the heat capacity of the
rod and the container and any loss of heat to the
atmosphere.

      
37. Two bodies of masses m1  and  m2 and specific heat

capacities s1  and  s2 are connected by a rod of length l,
cross-sectional area A, thermal conductivity K and
negligible heat capacity. The whole system is thermally
insulated. At time t = 0, the temperature of the first body
is T1 and the temperature of the second body is
T2 (T2 > T1). Find the temperature difference between the
two bodies at time t.

38. An amount n (in moles) of a monatomic gas at an initial
temperature T0 is enclosed in a cylindrical vessel fitted
with a light piston. The surrounding air has a
temperature Ts(> T0) and the atmospheric pressure is
pa. Heat may be conducted between the surrounding and
the gas through the bottom of the cylinder. The bottom
has a surface area A, thickness x and thermal
conductivity K. Assuming all changes to be slow, find
the distance moved by the piston in time t.

39. Assume that the total surface area of a human body is
1.6 m 2 and that it radiates like an ideal radiator.
Calculate the amount of energy radiated per second by
the body if the body temperature is 37°C. Stefan
constant σ is 6.0 × 10 – 8 W m –2 K –4.

40. Calculate the amount of heat radiated per second by a
body of surface area 12 cm 2 kept in thermal equilibrium
in a room at temperature 20°C. The emissivity of the
surface = 0.80 and σ = 6.0 × 10 – 8 W m –2 K –4.

41. A solid aluminium sphere and a solid copper sphere of
twice the radius are heated to the same temperature

and are allowed to cool under identical surrounding
temperatures.  Assume  that  the emissivity of both the
spheres is the same. Find the ratio of (a) the rate of
heat loss from the aluminium sphere to the rate of heat
loss from the copper sphere and (b) the rate of  fall  of
temperature of the aluminium sphere to the rate of fall
of temperature of the copper sphere. The specific heat
capacity of aluminium = 900 J kg −1°C −1 and that of
copper = 390 J kg −1°C −1. The density of copper = 3.4 times
the density of aluminium.

42. A 100 W bulb has tungsten filament of total length 1.0 m
and radius 4 × 10 − 5 m. The emissivity of the filament is
0.8 and σ = 6.0 × 10 – 8 W m –2 K 4. Calculate the
temperature of the filament when the bulb is operating
at correct wattage.

43. A spherical ball of surface area 20 cm 2 absorbs any
radiation that falls on it. It is suspended in a closed box
maintained at 57°C. (a) Find the amount of radiation
falling on the ball per second. (b) Find the net rate of
heat flow to or from the ball at an instant when its
temperature is 200°C. Stefan constant = 6.0 × 10 – 8 

W m –2 K –4.

44. A spherical tungsten piece of radius 1.0 cm is suspended
in an  evacuated  chamber  maintained at 300 K. The
piece is maintained at 1000 K by heating it electrically.
Find the rate at which the electrical energy must be
supplied. The emissivity of tungsten is 0.30 and the
Stefan constant σ is 6.0 × 10 – 8 W m –2 K –4.

45. A cubical block of mass 1.0 kg and edge 5.0 cm is heated
to 227°C. It is kept in an evacuated chamber maintained
at 27°C. Assuming that the block emits radiation like a
blackbody, find the rate at which the temperature of the
block will decrease. Specific heat capacity of the material
of the block is 400 J kg −1 K −1.

46. A copper sphere is suspended in an evacuated chamber
maintained at 300 K. The sphere is maintained at a
constant temperature of 500 K by heating it electrically.
A total of 210 W of electric power is needed to do it.
When the surface of the copper sphere is completely
blackened, 700 W is needed to maintain the same
temperature of the sphere. Calculate the emissivity of
copper.

47. A spherical ball A of surface area 20 cm 2  is kept at the
centre of a hollow spherical shell B of area 80 cm 2. The
surface of A and the inner surface of B emit as
blackbodies. Both A and B are at 300 K. (a) How much
is the radiation energy emitted per second by the ball
A ? (b) How much is the radiation energy emitted per
second by the inner surface of B ? (c) How much of the
energy emitted by the inner surface of B falls back on
this surface itself ?

48. A cylindrical rod of length 50 cm and cross sectional area
1 cm 2 is fitted between a large ice chamber at 0°C and
an evacuated chamber maintained at 27°C as shown in
figure (28-E12). Only small portions of the rod are inside
the chambers and the rest is thermally insulated from
the surrounding. The cross section going into the

Figure 28-E11
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evacuated chamber is blackened so that it completely
absorbs any radiation falling on it. The temperature of
the blackened end is 17°C when steady state is reached.
Stefan constant σ = 6 × 10 – 8 W m –2 K –4. Find the
thermal conductivity of the material of the rod.

49. One end of a rod of length 20 cm is inserted in a furnace
at 800 K. The sides of the rod are covered with an
insulating material and the other end emits radiation
like a blackbody. The temperature of this end is 750 K
in the steady state. The temperature of the surrounding
air is 300 K. Assuming radiation to be the only
important mode of energy transfer between the
surrounding and the open end of the rod, find the
thermal conductivity of the rod. Stefan constant
σ = 6.0 × 10 − 8 W m −2 K −4.

50. A calorimeter of negligible heat capacity contains 100 cc
of water at 40°C. The water cools to 35°C in 5 minutes.
The water is now replaced by K-oil of equal volume at
40°C. Find the time taken for the temperature to become
35°C under similar conditions. Specific heat capacities
of water and K-oil are 4200 J kg −1 K −1 and
2100 J kg −1 K −1 respectively. Density of K-oil
= 800 kg m −3.

51. A body cools down from 50°C to 45°C in 5 minutes and
to 40°C in another 8 minutes. Find the temperature of
the surrounding. 

52. A calorimeter contains 50 g of water at 50°C. The
temperature falls to 45°C in 10 minutes. When the

calorimeter contains 100 g of water at 50°C, it takes 18
minutes for the temperature to become 45°C. Find the
water equivalent of the calorimeter.

53. A metal ball of mass 1 kg is heated by means of a 20 W
heater in a room at 20°C. The temperature of the ball
becomes steady at 50°C. (a) Find the rate of loss of heat
to the surrounding when the ball is at 50°C.
(b) Assuming Newton’s law of cooling, calculate the rate
of loss of heat to the surrounding when the ball is at
30°C. (c) Assume that the temperature of the ball rises
uniformly from 20°C to 30°C in 5 minutes. Find the total
loss of heat to the surrounding during this period.
(d) Calculate the specific heat capacity of the metal. 

54. A metal block of heat capacity 80 J°C −1 placed in a room
at 20°C is heated electrically. The heater is switched off
when the temperature reaches 30°C. The temperature
of the block rises at the rate of 2 °C s −1 just after the
heater is switched on and falls at the rate of 0.2 °C s −1

just after the heater is switched off. Assume Newton’s
law of cooling to hold. (a) Find the power of the heater.
(b) Find the power radiated by the block just after the
heater is switched off. (c) Find the power radiated by
the block when the temperature of the block is 25°C. (d)
Assuming that the power radiated at 25°C represents
the average value in the heating process, find the time
for which the heater was kept on.

55. A hot body placed in a surrounding of temperature θ0

obeys Newton’s law of cooling 
dθ
dt

 = − k(θ − θ0). Its

temperature at t = 0 is θ1 . The specific heat capacity of
the body is s and its mass is m. Find (a) the maximum
heat that the body can lose and (b) the time starting
from t = 0 in which it will lose 90% of this maximum
heat.

ANSWERS

OBJECTIVE I

 1. (d)  2. (d)  3. (d)  4. (b)  5. (a)  6. (d)
 7. (c)  8. (a)  9. (a) 10. (c)

OBJECTIVE II

 1. (d)  2. (c), (d)  3. (b)
 4. (c), (d)  5. (a), (c)  6. (a), (b)

EXERCISES

 1. 3840 J
 2. 440 W

 3. 356 J s −1

 4. 130°C

 5. 5.5 × 10 − 5 g

 6. 1.5 kg h −1

 7. 28°C

 8. 0.03 W

 9. 0.035 s

10. (a) 53°C (b) 2.31 J s −1

11. 25 cm from the cold end

12. 0.92 W m −1°C −1

13. 12.5 kg
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14. (a) 5.0 × 10 − 7 m s −1 (b) 27.5 hours
15. 89 cm
16. 1 W, 8 W, zero
17. 2 : π
18. 12.5°C s −1

19. 233 J s −1

20. 
2πKd(θ1 − θ2)

ln(r 2 /r1)

21. (a) 
Kπ(R2

 2 − R1
 2) (T2 − T1)
l

(b) 
2πKl(T2 − T1)

ln(R2 /R1)

22. 
K1K2(L1 + L2)
L1K2 + L2K1

 

23. 10.6°C

24. 2.36 J
25. 144 J
26. 60 J
27. 12 : 7

28. (a) 8000 J s −1 (b) 381 J s −1

29. 30°C
30. 75 W, 400 W

31. 
3 T1 + 2(T2 + T3)

7

32. (b) 
4 K0 A(T2 − T1)

3l

33. 
Kπr1r2(θ2 − θ1)

L
34. 1800 J

35. 3.0 W m −1°C −1

36. 
Lms
2KA

 ln 2

37. (T2 − T1) e − λt where λ = 
KA(m1s1 + m2s2)

lm1m2s1s2

38. 
nR

Pa A
 (Ts − T0) (1 − e − 2 KAt/5 Rnx)

39. 887 J

40. 0.42 J

41. (a) 1 : 4 (b) 2.9 : 1
42. 1700 K

43. (a) 1.4 J (b) 4.58 W from the ball
44. 22 W

45. 0.12°C s −1

46. 0.3
47. (a) 0.94 J    (b) 3.8 J    (c) 2.8 J 

48. 1.8 W m −1°C −1

49. 74 W m −1 K −1

50. 2 min
51. 34°C

52. 12.5 g

53. (a) 20 W  (b) 
20
3

 W   (c) 1000 J  (d) 500 J kg −1 K −1

54. (a) 160 W  (b) 16 W   (c) 8 W   (d) 5.2 s

55. (a) ms(θ1 − θ0) (b) 
ln 10

k
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CHAPTER 29

ELECTRIC FIELD AND POTENTIAL

29.1 WHAT IS ELECTRIC CHARGE ? 

Matter is made of certain elementary particles.
With the advancement in technology, we have
discovered hundreds of elementary particles. Many of
them are rare and of no concern to us in the present
course. The three most common elementary particles
are electrons, protons and neutrons having masses
me = 9.10940 × 10 – 31 kg, mp = 1.67262 × 10 − 27 kg and
mn = 1.67493 × 10 – 27 kg. Because of their mass these
particles attract each other by gravitational forces.
Thus, an electron attracts another electron, placed
1 cm away, with a gravitational force

 F = 
Gm1m2

r 2

= 
(6.67 × 10 − 11 N m 2 kg −2) × (9.1 × 10 − 31 kg) 2

(10 − 2 m) 2

= 5.5 × 10 − 67 N.
However, an electron is found to repel another

electron at 1 cm with a force of 2.3 × 10 – 24 N. This
extra force is called the electric force. The electric force
is very large as compared to the gravitational force.
The electrons must have some additional property,
apart from their mass, which is responsible for the
electric force. We call this property charge. Just as
masses are responsible for the gravitational force,
charges are responsible for the electric force. Two
protons placed at a distance of 1 cm also repel each
other with a force of 2.3 × 10 – 24 N. Thus, protons also
have charge. Two neutrons placed at a distance of 1 cm
attract each other with a force of 1.9 × 10 – 60 N which

is equal to 
Gm1m2

r 
2

 ⋅ Thus, neutrons exert only

gravitational force on each other and experience no
electric force. The neutrons have mass but no charge.

Two Kinds of Charges

As mentioned above, the electric force between two
electrons is the same as the electric force between two

protons placed at the same separation. We may guess
that the amount of charge on an electron is the same
as that on a proton. However, if a proton and an
electron are placed 1 cm apart, they attract each other

with a force of 2.3 × 10 − 24 N. Certainly this force is
electric, but it is attractive and not repulsive. The
charge on an electron repels the charge on another
electron but attracts the charge on a proton. Thus,
although the charge on an electron and that on a
proton have the same strength, they are of two
different nature. Also, if we pack a proton and an
electron together in a small volume, the combination
does not attract or repel another electron or proton
placed at a distance. The net charge on the
proton–electron system seems to be zero. It is,
therefore, convenient to define one charge as positive
and the other as negative. We arbitrarily call the
charge on a proton as positive and that on an electron
as negative. This assignment of positive and negative
signs to the proton charge and the electron charge is
purely a convention. It does not mean that the charge
on an electron is “less” than the charge on a proton.

Unit of Charge

The above discussion suggests that charge is a
basic property associated with the elementary particles
and its definition is as difficult as the definition of
mass or time or length. We can measure the charge
on a system by comparing it with the charge on a
standard body but we do not know what exactly it is
that we intend to measure. The SI unit of charge is
coulomb abbreviated as C. 1 coulomb is the charge
flowing through a wire in 1 s if the electric current in
it is 1 A. The charge on a proton is

        e = 1.60218 × 10 − 19 C.
The charge on an electron is the negative of this value.

Charge is Quantized

If protons and electrons are the only charge
carriers in the universe, all observable charges must



be integral multiples of e. If an object contains n1

protons and n2 electrons, the net charge on the object is

      n1(e) + n2(− e) = (n1 − n2)e.

Indeed, there are elementary particles other than
protons and electrons, which carry charge. However,
they all carry charges which are integral multiples of
e. Thus, the charge on any object is always an integral
multiple of e and can be changed only in steps of e,
i.e., charge is quantized.

The step size e is usually so small that we can
easily neglect the quantization. If we rub a glass rod
with a silk cloth, typically charges of the order of a
microcoulomb appear on the rubbed objects. Now,
1 µC contains n units of basic charge e where

n = 
1 µC

1.6 × 10 − 19 C
 ≈ 6 × 10 12.

The step size is thus very small as compared to
the charges usually found and in many cases we can
assume a continuous charge variation.

Charge is Conserved

The charge of an isolated system is conserved. It
is possible to create or destroy charged particles but
it is not possible to create or destroy net charge. In a
beta decay process, a neutron converts itself into a
proton and a fresh electron is created. The charge
however, remains zero before and after the event.

Frictional Electricity : Induction  

The simplest way to experience electric charges is
to rub certain solid bodies against each other. Long
ago, around 600 BC, the Greeks knew that when amber
is rubbed with wool, it acquires the property of
attracting light objects such as small pieces of paper.
This is because amber becomes electrically charged. If
we pass a comb through dry hair, the  comb  becomes
electrically charged and can attract small pieces of
paper. An automobile becomes charged when it travels
through the air. A paper sheet becomes charged when
it passes through a printing machine. A gramophone
record becomes charged when cleaned with a dry cloth.

The explanation of appearance of electric charge
on rubbing is simple. All material bodies contain large
number of electrons and equal number of protons in
their normal state. When rubbed against each other,
some electrons from one body may pass on to the other
body. The body that receives the extra electrons,
becomes negatively charged. The body that donates the
electrons, becomes positively charged because it has
more protons than electrons. Thus, when a glass rod
is rubbed with a silk cloth, electrons are transferred
from the glass rod to the silk cloth. The glass rod

becomes positively charged and the silk  cloth becomes
negatively charged.

If we take a positively charged glass rod near small
pieces of paper, the rod attracts the pieces. Why does
the rod attract paper pieces which are uncharged ? This
is because the positively charged rod attracts the
electrons of a paper piece towards itself. Some of the
electrons accumulate at that edge of the paper piece
which is closer to the rod. At the farther end of the piece
there is a deficiency of electrons and hence positive
charge appears there. Such a redistribution of charge in
a material, due to the presence of a nearby charged body,
is called induction. The rod exerts larger attraction on
the negative charges of the paper piece as compared to
the repulsion on the positive charges. This is because the
negative charges are closer to the rod. Hence, there is a
net attraction between the rod and the paper piece.

29.2 COULOMB’S LAW

The experiments of Coulomb and others established
that the force exerted by a charged particle on the other
is given by 

           F = 
kq1q2

r 2
 , … (29.1)

where q1 and q2 are the charges on the particles, r is the
separation between them and k is a constant. The force
is attractive if the charges are of opposite signs and is
repulsive if they are of the same sign. We can write
Coulomb’s law as

F
→

 = 
kq1q2 r

→

r 3
 ,

where r
→
 is the position vector of the force-experiencing

particle with respect to the force-exerting particle. In this
form, the equation includes the direction of the force.

As F, q1, q2 and r are all independently defined
quantities, the constant k can be measured
experimentally. In SI units, the constant k is measured
to be 8.98755 × 10 9 N m 2 C –2.

The constant k is often written as 
1

4πε0

 so that

equation (29.1) becomes

       F = 
1

4πε0
 
q1q2

r 2
 ⋅ … (29.2)

The constant ε0 is called the permittivity of free
space and its value is

       ε0 = 
1

4πk
 = 8.85419 × 10 − 12 C 2 N −1 m −2.
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29.3 ELECTRIC FIELD 

We have already discussed in the chapter on
gravitation that a particle cannot directly interact with
another particle kept at a distance. A particle creates
a gravitational field around it and this field exerts
force on another particle placed in it. The electric force
between two charged particles is also seen as a two-
step process. A charge produces something called an
electric field in the space around it and this electric
field exerts a force on any charge (except the source
charge itself) placed in it. The electric field has its own
existence and is present even if there is no additional
charge to experience the force. The field takes finite
time to propagate. Thus, if a charge is displaced from
its position, the field at a distance r will change after
a time t = r/c, where c is the speed of light. We define
the intensity of electric field at a point as follows:

Bring a charge q at the given point without
disturbing any other charge that has produced the
field. If the charge q experiences an electric force F

→
,

we define the intensity of electric field at the given
point as

           E
→

 = 
F
→

q
 ⋅ … (29.3)

The charge q used to define E
→

 is called a test
charge.

One way to ensure that the test charge q does not
disturb other charges is to keep its magnitude very
small. If this magnitude is not small, the positions of
the other charges may change. Equation (29.3) then
gives the electric field due to the charges in the
changed positions. The intensity of electric field is
often abbreviated as electric field. 

The electric field at a point is a vector quantity.

Suppose, E
→

1 is the field at a point due to a charge

Q1 and E
→

2 is the field at the same point due to a charge
Q2. The resultant field when both the charges are

present, is E
→

 = E
→

1 + E
→

2 .

Electric Field due to a Point Charge

Consider a point charge Q placed at a point A

(figure 29.2). We are interested in the electric field E
→

at a point P at a distance r from Q. Let us imagine a
test charge q placed at P. The charge Q creates a field
E
→

 at P and this field exerts a force F
→

 = qE
→

 on the charge
q. But, from Coulomb’s law the force on the charge q
in the given situation is

            F = 
Qq

4πε0 r 2
 

along AP. The electric field at P is, therefore,

           E = 
F
q

 = 
Q

4πε0 r 2
 … (29.4)

along AP.

The electric field due to a set of charges may be
obtained by finding the fields due to each individual
charge and then adding these fields according to the
rules of vector addition.

Example 29.1

   Two charges 10 µC and −10 µC are placed at points A
and B separated by a distance of 10 cm. Find the electric
field at a point P on the perpendicular bisector of AB at
a distance of 12 cm from its middle point.

Solution :

The situation is shown in figure (29.3). The distance

AP = BP = √(5 cm) 2 + (12 cm) 2  = 13 cm.

The field at the point P due to the charge 10 µC is

EA = 
10 µC

4πε0 (13 cm) 2 = 
( 10 × 10 − 6 C) × (9 × 10 9 N m 2 C −2)

169 × 10 − 4 m 2  

= 5.3 × 10 6 N C −1.

This field is along AP. The field due to −10 µC at P is

EB = 5.3 × 10 6 N C −1 along PB. As EA  and EB  are equal
in magnitude, the resultant will bisect the angle between
the two. The geometry of the figure shows that this
resultant is parallel to the base AB. The magnitude of
the resultant field is

         E = EA cosθ + EB cosθ

= 2 × (5.3 × 10 6 N C −1) × 
5
13

= 4.1 × 10 6 N C −1.

If a given charge distribution is continuous, we can
use the technique of integration to find the resultant
electric field at a point. A small element dQ is chosen

in the distribution and the field dE
→

 due to dQ is
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calculated. The resultant field is then calculated by

integrating the components of dE
→

 under proper limits.

Example 29.2

   A ring of radius a contains a charge q distributed
uniformly over its length. Find the electric field at a point
on the axis of the ring at a distance x from the centre.

Solution :

Figure (29.4) shows the situation. Let us consider a
small element of the ring at the point A having a charge
dQ. The field at P due to this element is

      dE = 
dQ

4πε0(AP) 2 ⋅

By symmetry, the field at P will be along the axis OP.
The component of dE along this direction is

dE cosθ = 
dQ

4πε0(AP) 2 




OP
AP





= 
x dQ

4πε0(a 2 + x 2) 3/2 ⋅

The net field at P is

E = ∫ dE cosθ = ∫ x dQ
4πε0(a 2 + x 2) 3/2 

= 
x

4πε0(a 2 + x 2) 3/2 ∫ dQ = 
xQ

4πε0(a 2 + x 2) 3/2 ⋅

29.4 LINES OF ELECTRIC FORCE  

The electric field in a region can be graphically
represented by drawing certain curves known as lines
of electric force or electric field lines. Lines of force are
drawn in such a way that the tangent to a line of force
gives the direction of the resultant electric field there.
Thus, the electric field due to a positive point charge
is represented by straight lines originating from the
charge (figure 29.5a). The electric field due to a
negative point charge is represented by straight lines
terminating at the charge (figure 29.5b). If we draw
the lines isotropically (the lines are drawn uniformly
in all directions, originating from the point charge), we
can compare the intensities of the field at two points
by just looking at the distribution of the lines of force.

Consider two points P1 and P2 in figure (29.5).
Draw equal small areas through P1 and P2

perpendicular to the lines. More number of lines pass
through the area at P1  and less number of lines pass
through the area at P2. Also, the intensity of electric

field is more at P1 than at P2. In fact, the electric field
is proportional to the lines per unit area if the lines
originate isotropically from the charge.

We can draw the lines of force for a charge
distribution containing more than one charge. From
each charge we can draw the lines isotropically. The
lines may not be straight as one moves away from a
charge. Figure (29.6) shows the shapes of these lines
for some charge distributions.

The lines of force are purely a geometrical construction
which help us to visualise the nature of electric field in a
region. They have no physical existence.

29.5 ELECTRIC POTENTIAL ENERGY 

Consider a system of charges. The charges of the
system exert electric forces on each other. If the
position of one or more charges is changed, work may
be done by these electric forces. We define change in
electric potential energy of the system as negative of
the work done by the electric forces as the
configuration of the system changes.

Consider a system of two charges q1 and q2.
Suppose, the charge q1 is fixed at a point A and the
charge q2 is taken from a point B to a point C along
the line ABC (figure 29.7).
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Let the distance AB  r1 and the distance AC  r2.
Consider a small displacement of the charge q2 in

which its distance from q1 changes from r to r  dr.
The electric force on the charge q2 is

    F  
q1q2

40 r 2
  towards  AB 


.

The work done by this force in the small
displacement dr is

dW  
q1q2

40 r 2
 dr.

The total work done as the charge q2 moves from
B to C is

W   
r1

r2

 
q1q2

40 r 2
 dr  

q1q2

40
 


1
r1

  
1
r2




 .

No work is done by the electric force on the charge
q1  as it is kept fixed. The change in potential energy
Ur2  Ur1 is, therefore, 

     Ur2  Ur1   W  
q1q2

40
 


1
r2

  
1
r1




 .  (29.5)

We choose the potential energy of the two-charge
system to be zero when they have infinite separation
(that means when they are widely separated). This
means U  0. The potential energy when the
separation is r is
    Ur  Ur  U

 
q1q2

40
 


1
r

  
1




  

q1q2

40 r
   (29.6)

The above equation is derived by assuming that
one of the charges is fixed and the other is displaced.
However, the potential energy depends essentially on
the separation between the charges and is independent
of the spatial location of the charged particles.
Equations (29.5) and (29.6) are, therefore, general.

Equation (29.6) gives the electric potential energy
of a pair of charges. If there are three charges q1, q2

and q3 , there are three pairs. Similarly for an
N-particle system, the potential energy of the system
is equal to the sum of the potential energies of all the
pairs of the charged particles.

Example 29.3

   Three particles, each having a charge of 10 C, are
placed at the vertices of an equilateral triangle of side
10 cm. Find the work done by a person in pulling them
apart to infinite separations. 

Solution : The potential energy of the system in the initial
condition is

   U  
3  10 C  10 C

40 10 cm

 
3  10  10 C 2  9  10 9 N m 2 C 2

0.1 m
  27 J.

When the charges are infinitely separated, the potential
energy is reduced to zero. If we assume that the charges
do not get kinetic energy in the process, the total
mechanical energy of the system decreases by 27 J. Thus,
the work done by the person on the system is –27 J.

29.6 ELECTRIC POTENTIAL

The electric field in a region of space is described
by assigning a vector quantity E


 at each point. The

same field can also be described by assigning a scalar
quantity V at each point. We now define this scalar
quantity known as electric potential.

Suppose, a test charge q is moved in an electric
field from a point A to a point B while all the other
charges in question remain fixed. If the electric
potential energy changes by UB  UA due to this
displacement, we define the potential difference
between the point A and the point B as

         VB  VA  
UB  UA

q
   (29.7)

Conversely, if a charge q is taken through a
potential difference VB  VA, the electric potential
energy is increased by UB  UA  qVB  VA. This
equation defines potential difference between any two
points in an electric field. We can define absolute
electric potential at any point by choosing a reference
point P and saying that the potential at this point is
zero. The electric potential at a point A is then given
by (equation 29.7)

      VA  VA  VP  
UA  UP

q
   (29.8)

So, the potential at a point A is equal to the change
in electric potential energy per unit test charge when it
is moved from the reference point to the point A.

Suppose, the test charge is moved in an electric
field without changing its kinetic energy. The total
work done on the charge should be zero from the
work–energy theorem. If Wext  and Wel  be the work
done by the external agent and by the electric field as
the charge moves, we have,

         Wext  Wel  0

or, Wext  Wel  U,

where U is the change in electric potential energy.
Using this equation and equation (29.8), the potential
at a point A may also be defined as follows:
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The potential at a point A is equal to the work done
per unit test charge by an external agent in moving the
test charge from the reference point to the point A
(without changing its kinetic energy).

The choice of reference point is purely ours.
Generally, a point widely separated from all charges
in question is taken as the reference point. Such a
point is assumed to be at infinity.

As potential energy is a scalar quantity, potential
is also a scalar quantity. Thus, if V1 is the potential
at a given point due to a charge q1 and V2 is the
potential at the same point due to a charge q2 , the
potential due to both the charges is V1 + V2 .

29.7 ELECTRIC POTENTIAL DUE TO
    A POINT CHARGE

Consider a point charge Q placed at a point A
(figure 29.8). We have to find the electric potential at
a point P where AP = r. Let us take the reference point
at r = ∞. Suppose, a test charge q is moved from
r = ∞ to the point P. The change in electric potential
energy of the system is, from equation (29.6),

           UP − U∞ = 
Qq

4πε0 r
 ⋅

   The potential at P is, from equation (29.8),

VP = 
UP − U∞

q
 = 

Q
4πε0 r

 ⋅ … (29.9)

The electric potential due to a system of charges
may be obtained by finding potentials due to the
individual charges using equation (29.9) and then
adding them. Thus,

           V = 
1

4πε0
 ∑ 

Qi

ri
 ⋅

Example 29.4

   Two charges + 10 µC and + 20 µC are placed at a
separation of 2 cm. Find the electric potential due to the
pair at the middle point of the line joining the two
charges.

Solution : Using the equation V = Q
4πε0 r

 , the potential due

to + 10 µC is

  V1 = 
(10 × 10 − 6 C) × (9 × 10 9 N m 2C −2)

1 × 10 − 2 m
 = 9 MV.

The potential due to + 20 µC is

V2 = 
(20 × 10 − 6 C) × (9 × 10 9 N m 2C −2)

1 × 10 − 2 m
 = 18 MV.

The net potential at the given point is

         9 MV + 18 MV = 27 MV.

If the charge distribution is continuous, we may
use the technique of integration to find the electric
potential.

29.8 RELATION BETWEEN ELECTRIC
    FIELD AND POTENTIAL

Suppose, the electric field at a point r
→
 due to a

charge distribution is E
→

 and the electric potential at
the same point is V. Suppose, a point charge q is

displaced slightly from the point r
→
 to r

→
 + dr

→
. The force

on the charge is
           F

→
 = qE

→

and the work done by the electric field during the
displacement is

dW = F
→.dr

→
 = qE

→.dr
→
.

The change in potential energy is

dU = − dW = − qE
→.dr

→
.

The change in potential is

dV = 
dU
q

   or,  dV = − E
→.dr

→
. … (29.10)

Integrating between the points r
→

1 and r
→

2, we get

V2 − V1 = − ∫ 
r
→

1

r
→

2

 E
→.dr

→
… (29.11)

where V1 and V2 are the potentials at r
→

1 and r
→

2

respectively. If we choose r
→

1, at the reference point (say

at infinity) and r
→

2 at r
→
, equation (29.11) becomes

V(r
→
) = − ∫ 

∞

r
→

 E
→.dr

→
. … (29.12)

Example 29.5

   Figure (29.9) shows two metallic plates A and B placed
parallel to each other at a separation d. A uniform
electric field E exists between the plates in the direction
from plate B to plate A. Find the potential difference
between the plates.

Solution : Let us take the origin at plate A and x-axis
along the direction from plate A to plate B. We have
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      VB − VA = − ∫ 
r
→

A

r
→

B

 E
→

⋅ dr
→
 = − ∫ 

0

d

− E dx = Ed.

If we work in Cartesian coordinate system
       E = Ex i

→
 + Ey j

→
 + Ez k

→

and dr
→
 = dx i

→
 + dy j

→
 + dz k

→
.

Thus, from (29.10)
dV = − Ex dx − Ey dy − Ez dz. … (i)

If we change x to x + dx keeping y and z constant,
dy = dz = 0 and from (i),

   

                           Ex = − 
∂V
∂x

 ⋅

Similarly,              Ey = − 
∂V
∂y

  

and                        Ez = − 
∂V
∂z

 ⋅

   














… (29.13)

The symbols ∂
∂x

, ∂
∂y

, etc., are used to indicate that

while differentiating with respect to one coordinate,
the others are kept constant.

If we know the electric field in a region, we can
find the electric potential using equation (29.12) and
if we know the electric potential in a region, we can
find the electric field using (29.13).

Equation (29.10) may also be written as
       dV = − E dr cosθ

where θ is the angle between the field E
→

 and the small

displacement dr
→
. Thus,

− 
dV
dr

 = E cosθ. … (29.14)

We see that, − dV
dr

 gives the component of the electric

field in the direction of displacement dr
→
. In figure (29.10),

we show a small displacement PP′ = dr. The electric field
is E making an angle θ with PP′. We have

             dV = V(P′) − V(P)

so that V(P) − V(P′)
dr

 = Ecosθ.

This gives us a method to get the component of
the electric field in any given direction if we know the
potential. Move a small distance dr in the given
direction and see the change dV in the potential. The

component of electric field along that direction is
− dV

dr
 ⋅

If we move a distance dr in the direction of the

field, θ is zero and − dV
dr

 = E is maximum. Thus, the

electric field is along the direction in which the
potential decreases at the maximum rate.

If a small displacement dr
→
 perpendicular to the

electric field is considered, θ = 90° and

dV = − E
→

⋅dr
→
 = 0. The potential does not vary in a

direction perpendicular to the electric field.

Equipotential Surfaces 

If we draw a surface in such a way that the electric
potential is the same at all the points of the surface, it is
called an equipotential surface. The component of electric
field parallel to an equipotential surface is zero, as the
potential does not change in this direction.  Thus,  the
electric  field  is perpendicular to the equipotential surface
at each point of the surface. For a point charge, the electric
field is radial and the equipotential surfaces are concentric
spheres with centres at the charge (figure 29.11).

29.9 ELECTRIC DIPOLE

A combination of two charges +q and −q separated
by a small distance d constitutes an electric dipole. The
electric dipole moment of this combination is defined
as a vector
             p

→
 = qd

→
, … (29.15)

where d
→

 is the vector joining the negative charge to
the positive charge. The line along the direction of the
dipole moment is called the axis of the dipole.

Electric Potential due to a Dipole

Suppose, the negative charge −q is placed at a
point A and the positive charge q is placed at a point
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B (figure 29.12), the separation AB = d. The middle
point of AB is O. The potential is to be evaluated at
a point P where OP = r and ∠POB = θ. Also, let
r >> d. 

Let AA′ be the perpendicular from A to PO and
BB′ be the perpendicular from B to PO. As d is very
small compared to r,

       AP ≈ A′P = OP + OA′

= OP + AO cosθ = r + 
d
2

 cosθ.

Similarly, BP ≈ B′P = OP − OB′

= r − 
d
2

 cosθ.

The potential at P due to the charge −q is

      V1 = − 
1

4πε0
 

q
AP

 ≈ − 
1

4πε0
 

q

r + 
d
2

 cosθ

and that due to the charge + q is

    V2 = 
1

4πε0
 

q
BP

 ≈ 
1

4πε0
 

q

r − 
d
2

 cosθ
 ⋅

The net potential at P due to the dipole is
V = V1 + V2

     = 
1

4πε0
 






 
q

r − 
d
2

 cosθ
 − 

q

r + 
d
2

 cosθ
 






= 
1

4πε0
 

q d cosθ

r 2 − 
d 2

4
 cos 2θ

≈ 
1

4πε0
 
q d cosθ

r 2
  

   or, V = 
1

4πε0
 
p cosθ

r 2
 ⋅ … (29.16)

Generalised Definition of Electric Dipole

The potential at a distance r from a point charge
q is given by

V = 
1

4πε0
  

q
r

 ⋅

It is inversely proportional to r and is independent
of direction. The potential due to a dipole is inversely
proportional to r 2  and depends on direction as shown
by the term cosθ in equation (29.16). In general, any
charge distribution that produces electric potential
given by

         V = 
1

4πε0
 
p cosθ

r 2
 

is called an electric dipole. The constant p is called its
dipole moment and the direction from which the angle

θ is measured to get the above equation is called the
direction of the dipole moment.

Electric Field due to a Dipole

We can find the electric field due to an electric
dipole using the expression (29.16) for the electric
potential. In figure (29.13), PP1 is a small displacement
in the direction of OP and PP2 is a small displacement
perpendicular to OP. Thus, PP1 is in radial direction
and PP2 is in transverse direction. In going from P to
P1 , the angle θ does not change and the distance OP
changes from r to r + dr. Thus, PP1 = dr. In going from
P to P2 ,  the angle θ changes from θ to θ + dθ while
the distance r remains almost constant. Thus,
PP2 = r dθ. From equation (29.14), the  component of
the electric field at P in the radial direction PP1 is

      Er = − 
dV
PP1

 = − 
dV
dr

 = − 
∂V
∂r

 ⋅ … (i)

The symbol ∂ specifies that θ should be treated as
constant while differentiating with respect to r.

Similarly, the component of the electric field at P
in the transverse direction PP2 is

     Eθ = − 
dV
PP2

 = − 
dV
rdθ

 = − 
1
r

 
∂V
∂θ

 ⋅ … (ii)

As V = 
1

4πε0
 
p cosθ

r 2
 ,

Er = − 
∂V
∂r

 = − 
1

4πε0
 

∂
∂r

 




p cosθ

r 2




= − 
1

4πε0
 (p cosθ) d

dr
 


1
r 2





         = 
1

4πε0
 
2p cosθ

r 3
… (iii)

and   Eθ = − 
1
r

 
∂V
∂θ

 = − 
1
r

 
1

4πε0
 

∂
∂θ

 




p cosθ
r 2





= − 
1

4πε0
 

p

r 3
 

d
dθ

 (cosθ)

= 
1

4πε0
 
p sinθ

r 3
 ⋅ … (iv)
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The resultant electric field at P (figure 29.13) is

      E = √Er
 2 + Eθ

 2

= 
1

4πε0
 √




2p cosθ
r 3





 2

 + 




p sinθ
r 3





 2

 

= 
1

4πε0
 

p

r 3
 √3 cos 2θ + 1 . … (29.17)

If the resultant field makes an angle α with the
radial direction OP, we have

tanα = 
Eθ

Er
 = 

p sinθ/r 3

2p cosθ/r 3
 = 

1
2

 tanθ

   or, α = tan − 1 


1
2

 tanθ


. … (29.18)

Special Cases

(a) θ = 0
In this case, the point P is on the axis of the dipole.

From equation (29.16), the electric potential is

V = 
1

4πε0

 
p

r 
2 ⋅

The field at such a point is, from equation (29.17),

E = 
1

4πε0

 
2p

r 
3  along the axis. Such a position of the point

P is called an end-on position.
(b) θ = 90°
In this case the point P is on the perpendicular

bisector of the dipole. The potential here is zero while

the  field is, from equation (29.17), E = 
1

4πε0

 
p

r 
3 ⋅

The angle α is given by

          tanα = 
tanθ

2
 = ∞

or,  α = 90°.
The field is antiparallel to the dipole axis. Such a

position of the point P is called a broadside-on position.

29.10 TORQUE ON AN ELECTRIC DIPOLE
     PLACED IN AN ELECTRIC FIELD

Consider an electric dipole placed in a uniform

electric field E
→

. The dipole consists of charges −q placed
at A and +q placed at B (figure 29.14). The mid-point
of AB is O and the length AB = d. Suppose the axis of

the dipole AB makes an angle θ with the electric field
at a certain instant.

The force on the charge +q is F
→

1 = qE
→

 and the force

on the charge −q is F
→

2 = −qE
→

. Let us calculate the

torques (r
→
 × F

→
) of these forces about O.

The torque of  F
→

1 about O is

    Γ
→

1 = OB 
→

 × F
→

1 = q(OB 
→

 × E
→

)

and the torque of F
→

2 about O is

Γ
→

2 = OA 
→

 × F
→

2 = −q(OA 
→

 × E
→

) = q(AO 
→

 × E
→

).
The net torque acting on the dipole is

Γ
→

 = Γ
→

1 + Γ
→

2

= q(OB 
→

 × E
→

) + q(AO 
→

 × E
→

)

= q(OB 
→

 + AO 
→

) × E
→

= q AB 
→

 × E
→

 = p
→

 × E
→

. … (29.19)

The direction of the torque is perpendicular to the
plane containing the dipole axis and the electric field.
In figure (29.14), this is perpendicular to the plane of
paper and is going into the page. The magnitude is
Γ = | Γ

→
| = pE sinθ.

29.11 POTENTIAL ENERGY OF A DIPOLE PLACED
     IN A UNIFORM ELECTRIC FIELD

When an electric dipole is placed in an electric field
E
→

, a torque Γ
→

 = p
→

 × E
→

 acts on it (figure 29.14). If we
rotate the dipole through a small angle dθ, the work
done by the torque is

        dW = Γdθ
= −pE sinθ dθ.

The work is negative as the rotation dθ is opposite to
the torque. 

The change in electric potential energy of the
dipole is, therefore,
      dU = − dW = pE sinθ dθ.

If the angle θ is changed from 90°  to  θ, the change in
potential energy is

       U(θ) − U(90°) = ∫ 
90°

θ

 pE sinθ dθ

      = pE [−cosθ]
90°

 θ

        = −pE cosθ = −p
→

⋅E
→

.
If we choose the potential energy of the dipole to

be zero when θ = 90° (dipole axis is perpendicular to
the field), U(90°) = 0 and the above equation becomes

           U(θ) = −p
→

⋅E
→

. … (29.20)
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29.12 CONDUCTORS, INSULATORS AND
     SEMICONDUCTORS

Any piece of matter of moderate size contains
millions and millions of atoms or molecules. Each atom
contains a positively charged nucleus and several
electrons going round it.

In gases, the atoms or molecules almost do not
interact with each other. In solids and liquids, the
interaction is comparatively stronger. It turns out that
the materials may be broadly divided into three
categories according to their behaviour when they are
placed in an electric field.

In some materials, the outer electrons of each atom
or molecule are only weakly bound to it. These
electrons are almost free to move throughout the body
of the material and are called free  electrons. They are
also known as conduction electrons. When such a
material is placed in an electric field, the free electrons
move in a direction opposite to the field. Such
materials are called conductors.

Another class of materials is called insulators
in which all the electrons are tightly bound to
their respective atoms or molecules. Effectively,
there are no free electrons. When such a material is
placed in an electric field, the electrons may slightly
shift opposite to the field but they can’t leave their
parent atoms or molecules and hence can’t move
through long distances. Such materials are also called
dielectrics.

In semiconductors, the behaviour is like an insulator
at the temperature 0 K. But at higher temperatures, a
small number of electrons are able to free themselves
and they respond to the applied electric field. As the
number of free electrons in a semiconductor is much
smaller than that in a conductor, its behaviour is in
between a conductor and an insulator and hence, the
name semiconductor. A freed electron in a semiconductor
leaves a vacancy in its normal bound position. These
vacancies also help in conduction.

We shall learn more about conductivity in later
chapters. At the moment we accept the simple
approximate model described above. The conductors
have large number of free electrons everywhere in the
material whereas the insulators have none. The
discussion of semiconductors is deferred to a separate
chapter.

Roughly speaking, the metals are conductors and
the nonmetals are insulators. The above discussion
may be extended to liquids and gases. Some of the

liquids, such as mercury, and ionized gases are
conductors.

29.13 THE ELECTRIC FIELD INSIDE A CONDUCTOR

Consider a conducting plate placed in a region.
Initially, there is no electric field and the conduction
electrons are almost uniformly distributed within the
plate (shown by dots in figure 29.15a). In any small
volume (which contains several thousand molecules)
the number of electrons is equal to the number of
protons in the nuclei. The net charge in the volume
is zero.

Now, suppose an electric field E
→

 is created in the
direction left to right (figure 29.15b). This field exerts
force on the free electrons from right to left. The
electrons move towards left, the number of electrons
on the left face increases and the number on the right
face decreases. The left face becomes negatively
charged and the right face becomes positively charged.
These extra charges produce an extra electric field
E′ inside the plate from right to left. The electrons
continue to drift and the internal field E′

→
 becomes

stronger and stronger. A situation comes when the

field E′
→

 due to the redistribution of free electrons

becomes equal in magnitude to E
→

. The net electric field
inside the plate is then zero. The free electrons there
do not experience any net force and the process of
further drifting stops. Thus, a steady state is reached
in which some positive and negative charges appear
at the surface of the plate and there is no electric field
inside the plate.

Whenever a conductor is placed in an electric field
some of the free electrons redistribute themselves on
the surface of the conductor. The redistribution takes
place in such a way that the electric field is zero at
all the points inside the conductor. The redistribution
takes a time which is, in general, less than a
millisecond. Thus, there can be no electric field inside
a conductor in electrostatics.

Figure 29.15
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Worked Out Examples

 1. Charges 5.0 × 10 – 7 C, – 2.5 × 10 – 7 C and 1.0 × 10 – 7 C are
held fixed at the three corners A, B, C of an equilateral
triangle of side 5.0 cm. Find the electric force on the
charge at C due to the rest two.

Solution :

The force on C due to A

    = 
1

4πε0

 
(5 × 10 − 7 C) (1 × 10 − 7 C)

(0.05 m) 2

= 9 × 10 9 Nm 2C −2 × 
5 × 10 − 14 C 2

25 × 10 − 4 m 2 = 0.18 N.

This force acts along AC. The force on C due to B

= 
1

4πε0

 
(2.5 × 10 − 7 C) (1 × 10 − 7 C)

(0.05 m) 2  = 0.09 N.

This attractive force acts along CB. As the triangle is
equilateral, the angle between these two forces is 120°.
The resultant electric force on C is

 [(0.18 N) 2 + (0.09 N) 2 + 2(0.18 N) (0.09 N) (cos120°)] 1/2

= 0.16 N.

The angle made by this resultant with CB is

         tan−1 
0.18 sin120°

0.09 + 0.18 cos120°
 = 90°.

 2. Two particles A and B having charges 8.0 × 10 − 6 C and
– 2.0 × 10 – 6 C respectively are held fixed with a
separation of 20 cm. Where should a third charged
particle be placed so that it does not experience a net

electric force ?

Solution : As the net electric force on C should be equal to
zero, the force due to A and B must be opposite in
direction. Hence, the particle should be placed on the
line AB. As A and B have charges of opposite signs, C
cannot be between A and B. Also, A has larger
magnitude of charge than B. Hence, C should be placed
closer to B than A. The situation is shown in figure
(29-W2).

Suppose BC = x and the charge on C is Q.

The force due to  A = 
(8.0 × 10 − 6 C)Q
4πε0(20 cm + x) 2 ⋅ 

The force due to B = 
(2.0 × 10 − 6 C)Q

4πε0 x 2  ⋅

They are oppositely directed and to have a zero
resultant, they should be equal in magnitude. Thus,

         
8

(20 cm + x) 2 = 
2
x 2 

or, 
20 cm + x

x
 = 2,  giving  x = 20 cm.

 3. Three equal charges, each having a magnitude of
2.0 × 10 − 6 C, are placed at the three corners of a right-
angled triangle of sides 3 cm,  4 cm and 5 cm. Find the
force on the charge at the right-angle corner.

Solution :

The situation is shown in figure (29-W3). The force on
A due to B is

  F1 = 
(2.0 × 10 − 6 C) (2.0 × 10 − 6 C)

4πε0 (4 cm) 2  

= 9 × 10 9 N m 2 C −2 × 4 × 10 − 12 C 2 × 
1

16 × 10 − 4 m 2

= 22.5 N.

This force acts along BA. Similarly, the force on A due
to C is F2 = 40 N in the direction of CA. Thus, the net
electric force on A is

        F = √F1
2 + F2

2

= √(22.5 N) 2 + (40 N) 2  = 45.9 N.

This resultant makes an angle θ with BA where

tanθ = 
40

22.5
 = 

16
9

 ⋅

 4. Two small iron particles, each of mass 280 mg, are
placed at a distance 10 cm apart. If 0.01% of the electrons
of one particle are transferred to the other, find the
electric force between them. Atomic weight of iron is 56
g mol −1 and there are 26 electrons in each atom of iron.

Solution : The atomic weight of iron is 56 g mol −1. Thus,
56 g of iron contains 6 × 10 23 atoms and each atom
contains 26 electrons. Hence, 280 mg of iron contains
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280 mg × 6 × 10 23 × 26

56 g
 = 7.8 × 10 22  electrons.

The number of electrons transferred from one particle
to another

       = 
0.01
100

 × 7.8 × 10 22 = 7.8 × 10 18.

The charge transferred is, therefore,

    1.6 × 10 − 19 C × 7.8 × 10 18 = 1.2 C.

The electric force between the particles is

     (9 × 10 9 N m 2 C −2) 
(1.2 C) 2

(10 × 10 − 2 m) 2

= 1.3 × 10 12 N.

This equals the load of approximately 2000 million
grown-up persons !

 5. A charge Q is to be divided on two objects. What should
be the values of the charges on the objects so that the
force between the objects can be maximum ?

Solution : Suppose one object receives a charge q and the
other Q − q. The force between the objects is

          F = 
q(Q − q)
4πε0d 2  ,

where d is the separation between them. For F to be
maximum, the quantity

y = q(Q − q) = Qq − q 2

should be maximum. This is the case when,

dy
dq

 = 0  or,  Q − 2q = 0  or,  q = Q/2.

Thus, the charge should be divided equally on the two
objects.

 6. Two particles, each having a mass of 5 g and charge
1.0 × 10 – 7 C, stay in limiting equilibrium on a horizontal
table with a separation of 10 cm between them. The
coefficient of friction between each particle and the table
is the same. Find the value of this coefficient.

Solution : The electric force on one of the particles due to
the other is

F = (9 × 109 N m2 C−2) × ( 1.0 × 10−7C )2 × 
1

( 0.10 m )2

= 0.009 N.

The frictional force in limiting equilibrium

f = µ × (5 × 10 − 3 kg) × 9.8 m s −2

= (0.049 µ) N.

As these two forces balance each other,

0.049 µ = 0.009

or,  µ = 0.18.

 7. A vertical electric field of magnitude 4.00 × 10 5 N C −1

just prevents a water droplet of mass 1.00 × 10 – 4 kg from
falling. Find the charge on the droplet.

Solution : The forces acting on the droplet are
(i) the electric force qE

→
 and

(ii) the force of gravity mg
→
.

To just prevent from falling, these two forces should be
equal and opposite. Thus,

   q(4.00 × 10 5 N C −1) = (1.00 × 10 − 4 kg) × ( 9.8 m s −2)

or, q = 2.45 × 10 − 9 C.

 8. Three charges, each equal to q, are placed at the three
corners of a square of side a. Find the electric field at
the fourth corner.

Solution :

Let the charges be placed at the corners A, B and C
(figure 29-W4). We shall calculate the electric field at
the fourth corner D. The field E1 due to the charge at

A will have the magnitude 
q

4πε0 a 2  and will be along

AD. The field E2 due to the charge at C will have the
same magnitude and will be along CD.

The field E3 due to the charge at B will have the

magnitude 
q

4πε0 (√2a) 2  and will be along BD. As E1 and

E2 are equal in magnitude, their resultant will be along
the bisector of the angle between E1, E2 and hence along

E3. The magnitude of this resultant is √E1
2 + E2

2  as the

angle between E1 and E2 is π/2. The resultant electric
field at D is, therefore, along E3 and has magnitude

        √E1
2 + E2

2  + E3

= √



q

4πε0 a
2





 2

 + 




q

4πε0 a 2





 2

+ 
q

4πε0 (√2a) 2

   = 
q

4πε0

 




√2
a 2 + 

1
2a 2




 = (2√2 + 1) 

q

8πε0 a 2 
.

 9. A charged particle of mass 1.0 g is suspended through a
silk thread of length 40 cm in a horizontal electric field
of 4.0 × 10 4 N C −1. If the particle stays at a distance of
24 cm from the wall in equilibrium, find the charge on
the particle.
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Solution :

The situation is shown in figure (29-W5).

The forces acting on the particle are
(i) the electric force F = qE horizontally,
(ii) the force of gravity mg downward and
(iii) the tension T along the thread.
As the particle is at rest, these forces should add to zero.
Taking components along horizontal and vertical,

        T cosθ = mg  and  T sinθ = F

   or,    F = mg tanθ … (i)

From the figure,

sinθ = 
24
40

 = 
3
5

 ⋅

Thus, tanθ = 
3
4

 ⋅ From (i),

   q(4.0 × 10 4 N C −1) = ( 1.0 × 10 − 3 kg) (9.8 m s −2) 3
4

 ,

giving q = 1.8 × 10 − 7 C.

10. A particle A having a charge of 5.0 × 10 – 7 C is fixed in
a vertical wall. A second particle B of mass 100 g and
having equal charge is suspended by a silk thread of
length 30 cm from the wall. The point of suspension is
30 cm above the particle A. Find the angle of the thread
with the vertical when it stays in equilibrium.

Solution :

The situation is shown in figure (29-W6). Suppose the

point of suspension is O and let θ be the angle between

the thread and the vertical. Forces on the particle B are

(i) weight mg downward
(ii) tension T along the thread and

(iii) electric force of repulsion F along AB.

For equilibrium, these forces should add to zero. Let
X′BX be the line perpendicular to OB. We shall take the
components of the forces along BX. This will give a
relation between F, mg and θ.

The various angles are shown in the figure. As

     OA = OB, ∠OBA = ∠OAB = 90° − 
θ
2

 ⋅

The other angles can be written down directly.

Taking components along BX, we get

       F cos 
θ
2

 = mg cos(90° − θ)

= 2 mg sin 
θ
2

 cos 
θ
2

   or, sin 
θ
2

 = 
F

2 mg
 ⋅ … (i)

Now,  F = (9 × 10 9 N m 2 C −2) × (5.0 × 10 − 7 C) 2 × 
1

AB 2

and AB = 2(OA)sin 
θ
2

 ⋅

   Thus,  F = 
9 × 10 9 × 25 × 10 − 14

4 × (30 × 10 − 2) 2 × sin 2 
θ
2

  N. … (ii)

From (i) and (ii),

    sin 
θ
2

 = 
F

2 mg
 = 

9 × 10 9 × 25 × 10 − 14 N

4 × (30 × 10 − 2) 2 × sin 2 
θ
2

 ⋅ 1
2 mg

or,

sin 3 
θ
2

 = 
9 × 10 9 × 25 × 10 − 14 N

4 × 9 × 10 − 2 × 2 × (100 × 10 − 3 kg) × 9.8 m s −2 

= 0.0032

or, sin 
θ
2

 = 0.15,  giving  θ = 17°.

11. Four particles, each having a charge q, are placed on the
four vertices of a regular pentagon. The distance of each
corner from the centre is a. Find the electric field at the
centre of the pentagon.

Solution :

Let the charges be placed at the vertices A, B, C and D

of the pentagon ABCDE. If we put a charge q at the

corner E also, the field at O will be zero by symmetry.

Thus, the field at the centre due to the charges at A, B,

�



��

�
�
��
�

�����

�

�

Figure 29-W5

�

�

�

�



�

�

���

��

�

���

����


����

��
��
��

��������

Figure 29-W6

� �

�

�

�
�

Figure 29-W7

116 Concepts of Physics



C and D is equal and opposite to the field due to the
charge q at E alone.

The field at O due to the charge q at E is

          
q

40 a 2  along  EO.

Thus, the field at O due to the given system of charges

is 
q

40 a 
2 along OE.

12. Find the electric field at a point P on the perpendicular
bisector of a uniformly charged rod. The length of the
rod is L, the charge on it is Q and the distance of P from
the centre of the rod is a.

Solution :

Let us take an element of length dx at a distance x from
the centre of the rod (figure 29-W8). The charge on this
element is

        dQ  Q
L

dx.

The electric field at P due to this element is

dE  
dQ

40 AP 2 

By symmetry, the resultant field at P will be along OP
(if the charge is positive). The component of dE along
OP is

   dE cos  
dQ

40 AP 2
 . 

OP
AP

  
a Q dx

40 La 2  x 2 3/2 

Thus, the resultant field at P is

           E   dE cos

 
aQ

40 L
    
 L/2

L/2

  
dx

a 2  x 2 3/2   (i)

We have x  a tan  or dx  a sec 2 d.

Thus,   dx
a 2  x 2 3/2    a sec 2 d

a 3 sec 3

 
1

a 2    cos d  
1

a 2 sin  
1

a 2 
x

x 2  a 2 1/2 

From (i),

E  
aQ

40 La 2
 


x
x 2  a 2 1/2



  L/2

 L/2

         
aQ

40 La 2 




2L
L 2  4a 2 1/2





 
Q

20 a L2  4a 2
 

13. A uniform electric field E is created between two parallel,
charged plates as shown in figure (29-W9). An electron
enters the field symmetrically between the plates with a
speed v0 . The length of each plate is l. Find the angle of
deviation of the path of the electron as it comes out of
the field.

Solution : The acceleration of the electron is a  eE
m

 in the

upward direction. The horizontal velocity remains v0 as
there is no acceleration in this direction. Thus, the time
taken in crossing the field is

              t  
l
v0

   (i)

The upward component of the velocity of the electron as
it emerges from the field region is

vy  at  
eEl
mv0

 

The horizontal component of the velocity remains
vx  v0.

The angle  made by the resultant velocity with the
original direction is given by

tan  
vy

vx
  

eEl
mv0

2 

Thus, the electron deviates by an angle

  tan  1 eEl
mv0

2 

14. In a circuit, 10 C of charge is passed through a battery
in a given time. The plates of the battery are maintained
at a potential difference of 12 V. How much work is done
by the battery ?

Solution : By definition, the work done to transport a
charge q through a potential difference V is qV. Thus,
work done by the battery

 10 C  12 V  120 J.

15. Charges 2.0  10 – 6 C and 1.0  10 – 6 C are placed at
corners A and B of a square of side 50 cm as shown in
figure (29-W10). How much work will be done against
the electric field in moving a charge of 1.0  10 – 6 C from
C to D ?

Figure 29-W8
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Solution : The electric potential at C

    = 
1

4πε0

  




q1

AC
 + 

q2

BC




= 9 × 10 9 Nm −2C −2  




2.0 × 10 − 6 C
√2 × 0.05 m

 + 
1.0 × 10 − 6 C

0.05 m




= (9000 V) 




2 + √2
√2 × 0.05




 .

The electric potential at D

= 
1

4πε0

 




q1

AD
 + 

q2

BD




= 9 × 10 9 Nm −2C −2 




2.0 × 10 − 6 C
0.05 m

 + 
1.0 × 10 − 6 C
√2 × 0.05 m





= (9000 V) 




2√2 + 1
√2 × 0.05




 .

The work done against the electric field in moving the
charge 1.0 × 10 – 6 C from C to D is q(VD − VC)

= (1.0 × 10 − 6 C) (9000 V) 




2√2 + 1 − 2 − √2
√2 × 0.05





= 0.053 J.

16. The electric field in a region is given by E
→

 = (A/x 3) i
→
.

Write a suitable SI unit for A. Write an expression for
the potential in the region assuming the potential at
infinity to be zero.

Solution : The SI unit of electric field is N C −1 or V m −1.
Thus, the unit of A is N m 3 C −1  or  V m −2.

       V( x,  y,  z ) = − ∫ 
∞

                 ( x,  y,  z )

  E
→

⋅dr
→

= − ∫ 
∞

               ( x,  y,  z )

  A dx
x3  = 

A
2x2 .

17. Three point charges q, 2q and 8q are to be placed on a
9 cm long straight line. Find the positions where the
charges should be placed such that the potential energy
of this system is minimum. In this situation, what is the
electric field at the charge q due to the other two charges ?

Solution : The maximum contribution may come from the
charge 8q forming pairs with others. To reduce its effect,
it should be placed at a corner and the smallest charge
q in the middle. This arrangement shown in figure

(29-W11) ensures that the charges in the strongest pair
2q, 8q are at the largest separation.

The potential energy is

U = 
q 2

4πε0

 


2
x

 + 
16

9 cm
 + 

8
9 cm − x




 .

This will be minimum if

       A = 
2
x

 + 
8

9 cm − x
  is  minimum.

   For this,  
dA
dx

 = − 
2
x 2 + 

8
(9 cm − x) 2 = 0 … (i)

   or, 9 cm − x = 2x  or,  x = 3 cm.

The electric field at the position of charge q is

         
q

4πε0

 


2
x 2 − 

8
(9 cm − x) 2





           = 0 from (i).

18. An HCl molecule has a dipole moment of 3.4 × 10 – 30 Cm.
Assuming that equal and opposite charges lie on the two
atoms to form a dipole, what is the magnitude of this
charge ? The separation between the two atoms of HCl is
1.0 × 10 – 10 m.

Solution : If the charges on the two atoms are q, − q,

q(1.0 × 10 − 10 m) = 3.4 × 10 − 30 Cm

or, q = 3.4 × 10 − 20 C.

Note that this is less than the charge of a proton. Can
you explain, how such a charge can appear on an atom?

19. Figure (29-W12)  shows an electric dipole formed by two
particles fixed at the ends of a light rod of length l. The
mass of each particle is m and the charges are −q and
+q. The system is placed in such a way that the dipole
axis is parallel to a uniform electric field E that exists
in the region. The dipole is slightly rotated about its
centre and released. Show that for small angular
displacement, the motion is angular simple harmonic
and find its time period.

Solution : Suppose, the dipole axis makes an angle θ with

the electric field at an instant. The magnitude of the

torque on it is
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          | τ | = | p
→

 × E
→

 |

= qlE sinθ.

This torque will tend to rotate the dipole back towards
the electric field. Also, for small angular displacement
sinθ ≈ θ so that

            τ = − qlEθ.

The moment of inertia of the system about the axis of
rotation is

          I = 2 × m



l
2





 2

 = 
ml 2

2
 ⋅

Thus, the angular acceleration is

         α = 
τ
I
 = − 

2qE
ml

 θ = − ω 2θ

where ω 2 = 
2qE
ml

 ⋅

Thus, the motion is angular simple harmonic and the

time period is T = 2π √ml
2qE

.

QUESTIONS FOR SHORT ANSWER

 1. The charge on a proton is +1.6 × 10 − 19 C and that on an
electron is −1⋅6 × 10 − 19 C. Does it mean that the electron
has a charge 3⋅2 × 10 − 19 C less than the charge of a
proton ?

 2. Is there any lower limit to the electric force between two
particles placed at a separation of 1 cm ?

 3. Consider two particles A and B having equal charges
and placed at some distance. The particle A is slightly
displaced towards B. Does the force on B increase as
soon as the particle A is displaced ? Does the force on
the particle A increase as soon as it is displaced ?

 4. Can a gravitational field be added vectorially to an
electric field to get a total field ?

 5. Why does a phonograph-record attract dust particles just
after it is cleaned ? 

 6. Does the force on a charge due to another charge depend
on the charges present nearby ?

 7. In some old texts it is mentioned that 4π lines of force
originate from each unit positive charge. Comment on
the statement in view of the fact that 4π is not an
integer.

 8. Can two equipotential surfaces cut each other ?

 9. If a charge is placed at rest in an electric field, will its
path be along a line of force ? Discuss the situation when
the lines of force are straight and when they are curved.

10. Consider the situation shown in figure (29-Q1). What
are the signs of q1 and q2 ? If the lines are drawn in
proportion to the charge, what is the ratio q1/q2 ? 

11. A point charge is taken from a point A to a point B in
an electric field. Does the work done by the electric field
depend on the path of the charge ?

12. It is said that the separation between the two charges
forming an electric dipole should be small. Small
compared to what ?

13. The number of electrons in an insulator is of the same
order as the number of electrons in a conductor. What
is then the basic difference between a conductor and an
insulator ?

14. When a charged comb is brought near a small piece of
paper, it attracts the piece. Does the paper become
charged when the comb is brought near it ?

OBJECTIVE I

 1. Figure (29-Q2) shows some of the electric field lines
corresponding to an electric field. The figure suggests
that

(a) EA > EB > EC          (b) EA = EB = EC

(c) EA = EC > EB         (d) EA = EC < EB.

 2. When the separation between two charges is increased,
the electric potential energy of the charges
(a) increases        (b) decreases
(c) remains the same  (d) may increase or decrease.

 3. If a positive charge is shifted from a low-potential region
to a high-potential region, the electric potential energy

�
�

�
�

Figure 29-Q1

� � �

Figure 29-Q2

Electric Field and Potential 119



(a) increases         (b) decreases
(c) remains the same    (d) may increase or decrease.

 4. Two equal positive charges are kept at points A and B.
The electric potential at the points between A and B
(excluding these points) is studied while moving from A
to B. The potential
(a) continuously increases
(b) continuously decreases
(c) increases then decreases
(d) decreases then increases.

 5. The electric field at the origin is along the positive
x-axis. A small circle is drawn with the centre at the
origin cutting the axes at points A, B, C and D having
coordinates (a, 0),  (0, a),  (− a, 0),  (0, − a) respectively.
Out of the points on the periphery of the circle, the
potential is minimum at
(a) A       (b) B      (c) C       (d) D.

 6. If a body is charged by rubbing it, its weight
(a) remains precisely constant
(b) increases slightly
(c) decreases slightly
(d) may increase slightly or may decrease slightly.

 7. An electric dipole is placed in a uniform electric field.
The net electric force on the dipole
(a) is always zero

(b) depends on the orientation of the dipole
(c) can never be zero
(d) depends on the strength of the dipole.

 8. Consider the situation of figure (29-Q3). The work done
in taking a point charge from P to A is WA, from P to
B is WB  and from P to C is WC.
(a) WA < WB < WC      (b) WA > WB > WC

(c) WA = WB = WC       (d) None of these

 9. A point charge q is rotated along a circle in the electric
field generated by another point charge Q. The work
done by the electric field on the rotating charge in one
complete revolution is
(a) zero      (b) positive          (c) negative
(d) zero if the charge Q is at the centre and nonzero
       otherwise.

OBJECTIVE II

 1. Mark out the correct options.
(a) The total charge of the universe is constant.
(b) The total positive charge of the universe is constant.
(c) The total negative charge of the universe is constant.
(d) The total number of charged particles in the universe
      is constant.

 2. A point charge is brought in an electric field. The electric
field at a nearby point
(a) will increase if the charge is positive
(b) will decrease if the charge is negative
(c) may increase if the charge is positive
(d) may decrease if the charge is negative.

 3. The electric field and the electric potential at a point
are E and V respectively.
(a) If E = 0, V must be zero.
(b) If V = 0, E must be zero.
(c) If E ≠ 0, V cannot be zero.
(d) If V ≠ 0, E cannot be zero.

 4. The electric potential decreases uniformly from 120 V to
80 V as one moves on the x-axis from x = −1 cm to
x = +1 cm. The electric field at the origin
(a) must be equal to 20 Vcm−1

(b) may be equal to 20 Vcm−1

(c) may be greater than 20 Vcm−1

(d) may be less than 20 Vcm−1.
 5. Which of the following quantities do not depend on the

choice of zero potential or zero potential energy ?

(a) Potential at a point
(b) Potential difference between two points
(c) Potential energy of a two-charge system
(d) Change in potential energy of a two-charge system.

 6. An electric dipole is placed in an electric field generated
by a point charge.
(a) The net electric force on the dipole must be zero.
(b) The net electric force on the dipole may be zero.
(c) The torque on the dipole due to the field must be
      zero.
(d) The torque on the dipole due to the field may be
      zero.

 7. A proton and an electron are placed in a uniform electric
field.
(a) The electric forces acting on them will be equal.
(b) The magnitudes of the forces will be equal.
(c) Their accelerations will be equal.
(d) The magnitudes of their accelerations will be equal.

 8. The electric field in a region is directed outward and is
proportional to the distance r from the origin. Taking
the electric potential at the origin to be zero,
(a) it is uniform in the region
(b) it is proportional to r
(c) it is proportional to r 2

(d) it increases as one goes away from the origin.
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EXERCISES

 1. Find the dimensional formula of ε0.

 2. A charge of 1.0 C is placed at the top of your college
building and another equal charge at the top of your
house. Take the separation between the two charges to
be 2⋅0 km. Find the force exerted by the charges on each
other. How many times of your weight is this force ?

 3. At what separation should two equal charges, 1⋅0 C each,
be placed so that the force between them equals the
weight of a 50 kg person ?

 4. Two equal charges are placed at a separation of 1⋅0 m.
What should be the magnitude of the charges so that
the force between them equals the weight of a 50 kg
person ?

 5. Find the electric force between two protons separated
by a distance of 1 fermi (1 fermi = 10 − 15 m). The protons
in a nucleus remain at a separation of this order.

 6. Two charges 2⋅0 × 10 − 6 C and 1⋅0 × 10 − 6 C are placed at
a separation of 10 cm. Where should a third charge be
placed such that it experiences no net force due to these
charges ?

 7. Suppose the second charge in the previous problem is
−1⋅0 × 10 − 6 C. Locate the position where  a third charge
will not experience a net force.

 8. Two charged particles are placed at a distance 1⋅0 cm
apart. What is the minimum possible magnitude of the
electric force acting on each charge ?

 9. Estimate the number of electrons in 100 g of water. How
much is the total negative charge on these electrons ?

10. Suppose all the electrons of 100 g water are lumped
together to form a negatively charged particle and all
the nuclei are lumped together to form a positively
charged particle. If these two particles are placed
10⋅0 cm away from each other, find the force of attraction
between them. Compare it with your weight.

11. Consider a gold nucleus to be a sphere of radius
6⋅9 fermi in which protons and neutrons are distributed.
Find the force of repulsion between two protons situated
at largest separation. Why do these protons not fly apart
under this repulsion ?

12. Two insulating small spheres are rubbed against each
other and placed 1 cm apart. If they attract each other
with a force of 0⋅1 N, how many electrons were
transferred from one sphere to the other during
rubbing ?

13. NaCl molecule is bound due to the electric force between
the sodium and the chlorine ions when one electron of
sodium is transferred to chlorine. Taking the separation
between the ions to be 2⋅75 × 10 − 8 cm, find the force of
attraction between them. State the assumptions (if any)
that you have made.

14. Find the ratio of the electric and gravitational forces
between two protons.

15. Suppose an attractive nuclear force acts between two
protons which may be written as F = Ce − kr/r 2. (a) Write
down the dimensional formulae and appropriate SI units

of C and k. (b) Suppose that k = 1 fermi − 1 and that the
repulsive electric force between the protons is just
balanced by the attractive nuclear force when the
separation is 5 fermi. Find the value of C.

16. Three equal charges, 2⋅0 × 10 − 6 C each, are held fixed
at the three corners of an equilateral triangle of side
5 cm. Find the Coulomb force experienced by one of the
charges due to the rest two.

17. Four equal charges 2⋅0 × 10 − 6 C each are fixed at the
four corners of a square of side 5 cm. Find the Coulomb
force experienced by one of the charges due to the rest
three.

18. A hydrogen atom contains one proton and one electron.
It may be assumed that the electron revolves in a circle
of radius 0⋅53 angstrom (1 angstrom = 10 − 10 m and is
abbreviated as Å) with the proton at the centre. The
hydrogen atom is said to be in the ground state in this
case. Find the magnitude of the electric force between
the proton and the electron of a hydrogen atom in its
ground state.

19. Find the speed of the electron in the ground state of a
hydrogen atom. The description of ground state is given
in the previous problem.

20. Ten positively charged particles are kept fixed on the
x-axis at points x = 10 cm,  20 cm,  30 cm,  …,  100 cm.

The first particle has a charge 1⋅0 × 10 − 8 C, the second

8 × 10 − 8 C, the third 27 × 10 − 8 C and so on. The tenth

particle has a charge 1000 × 10 − 8 C. Find the magnitude
of the electric force acting on a 1 C charge placed at the
origin.

21. Two charged particles having charge 2⋅0 × 10 − 8 C each
are joined by an insulating string of length 1 m and the
system is kept on a smooth horizontal table. Find the
tension in the string.

22. Two identical balls, each having a charge of
2⋅00 × 10 − 7 C and a mass of 100 g, are suspended from
a common point by two insulating strings each 50 cm
long. The balls are held at a separation 5⋅0 cm apart and
then released. Find (a) the electric force on one of the
charged balls (b) the components of the resultant force
on it along and perpendicular to the string (c) the
tension in the string (d) the acceleration of one of the
balls. Answers are to be obtained only for the  instant
just after the release.

23. Two identical pith balls are charged by rubbing against
each other. They are suspended from a horizontal rod
through two strings of length 20 cm each, the separation
between the suspension points being 5 cm. In
equilibrium, the separation between the balls is 3 cm.
Find the mass of each ball and the tension in the strings.
The charge on each ball has a magnitude 2⋅0 × 10 − 8 C.

24. Two small spheres, each having a mass of 20 g, are
suspended from a common point by two insulating
strings of length 40 cm each. The spheres are identically
charged and the separation between the balls at
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equilibrium is found to be 4 cm. Find the charge on
each sphere.

25. Two identical pith balls, each carrying a charge q, are
suspended from a common point by two strings of equal
length l. Find the mass of each ball if the angle between
the strings is 2θ in equilibrium.

26. A particle having a charge of 2⋅0 × 10 – 4 C is placed
directly below and at a separation of 10 cm from the bob
of a simple pendulum at rest. The mass of the bob is
100 g. What charge should the bob be given so that the
string becomes loose?

27. Two particles A and B having charges q and 2q
respectively are placed on a smooth table with a
separation d. A third particle C is to be clamped on the
table in such a way that the particles A and B remain
at rest on the table under electrical forces. What should
be the charge on C and where should it be clamped ?

28. Two identically charged particles are fastened to the two
ends of a spring of spring constant 100 N m −1 and
natural length 10 cm. The system rests on a smooth
horizontal table. If the charge on each particle is
2⋅0 × 10 – 8 C, find the extension in the length of the
spring. Assume that the extension is small as compared
to the natural length. Justify this assumption after you
solve the problem.

29. A particle A having a charge of 2⋅0 × 10 – 6 C is held fixed
on a horizontal table. A second charged particle of mass
80 g stays in equilibrium on the table at a distance of
10 cm from the first charge. The coefficient of friction
between the table and this second particle is µ = 0⋅2.
Find the range within which the charge of this second
particle may lie.

30. A particle A having a charge of 2⋅0 × 10 – 6 C and a mass
of 100 g is placed at the bottom of a smooth inclined
plane of inclination 30°. Where should another particle
B, having same charge and mass, be placed on the
incline so that it may remain in equilibrium ?

31. Two particles A and B, each having a charge Q, are
placed a distance d apart. Where should a particle of
charge q be placed on the perpendicular bisector of AB
so that it experiences maximum force ? What is the
magnitude of this maximum force ?

32. Two particles A and B, each carrying a charge Q, are
held fixed with a separation d between them. A particle
C having mass m and charge q is kept at the middle
point of the line AB. (a) If it is displaced through a
distance x perpendicular to AB, what would be the
electric force experienced by it. (b) Assuming x << d,
show that this force is proportional to x. (c) Under what
conditions will the particle C execute simple harmonic
motion if it is released after such a small displacement ?
Find the time period of the oscillations if these
conditions are satisfied.

33. Repeat the previous problem if the particle C is
displaced through a distance x along the line AB.

34. The electric force experienced by a charge of
1⋅0 × 10 – 6 C is 1⋅5 × 10 – 3 N. Find the magnitude of the
electric field at the position of the charge.

35. Two particles A and B having charges of
+2⋅00 × 10 – 6 C and of − 4⋅00 × 10 – 6 C respectively are
held fixed at a separation of 20⋅0 cm. Locate the point(s)
on the line AB where (a) the electric field is zero (b) the
electric potential is zero.

36. A point charge produces an electric field of magnitude
5⋅0 N C −1 at a distance of 40 cm from it. What is the
magnitude of the charge ?

37. A water particle of mass 10.0 mg and having a charge
of 1⋅50 × 10 – 6 C stays suspended in a room. What is the
magnitude of electric field in the room ? What is its
direction ?

38. Three identical charges, each having a value
1⋅0 × 10 – 8 C, are placed at the corners of an equilateral
triangle of side 20 cm. Find the electric field and
potential at the centre of the triangle.

39. Positive charge Q is distributed uniformly over a circular
ring of radius R. A particle having a mass m and a
negative charge q, is placed on its axis at a distance x
from the centre. Find the force on the particle. Assuming
x << R, find the time period of oscillation of the particle
if it is released from there.

40. A rod of length L has a total charge Q distributed
uniformly along its length. It is bent in the shape of a
semicircle. Find the magnitude of the electric field at
the centre of curvature of the semicircle.

41. A 10-cm long rod carries a charge of +50 µC distributed
uniformly along its length. Find the magnitude of the
electric field at a point 10 cm from both the ends of the rod.

42. Consider a uniformly charged ring of radius R. Find the
point on the axis where the electric field is maximum.

43. A wire is bent in the form of a regular hexagon and a
total charge q is distributed uniformly on it. What is the
electric field at the centre ? You may answer this part
without making any numerical calculations.

44. A circular wire-loop of radius a carries a total charge Q
distributed uniformly over its length. A small length dL
of the wire is cut off. Find the electric field at the centre
due to the remaining wire.

45. A positive charge q is placed in front of a conducting
solid cube at a distance d from its centre. Find the
electric field at the centre of the cube due to the charges
appearing on its surface.

46. A pendulum bob of mass 80 mg and carrying a charge
of 2 × 10 – 8 C is at rest in a uniform, horizontal electric
field of 20 kVm−1. Find the tension in the thread. 

47. A particle of mass m and charge q is thrown at a speed
u against a uniform electric field E. How much distance
will it travel before coming to momentary rest ?

48. A particle of mass 1 g and charge 2⋅5 × 10 – 4 C is released
from rest in an electric field of 1⋅2 × 10 4 N C −1. (a) Find
the electric force and the force of gravity acting on this
particle. Can one of these forces be neglected in comparison
with the other for approximate analysis ? (b) How long will
it take for the particle to travel a distance of 40 cm ? (c)
What will be the speed of the particle after travelling this
distance ? (d) How much is the work done by the electric
force on the particle during this period ?
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49. A ball of mass 100 g and having a charge of
4⋅9 × 10 − 5 C is released from rest in a region where a
horizontal electric field of 2⋅0 × 10 4 N C −1 exists. (a) Find
the resultant force acting on the ball. (b) What will be
the path of the ball ? (c) Where will the ball be at the
end of 2 s ?

50. The bob of a simple pendulum has a mass of 40 g and
a positive charge of 4⋅0 × 10 − 6 C. It makes 20 oscillations
in 45 s. A vertical electric field pointing upward and of
magnitude 2⋅5 × 10 4 N C −1 is switched on. How much
time will it now take to complete 20 oscillations ?

51. A block of mass m having a charge q is placed on a
smooth horizontal table and is connected to a wall
through an unstressed spring of spring constant k as
shown in figure (29-E1). A horizontal electric field E
parallel to the spring is switched on. Find the amplitude
of the resulting SHM of the block.

52. A block of mass m containing a net positive charge q is
placed on a smooth horizontal table which terminates in
a vertical wall as shown in figure (29-E2). The distance
of the block from the wall is d. A horizontal electric field
E towards right is switched on. Assuming elastic
collisions (if any) find the time period of the resulting
oscillatory motion. Is it a simple harmonic motion ?

53. A uniform electric field of 10 N C −1 exists in the
vertically downward direction. Find the increase in the
electric potential as one goes up through a height of
50 cm.

54. 12 J of work has to be done against an existing electric

field to take a charge of 0.01 C from A to B. How much
is the potential difference VB − VA ?

55. Two equal charges, 2⋅0 × 10 − 7 C each, are held fixed at
a separation of 20 cm. A third charge of equal magnitude
is placed midway between the two charges. It is now
moved to a point 20 cm from both the charges. How
much work is done by the electric field during the
process ?

56. An electric field of 20 N C −1 exists along the x-axis in
space. Calculate the potential difference VB − VA where
the points A and B are given by,
(a) A = ( 0,  0 ); B = ( 4 m,  2 m )
(b) A = ( 4 m,  2 m ); B = ( 6 m,  5 m )
(c) A = ( 0,  0 ); B = ( 6 m,  5 m ).
Do you find any relation between the answers of parts
(a), (b) and (c) ?

57. Consider the situation of the previous problem. A charge
of −2⋅0 × 10 − 4 C is moved from the point A to the point
B. Find the change in electrical potential energy
UB − UA for the cases (a), (b) and (c).

58. An electric field E
→

 = (i
→
 20 + j

→
 30) N C −1 exists in the

space. If the potential at the origin is taken to be zero,
find the potential at (2 m, 2 m).

59. An electric field E
→

 = i
→
 Ax exists in the space, where

A = 10 V m −2. Take the potential at (10 m, 20 m) to be
zero. Find the potential at the origin.

60. The electric potential existing in space is
V(x,  y,  z) = A(xy + yz + zx). (a) Write the dimensional
formula of A. (b) Find the expression for the electric
field. (c) If A is 10 SI units, find the magnitude of the
electric field at ( 1 m, 1 m, 1 m ).

61. Two charged particles, having equal charges of
2⋅0 × 10 − 5 C each, are brought from infinity to within a
separation of 10 cm. Find the increase in the electric
potential energy during the process.

62. Some equipotential surfaces are shown in figure (29-E3).
What can you say about the magnitude and the direction
of the electric field ?

63. Consider a circular ring of radius r, uniformly charged
with linear charge density λ. Find the electric potential
at a point on the axis at a distance x from the centre of
the ring. Using this expression for the potential, find the
electric field at this point.

64. An electric field of magnitude 1000 N C −1 is produced
between two parallel plates having a separation of 2.0 cm
as shown in figure (29-E4). (a) What is the potential
difference between the plates ? (b) With what minimum
speed should an electron be projected from the lower plate
in the direction of the field so that it may reach the upper
plate ? (c) Suppose the electron is projected from the lower
plate with the speed calculated in part (b). The direction
of projection makes an angle of 60° with the field. Find
the maximum height reached by the electron.
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65. A uniform field of 2.0 N C 1 exists in space in x-direction.
(a) Taking the potential at the origin to be zero, write
an expression for the potential at a general point
(x, y, z). (b) At which points, the potential is 25 V ? (c) If
the potential at the origin is taken to be 100 V, what
will be the expression for the potential at a general
point ? (d) What will be the potential at the origin if the
potential at infinity is taken to be zero ? Is it practical
to choose the potential at infinity to be zero ?

66. How much work has to be done in assembling three
charged particles at the vertices of an equilateral
triangle as shown in figure (29-E5) ?

67. The kinetic energy of a charged particle decreases by
10 J as it moves from a point at potential 100 V to a
point at potential 200 V. Find the charge on the particle.

68. Two identical particles, each having a charge of
20  10  4 C and mass of 10 g, are kept at a separation
of 10 cm and then released. What would be the speeds
of the particles when the separation becomes large ?

69. Two particles have equal masses of 50 g each and

opposite charges of  40  10  5 C and  40  10  5 C.
They are released from rest with a separation of 10 m
between them. Find the speeds of the particles when the
separation is reduced to 50 cm.

70. A sample of HCl gas is placed in an electric field of
25  10 4 N C 1. The dipole moment of each HCl

molecule is 34  10  30 Cm. Find the maximum torque
that can act on a molecule.

71. Two particles A and B, having opposite charges
20  10  6 C and 20  10  6 C, are placed at a
separation of 10 cm. (a) Write down the electric dipole
moment of this pair. (b) Calculate the electric field at a

point on the axis of the dipole 10 m away from the
centre. (c) Calculate the electric field at a point on the
perpendicular bisector of the dipole and 10 m away from
the centre.

72. Three charges are arranged on the vertices of an
equilateral triangle as shown in figure (29-E6). Find the
dipole moment of the combination.

73. Find the magnitude of the electric field at the point P
in the configuration shown in figure (29-E7) for d >> a.
Take 2qa  p.

74. Two particles, carrying charges q and +q and having
equal masses m each, are fixed at the ends of a light
rod of length a to form a dipole. The rod is clamped at
an end and is placed in a uniform electric field E with
the axis of the dipole along the electric field. The rod is
slightly tilted and then released. Neglecting gravity find
the time period of small oscillations.

75. Assume that each atom in a copper wire contributes one
free electron. Estimate the number of free electrons in
a copper wire having a mass of 64 g (take the atomic

weight of copper to be 64 g mol 1).

ANSWERS

OBJECTIVE I

 1. (c)  2. (d)  3. (a)  4. (d)  5. (a)  6. (d)
 7. (a)  8. (c)  9. (a)

OBJECTIVE II

 1. (a)  2. (c), (d)  3. none
 4. (b), (c)  5. (b), (d)  6. (d)
 7. (b)  8. (c)
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EXERCISES

 1. I 2 M − 1 L − 3 T 4

 2. 2.25 × 10 3 N

 3. 4.3 × 10 3 m

 4. 2.3 × 10 − 4 C
 5. 230 N

 6. 5.9 cm from the larger charge in between the two charges

 7. 34.1 cm from the larger charge on the line joining the
   charge in the side of the smaller charge

 8. 2.3 × 10 − 24 N

 9. 3.35 × 10 25,  5.35 × 10 6 C

10. 2.56 × 10 25 N

11. 1.2 N

12. 2 × 10 11

13. 3.05 × 10 − 9 N

14. 1.23 × 10 36

15. (a) ML3 T − 2,  L− 1,  N m 2,  m − 1 (b) 3.4 × 10 − 26 N m 2

16. 24.9 N at 30° with the extended sides from the charge
   under consideration

17. 27.5 N at 45° with the extended sides of the square
   from the charge under consideration

18. 8.2 × 10 − 8 N

19. 2.18 × 10 6 m s −1

20. 4.95 × 10 5 N

21. 3.6 × 10 − 6 N

22. (a) 0.144 N

   (b) zero, 0.095 N away from the other charge

   (c) 0.986 N and (d) 0.95 m s −2 perpendicular to the string
     and going away from the other charge

23. 8.2 g, 8.2 × 10 − 2 N

24. 4.17 × 10 − 8 C

25. 
q 2 cotθ

16πε0 gl 2 sin 2θ

26. 5.4 × 10 − 9 C

27. − (6 − 4√2) q, between q and 2q at a distance of    
   (√2 − 1) d from q

28. 3.6 × 10 − 6 m

29. between ± 8.71 × 10 − 8 C
30. 27 cm from the bottom

31. d/2√2,  3.08 
Qq

4πε0 d 2 

32. (a) 
Qqx

2πε0 



x 2 + 

d 2

4




 3/2 (c) 




mπ 3ε0 d 3

Qq





 
1
2

33. time period = 




π 3ε0 md 3

2Qq





 
1
2

34. 1.5 × 10 3 N C −1

35. (a) 48.3 cm from A along BA

   (b) 20 cm from A along BA and 
20
3

 cm from A along AB

36. 8.9 × 10 − 11 C

37. 65.3 N C −1, upward

38. zero, 2.3 × 10 3 V

39. 




16π 3ε0 mR 3

Qq





 1/2

40. 
Q

2ε0 L
2 

41. 5.2 × 10 7 N C −1

42. R/√2
43. zero

44. 
QdL

8π 2ε0 a 3 

45. 
q

4πε0 d 2  towards the charge q

46. 8.8 × 10 − 4 N

47. 
mu 2

2qE

48. (a) 3.0 N, 9.8 × 10 − 3 N (b) 1.63 × 10 − 2 s

   (c) 49.0 m s −1 (d) 1.20 J

49. (a) 1.4 N making an angle of 45° with g
→
 and E

→

   (b) straight line along the resultant force
   (c) 28 m from the starting point on the line of motion
50. 52 s
51. qE/k

52. √8 md
qE

53. 5 V
54. 1200 volts

55. 3.6 × 10 − 3 J

56. (a) −80 V (b) − 40 V (c) −120 V

57. 0.016 J, 0.008 J, 0.024 J
58. −100 V
59. 500 V

60. (a) MT − 3 I − 1 (b) −A { i
→
 (y + z) + j

→
 (z + x) + k

→
 (x + y) }

   (c) 35 N C −1

61. 36 J

62. (a) 200 V m −1 making an angle 120° with the x-axis
   (b) radially  outward,  decreasing  with  distance as

            E = 
6 Vm

r 2  .

63. 
rλ

2ε0 ( r 2 + x 2) 1/2 ,  
rλx

2ε0 (r 2 + x 2) 3/2 
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64. (a) 20 V (b) 2.65 × 10 6 m s −1 (c) 0.50 cm

65. (a) − (2.0 V m −1) x

   (b) points on the plane x = −12.5 m

   (c) 100 V − ( 2.0 V m −1 ) x
   (d) infinity
66. 234 J

67. 0.1 C

68. 600 m s −1

69. 54 m s −1 for each particle

70. 8.5 × 10 − 26 Nm

71. (a) 2.0 × 10 − 8 Cm   (b) 360 N C −1   (c) 180 N C −1

72. qd√3, along the bisector of the  angle at 2q, away
       from the triangle

73. (a) 
q

4πε0 d 2     (b) 
p

4πε0 d 3    (c) 
1

4πε0 d 3 √q 2d 2 + p 2

74. 2π √ma
qE

75. 6 × 10 22
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Example 30.2

   A charge q is placed at the centre of a sphere. Taking
outward normal as positive, find the flux of the electric
field through the surface of the sphere due to the enclosed
charge.

Solution :

Let us take a small element ∆S on the surface of the
sphere (Figure 30.3). The electric field here is radially
outward and has the magnitude

             
q

4πε0 r 2 ,

where r is the radius of the sphere. As the positive
normal is also outward, θ = 0 and the flux through this
part is

        ∆Φ = E
→

⋅∆S
→

 = 
q

4πε0 r 2 ∆S.

Summing over all the parts of the spherical surface,

   Φ = ∑ ∆Φ = 
q

4πε0 r 2 ∑ ∆S = 
q

4πε0 r 2 4πr 2 = 
q

ε0

 ⋅

Example 30.3

   A uniform electric field exists in space. Find the flux of
this field through a cylindrical surface with the axis
parallel to the field.

Solution :

Consider figure (30.4) and take a small area ∆S on the
cylindrical surface. The normal to this area will be
perpendicular to the axis of the cylinder. But the electric
field is parallel to the axis and hence

         ∆Φ = E
→

⋅∆S
→

 = E ∆S cos (π/2) = 0.

This is true for each small part of the cylindrical surface.
Summing over the entire surface, the total flux is zero.

30.2 SOLID ANGLE

Solid angle is a  generalisation of the plane angle.
In figure (30.5a) we show a plane curve AB. The end
points A and B are joined to the point O. We say that
the curve AB subtends an angle or a plane angle at
O.  An angle is formed at O by the two lines OA and
OB passing through O.

To construct a solid angle, we start with a surface
S (figure 30.5b) and join all the points on the periphery
such as A, B, C, D, etc., with the given point O. We
then say that a solid angle is formed at O and that
the surface S has subtended the solid angle. The solid
angle is formed by the lines joining the points on the
periphery with O. The whole figure looks like a cone.
As a typical example, think of the paper containers
used by Moongfaliwalas.

How do we measure a solid angle ? Let us consider
how do we measure a plane angle. See figure (30.6a).
We draw a circle of any radius r with the centre at O
and measure the length l of the arc intercepted by the
angle. The angle θ is then defined as θ = l/r. In order
to measure a solid angle at the point O (figure 30.6b),
we draw a sphere of any radius r with O as the centre
and measure the area S of the part of the sphere
intercepted by the cone. The solid angle Ω is then
defined as

           Ω =  S/r 2.
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Notice the use of the argument of symmetry. All
the points of the sphere through P are equivalent. No
point on this surface has any special property which
a different point does not have. That is why we could
say that the field has the same magnitude E at all
these points. Also, the field is radial at all the points.
We have wisely chosen the Gaussian surface which has
these properties. We could then easily evaluate the

flux O E

dS


  E 4r 2.

Field at an internal point

Suppose, we wish to find the electric field at a
point P inside the spherical charge distribution (figure
30.16). We draw a spherical surface passing through
P and concentric with the given charge distribution.
The radius of this sphere will be r. All the points of
this sphere are equivalent. By symmetry, the field is
radial at all the points of this surface and has a
constant magnitude E. The flux through this spherical
surface is

      O E

dS


 O E dS  E O dS  E 4r 2.  (i)

Let us now calculate the total charge contained
inside this spherical surface. As the charge is
uniformly distributed within the given spherical

volume, the charge per unit volume is 
Q

4
3

  R 
3
  The

volume enclosed by the Gaussian surface, through
which the flux is calculated, is 4

3
  r 3. Hence, the

charge enclosed is

      
Q

4
3

  R3
  4

3
  r3  

Q r 3

R 3
 

Using Gauss’s law and (i),

E 4r 2  
Qr 3

0 R 3
 

   or, E  
Qr

40 R 3
   (30.3)

The electric field due to a uniformly charged sphere
at an internal point is Qr

40 R 
3  in radial direction.

At the centre, r  0 and hence E  0. This is clear
from the symmetry arguments as well. At the centre,
all directions are equivalent. If the electric field is not
zero, what can be its direction ? You cannot choose a
unique direction. The field has to be zero. It is
proportional to the distance r from the centre for the
internal points. Equations (30.2) and (30.3) give the
same value of the field at the surface, where r  R.

(C) Electric Field due to a Linear
   Charge Distribution

Consider a long line charge with a linear charge
density (that is, charge per unit length) . We have to
calculate the electric field at a point P which is at a
distance r from the line charge (figure 30.17). What
can be the direction of the electric field at  P ? Can it
be along PA ? If yes, then why not along PB ? PA and
PB are equivalent to each other. In fact, the only
unique direction through P is along the perpendicular
to the line charge. The electric field must be along this
direction. If the charge is positive, the field will be
outward.

Now, we construct a Gaussian surface. We draw a
cylinder of length l passing through P and coaxial with
the line charge. Let us close the cylinder with two
plane surfaces perpendicular to the line charge. The
curved surface of the cylinder together with the two
plane parallel surfaces constitutes a closed surface as
shown in figure (30.17). We use this surface as the
Gaussian surface.

All the points on the curved part of this Gaussian
surface are at the same perpendicular distance from
the line charge. All these points are equivalent. The
electric field at all these points will have the same
magnitude E as that at P. Also, the direction of the
field at any point on the curved surface is normal to
the line and hence normal to the cylindrical surface
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calculations, we can ignore the charge on the earth.
The potential of the earth can then be taken as the
same as that of a point far away from all charges, i.e.,
at infinity. So, the potential of the earth is often taken
to be zero. Also, if a small quantity of charge is given
to the earth or is taken away from it, the potential
does not change by any appreciable extent. This is
because of the large size of the earth.

If a conductor is connected to the earth, the
potential of the conductor becomes equal to that of the
earth, i.e., zero. If the conductor was at some other
potential, charges will flow from it to the earth or from
the earth to it to bring its potential to zero.

When a conductor is connected to the earth, the
conductor is said to be earthed or grounded. Figure
(30.22a) shows the symbol for earthing.

Suppose a spherical conductor of radius R is given a
charge Q. The charge will be distributed uniformly on the
surface. So it is equivalent to a uniformly charged, thin
spherical shell. Its potential will, therefore, become
Q/(4πε0 R). If this conductor is connected to the earth, the
charge Q will be transferred to the earth so that the
potential will become zero.

Next suppose, a charge +Q is placed at the centre of
a spherical conducting shell. A charge –Q will appear on
its inner surface and +Q on its outer surface (figure
30.22b). The potential of the sphere due to the charge at
the centre and that due to the charge at the inner surface

are Q
4πε0 R

 and −Q
4πε0 R

 respectively. The potential due to the

charge on the outer surface is Q
4πε0 R

 ⋅ The net potential

of the sphere is, therefore, Q
4πε0 R

 ⋅ If this sphere is now

connected to the earth (figure 30.22c), the charge Q on
the outer surface flows to the earth and the potential of
the sphere becomes zero.

Earthing a conductor is a technical job. A thick metal
plate is buried deep into the earth and wires are drawn
from this plate. The electric wiring in our houses has three
wires: live, neutral and earth. The live and neutral wires
carry electric currents which come from the power station.
The earth wire is connected to the metal plate buried in
the earth. The metallic bodies of electric appliances such
as electric iron, refrigerator, etc. are connected to the earth
wire. This ensures that the metallic body remains at zero
potential while an appliance is being used. If by any fault,
the live wire touches the metallic body, charge flows to
the earth and the potential of the metallic body remains
zero. If it is not connected to the earth, the user may get
an electric shock.

Worked Out Examples

 1. A uniform electric field of magnitude E = 100 N C −1 exists
in the space in x-direction. Calculate the flux of this field
through a plane square area of edge 10 cm placed in the
y–z plane. Take the normal along the positive x-axis to
be positive.

Solution : The flux Φ = ∫ E cosθ dS. As the normal to the

area points along the electric field, θ = 0. Also, E is
uniform, so

         Φ = E ∆S

= (100 N C −1) (0.10 m) 2 = 1.0 N m 2C −1 ⋅

 2. A large plane charge sheet having surface charge density
σ = 2.0 × 10 – 6 C m −2 lies in the x–y plane. Find the flux
of the electric field through a circular area of radius
1 cm lying completely in the region where x, y, z are all
positive and with its normal making an angle of 60° with
the z-axis.

Solution : The electric field near the plane charge sheet is
E = σ/2ε0 in the direction away from the sheet. At the
given area, the field is along the z-axis.

The area = πr 2 = 3.14 × 1 cm 2 = 3.14 × 10 – 4 m 2.
The angle between the normal to the area and the  field
is 60°.

Hence, the flux = E
→

⋅∆S
→

 = E ∆S cosθ = 
σ

2ε0

 πr 2 cos 60°

   = 
2.0 × 10 – 6 C m −2

2 × 8.85 × 10 – 12 C 2 N m −2 × (3.14 × 10 – 4 m 2) 1
2

 

= 17.5 N m2 C −1.

 3. A charge of 4 × 10 – 8 C is distributed uniformly on the
surface of a sphere of radius 1 cm. It is covered by a
concentric, hollow conducting sphere of radius 5 cm.
(a) Find the electric field at a point 2 cm away from the
centre. (b) A charge of 6 × 10 – 8 C is placed on the hollow
sphere. Find the surface charge density on the outer
surface of the hollow sphere.
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CHAPTER 31

CAPACITORS

31.1 CAPACITOR AND CAPACITANCE

A combination of two conductors placed close to
each other is called a capacitor. One of the conductors
is given a positive charge and the other is given an
equal negative charge. The conductor with the positive
charge is called the positive plate and the other is
called the negative plate. The charge on the positive
plate is called the charge on the capacitor and the
potential difference between the plates is called the
potential of the capacitor. Figure (31.1a) shows two
conductors. One of the conductors has a positive charge
+Q and the other has an equal, negative charge –Q.
The first one is at a potential V+ and the other is at
a potential V− . The charge on the capacitor is Q and
the potential of the capacitor is V = V+ − V− . Note that
the term charge on a capacitor does not mean the total
charge given to the capacitor. This total charge is
+ Q − Q = 0. Figure (31.1b) shows the symbol used to
represent a capacitor.

For a given capacitor, the charge Q on the
capacitor is proportional to the potential difference V
between the plates

Thus,          Q ∝ V

   or, Q = CV. … (31.1)

The proportionality constant C is called the
capacitance of the capacitor. It depends on the shape,
size and geometrical placing of the conductors and the
medium between them.

The SI unit of capacitance is coulomb per volt
which is written as farad. The symbol F is used for it.
This is a large unit on normal scales and microfarad
(µF) is used more frequently.

To put equal and opposite charges on the two
conductors, they may be connected to the terminals of
a battery. We shall discuss in somewhat greater detail
about the battery in the next chapter. Here we state
the following properties of an ideal battery.

(a) A battery has two terminals.
(b) The potential difference V between the terminals

is constant for a given battery. The terminal with higher
potential is called the positive  terminal  and that with
lower potential is called the negative  terminal .

(c) The value of this fixed potential difference is
equal to the electromotive force or emf of the battery.
If a conductor is connected to a terminal of a battery,
the potential of the conductor becomes equal to the
potential of the terminal. When the two plates of a
capacitor are connected to the terminals of a battery,
the potential difference between the plates of the
capacitor becomes equal to the emf of the battery.

(d) The total charge in a battery always remains zero.
If its positive terminal supplies a charge Q, its negative
terminal supplies an equal, negative charge −Q.

(e) When a charge Q passes through a battery of
emf E  from the negative terminal to the positive

terminal, an amount QE of work is done by the
battery.

An ideal battery is represented by the symbol
shown in figure (31.2). The potential difference
between the facing parallel lines is equal to the emf
E  of the battery. The longer line is at the higher
potential.

Example 31.1

   A capacitor gets a charge of 60 µC when it is connected
to a battery of emf 12 V. Calculate the capacitance of the
capacitor.

Solution : The potential difference between the plates is
the same as the emf of the battery which is 12 V. Thus,
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the capacitance is

           C = 
Q
V

 = 
60 µC
12 V

 = 5 µF.

31.2 CALCULATION OF CAPACITANCE

The procedure to calculate the capacitance of a
given capacitor is simple. We assume that a charge
+Q is placed on the positive plate and a charge −Q is
placed on the negative plate of the capacitor. We
calculate the electric field between the plates and from
this the potential difference between the plates. The
capacitance is then obtained using equation (31.1).

Parallel-plate Capacitor

A parallel-plate capacitor consists of two large
plane plates placed parallel to each other with a small
separation between them (figure 31.3). Suppose, the
area of each of the facing surfaces is A and the
separation between the two plates is d. Also, assume
that the space between the plates contains vacuum.

Let us put a charge Q on one plate and a charge
–Q on the other. The charges will appear on the facing
surfaces. The charge density on each of these surfaces
has a magnitude

                σ = 
Q
A

 ⋅

Suppose that the plates are large as compared to
the separation between them. This means that any
linear dimension of the plates is much larger than the
separation d. For example, if the plates are square in
shape, the length of a side should be much larger than
d. If we use circular plates, the diameter should be
much larger than d. The electric field between the
plates is then uniform and perpendicular to the plates
except for a small region near the edge. The magnitude
of this uniform field E may be calculated using
Gauss’s law.

Let us draw a small area ∆A parallel to the plates
and in between them (figure 31.4). Draw a cylinder
with ∆A as a cross-section and terminate it by another
symmetrically situated area ∆A′ inside the positive

plate. The cylinder and the two cross-sections ∆A and
∆A′ form a Gaussian surface. The flux through ∆A′ and
through the curved part inside the plate is zero as the
electric field is zero inside a conductor. The flux
through the curved part outside the plates is also zero
as the direction of the field E is parallel to this surface.
The flux through ∆A is

        Φ = E
→

⋅∆A
→

 = E ∆A.
The only charge inside the Gaussian surface is

      ∆Q = σ ∆A = 
Q
A

 ∆A.

From Gauss’s law,

          ∫O E
→

⋅dS
→

 = Qin/ε0

   or, E ∆A = 
Q

ε0 A
 ∆A

or, E = 
Q

ε0 A
 ⋅

The potential difference between the plates is

          V = V+ − V− = − ∫ 
A

B

 E
→

⋅dr
→
.

As one goes from A to B, the field E
→

 and the

displacement dr
→
 are opposite in direction. Thus,

E
→

⋅dr
→
 = − E dr and

   V = ∫ 
A

B

 E dr

= Ed = 
Qd
ε0 A

 ⋅

The capacitance of the parallel-plate capacitor is

   C = 
Q
V

 = 
Qε0 A

Qd

 = 
ε0 A

d
 ⋅ … (31.2)

Example 31.2

   Show that the SI unit of ε0 may be written as
farad metre −1.

Solution :

We have C = 
ε0 A
d

or, ε0 = 
Cd
A

 ⋅

As the SI units of C, d and A are farad, metre and
metre 2 respectively, the SI unit of ε0 is farad metre −1.

Example 31.3

   Calculate the capacitance of a parallel-plate capacitor
having 20 cm × 20 cm square plates separated by a
distance of 1.0 mm.
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Solution : The capacitance is

             C = 
ε0 A
d

     = 
8.85 × 10 − 12 F m −1 × 400 × 10 − 4 m 2

1 × 10 − 3 m

        = 3.54 × 10 − 10 F ≈ 350 pF.

Spherical Capacitor

A spherical capacitor consists of a solid or a hollow
spherical conductor surrounded by another concentric
hollow spherical conductor. Suppose, the inner sphere
has a radius R1 and the outer sphere has a radius R2.
Suppose, the inner sphere is given a positive charge
Q and the outer is given a negative charge –Q.

The field at any point P between the spheres is
radially outward and its magnitude depends only on
its distance r from the centre. Let us draw a sphere
through P concentric with the given system. The flux
of the electric field through this sphere is

       Φ = ∫O  E
→

⋅dS
→

 = ∫O  E dS

= E ∫O dS = E 4πr 2.

The charge enclosed in this sphere is Q. Thus, from
Gauss’s law,

            E 4πr 2 = 
Q
ε0

or, E = 
Q

4πε0 r 2
 ⋅

The potential difference between the two
conductors is

         V = V+ − V− = − ∫ 
A

B

 E
→

⋅dr
→
 

= − ∫ 
R2

R1

Q

4πε0 r 2
 dr

= 
Q

4πε0
 


1
R1

 − 
1
R2




 = 

Q(R2 − R1)
4πε0 R1R2

 ⋅

The capacitance of the spherical capacitor is

C = 
Q
V

           = 
4πε0 R1R2

R2 − R1
 ⋅ … (31.3)

Isolated sphere

If we assume that the outer sphere is at infinity,
we get an isolated single sphere of radius R1. The
capacitance of such a single sphere can be obtained
from equation (31.3) by taking the limit as R2 → ∞.
Then

         C = 
4πε0 R1R2

R2 − R1
 

≈ 
4πε0 R1R2

R2
 = 4πε0 R1.

If a charge Q is placed on this sphere, its potential
(with zero potential at infinity) becomes

V = 
Q
C

 = 
Q

4πε0 R1
 ⋅

Parallel limit

If both R1 and R2 are made large but R2 − R1 = d
is kept fixed, we can write
          4πR1R2 ≈ 4πR 2 = A

where R is approximately the radius of each sphere
and A is the area. Equation (31.3) then becomes

             C = 
ε0 A

d
which is the same as the equation for the capacitance
of a parallel-plate capacitor.

Cylindrical Capacitor

A cylindrical capacitor consists of a solid or a
hollow cylindrical conductor surrounded by another
coaxial hollow cylindrical conductor. Let the length of
the cylinders be l and the radii of the inner and outer
cylinders be R1 and R2 respectively. Suppose, a positive
charge Q is placed on the inner cylinder and a negative
charge – Q is placed on the outer cylinder. If the
cylinders are long as compared to the separation
between them, the electric field at a point between the
cylinders will be radial and its magnitude will depend
only on the distance of the point from the axis. Let P
be a point between the cylinders at a distance r from
the axis (figure 31.6).
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To calculate the electric field at the point P, let us
draw a coaxial cylinder of length x through the point
P. This cylinder together with its two cross sections
forms a Gaussian surface. The flux through the cross
sections is zero because the electric field is radial
wherever it exists and hence is parallel to the cross
sections. The flux through the curved part is

           Φ = ∫O  E
→

⋅dS
→

          = ∫ E dS

= E ∫ dS = E 2πrx.

The charge enclosed by the Gaussian surface is

Qin = 
Q
l

 x.

Thus, from Gauss’s law,

E 2πrx = 


Q
l

 x


/ε0

or, E = 
Q

2πε0 rl
 ⋅

The potential difference between the cylinders is
V = V+ − V−

 = − ∫ 
A

B

 E
→

⋅dr
→
 = − ∫ 

R2

R1

E dr             

= − ∫ 
R2

R1

 
Q

2πε0 rl
 dr

= 
Q

2πε0 l
 ln 

R2

R1
 ⋅

The capacitance is

          C = 
Q
V

 = 
2πε0 l

ln(R2 /R1)
 ⋅ … (31.4)

31.3 COMBINATION OF CAPACITORS

Two or more capacitors may be connected in a
number of ways. The combination should have two
points which may be connected to a battery to apply
a potential difference. The battery supplies positive
and negative charges to the system. If V be the
potential difference between the points and Q be the
magnitude of the charge supplied by either terminal
of the battery, we define equivalent capacitance of the
combination between the two points to be

           C = 
Q
V

 ⋅

If the combination is replaced by a single capacitor
of this capacitance, the single capacitor will store the
same amount of charge for a given potential difference
as the combination does.

Two special methods of combination are frequently
used, one known as series combination and the other
as parallel combination.

Series Combination

Figure (31.7) shows three capacitors connected in
series. The capacitances are C1, C2 and C3. The points
P and N serve as the points through which a potential
difference may be applied and a charge may be
supplied to the combination. Let us connect the point
P to the positive terminal and the point N to the
negative terminal of a battery. The battery supplies a
charge +Q to the plate A1 and a charge –Q to the plate
A6. The charge +Q given by the battery appears on the
right surface of the plate A1. The facing surface of A2

must have a charge –Q on it.

The plates A2 and A3 are connected and they
together are isolated from everything else. The charge
–Q appearing on A2 comes from the electrons drifted
from the plate A3 to A2. This leaves a positive charge
+Q on the plate A3. The facing surface of A4 gets a
charge –Q from A5 and a charge +Q appears on the
right surface of A5. The facing surface of A6 gets a
charge –Q from the battery. This completes the charge
distribution. In series combination, each capacitor has
equal charge for any value of capacitances.

Let us take the potential of the point N to be zero.
The potential of the plate A6 is also zero as it is
connected to N by a conducting wire. The potential of
the point P as well as that of the plate A1 is V. The
plates A2 and A3 are at the same potential, say, V1.
Similarly, A4 and A5 are at the same potential, say, V2.

The charge on the first capacitor is Q and the
potential difference is V − V1. As the capacitance of this
capacitor is C1, we have

           Q = C1(V − V1)

   or,      V − V1 = 
Q
C1

 ⋅ … (i)

Similarly, considering the other capacitors,

 V1 − V2 = 
Q
C2

 … (ii)

   and V2 − 0 = 
Q
C3

 ⋅ … (iii)
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Adding (i), (ii) and (iii);

         V = Q 


1
C1

 + 
1
C2

 + 
1
C3




 . … (iv)

If the equivalent capacitance of the combination
between the points P and N is C, we have

C = 
Q
V

 

and equation (iv) becomes
1
C

 = 
1
C1

 + 
1
C2

 + 
1
C3

 ⋅

The above analysis may be extended to any
number of capacitors, the equivalent capacitance C is
given by

1
C

 = 
1
C1

 + 
1
C2

 + 
1
C3

 + … …  (31.5)

Example 31.4

   Calculate the charge on each capacitor shown in figure
(31.8).

Solution : The two capacitors are joined in series. Their

equivalent capacitance is given by 1
C

 = 1
C1

 + 1
C2

or,    C = 
C1C2

C1 + C2

 = 
(10 µF) (20 µF)

30 µF
 = 

20
3

 µF.

The charge supplied by the battery is

         Q = CV

= 




20
3

 µF



 (30 V) = 200 µC.

In series combination, each capacitor has equal charge
and this charge equals the charge supplied by the
battery. Thus, each capacitor has a charge of 200 µC.

Parallel Combination

Figure (31.9) shows three capacitors connected in
parallel. The capacitances are C1, C2 and C3. The points

P and N are the two points through which a potential
difference can be applied and charge can be supplied.
Let us connect the point P to the positive terminal of
a battery and the point N to its negative terminal. The
battery supplies a charge +Q which is distributed on
the three positive plates A1, A2 and A3 of the capacitors.
Let the charges on the three plates A1, A2 and A3 be
Q1, Q2 and Q3 respectively. The battery also supplies
a charge –Q which is distributed on the three plates
A4, A5 and A6. These plates must receive charges –Q1,
–Q2 and –Q3 respectively because the facing surfaces
must have equal and opposite charges. We have
          Q = Q1 + Q2 + Q3 . … (i)

Let us take the potential of the point N to be zero.
The potentials of the plates A4, A5 and A6 are also zero
as they are all connected to N by conducting wires.
Let the potential of the point P be V. This will also be
the potential of the plates A1, A2 and A3. Thus, the
potential differences of the capacitors connected in
parallel are equal for any value of capacitances. Using
the equation Q = CV for the three capacitors,

Q1 = C1V … (ii)

 Q2 = C2V … (iii)

   and Q3 = C3V. … (iv)

Adding (ii), (iii) and (iv) and using (i),
Q = (C1 + C2 + C3)V

or, 
Q
V

 = C1 + C2 + C3.

But Q/V is the equivalent capacitance of the given
combination. Thus,

C = C1 + C2 + C3. … (31.6)

In parallel combination, all the positive plates are
at the same potential and all the negative plates are at
the same potential. The potential difference on each
capacitor is the same in parallel combination but the
charges on the capacitors may be different. In series
combination, the charges on the capacitors are equal,
the potential differences may be different.

Example 31.5

   Find the equivalent capacitance of the combination
shown in figure (31.10) between the points P and N. 

Solution : The 10 µF and 20 µF capacitors are connected
in parallel. Their equivalent capacitance is
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10 µF + 20 µF = 30 µF. We can replace the 10 µF and the
20 µF capacitors by a single capacitor of capacitance
30 µF between P and Q. This is connected in series with
the given 30 µF capacitor. The equivalent capacitance
C of this combination is given by

          
1
C

 = 
1

30 µF
 + 

1
30 µF

  or,  C = 15 µF.

We have used series–parallel combination to solve
the above example. Sometimes it may not be easy to
find the equivalent capacitance of a combination using
the equations for series–parallel combinations. We
may then use the general method which was applied
to derive the equivalent capacitance in series and
parallel combinations. For any given combination, one
may proceed as follows:

Step 1

Identify the two points between which the
equivalent capacitance is to be calculated. Call any one
of them as P and the other as N.

Step 2

Connect (mentally) a battery between P and N
with the positive terminal connected to P and the
negative terminal to N. Send a charge +Q from the
positive terminal of the battery and –Q from the
negative terminal of the battery.

Step 3

Write the charges appearing on each of the plates
of the capacitors. The charge conservation principle
may be used. The facing surfaces of a capacitor will
always have equal and opposite charges. Assume
variables Q1, Q2 …, etc., for charges wherever needed.

Step 4

Take the potential of the negative terminal N to
be zero and that of the positive terminal P to be V.
Write the potential of each of the plates. If necessary,
assume variables V1, V2 …  .

Step 5

Write the capacitor equation Q = CV for each
capacitor. Eliminate Q1, Q2, … and V1, V2, …, etc., to
obtain the equivalent capacitance C = Q/V.

Example 31.6

   Find the equivalent capacitance of the combination
shown in figure (31.11a) between the points P and N. 

Solution : Let us connect a battery between the points P
and N. The charges and the potentials are shown in
figure (31.11b). The positive terminal of the battery
supplies a charge +Q which appears on the plate A1. The
facing plate A2 gets a charge –Q. The plates A2, A3 and
A5 taken together form an isolated system. The total
charge on these three plates should be zero. Let a charge
Q1 appear on A3 , then a charge Q − Q1 will appear on
A5 to make the total charge zero on the three plates.
The plate A4 will get a charge –Q1 (facing plate of A3)
and A6 will get a charge −(Q − Q1) (facing plate of A5).
The total charge –Q on A4 and A6 is supplied by the
negative terminal of the battery. This completes the
charge distribution.
Next, suppose the potential at the point N is zero and
at P it is V. The potential of the plates A4 and A6 is also
zero. The potential of the plate A1 is V. The plates A2,
A3 and A5 are at the same potential. Let this common
potential be V1. This completes the potential
distribution.

Applying the capacitor equation Q = CV to the three
capacitors,

                Q = C1(V − V1) … (i)

 Q1 = C2V1 … (ii)

   and Q − Q1 = C3V1. … (iii)

Adding (ii) and (iii),

Q = (C2 + C3)V1

   or,          
Q

C2 + C3

 = V1. … (iv)

   From (i),      
Q
C1

 = V − V1. … (v)

Adding (iv) and (v),

          
Q

C2 + C3

 + 
Q
C1

 = V

or, 
(C1 + C2 + C3)Q

C1(C2 + C3)
 = V

or,     C = 
Q
V

 = 
C1(C2 + C3)
C1 + C2 + C3

 ⋅

It may be noted that the above example could be
solved by using the equations for series–parallel
combinations. However, the general method was used
to demonstrate its application.
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Symmetry arguments play important role in
simplifying the algebra involved in the problem. The
use of symmetry arguments in writing the charges on
different plates will be demonstrated later in the
section of worked out examples.

31.4 FORCE BETWEEN THE PLATES
    OF A CAPACITOR

Consider a parallel-plate capacitor with plate area
A. Suppose a positive charge +Q is given to one plate
and a negative charge –Q to the other plate. The
electric field due to only the positive plate is

         E+ = 
σ

2ε0
 = 

Q
2Aε0

at all points if the plate is large. The negative charge
–Q finds itself in the field of this positive charge. The
force on –Q is, therefore,

F = −QE+

= (−Q) Q
2Aε0

 = − 

Q 2

2Aε0
 ⋅

The magnitude of the force is

F = 
Q 2

2Aε0
 ⋅

This is the force with which the positive plate
attracts the negative plate. This is also the force of
attraction on the positive plate by the negative plate.
Thus, the plates of a parallel-plate capacitor attract
each other with a force

             F = 
Q 2

2Aε0
 ⋅ … (31.7)

31.5 ENERGY STORED IN A CAPACITOR AND
     ENERGY DENSITY IN ELECTRIC FIELD 

Let us consider a parallel-plate capacitor of plate
area A (figure 31.13). Suppose the plates of the
capacitor are almost touching each other and a charge
Q is given to the capacitor. One of the plates, say a,
is kept fixed and the other, say b, is slowly pulled away
from a to increase the separation from zero to d. The
attractive force on the plate b at any instant due to
the first plate is, from equation (31.7),

           F = 
Q 2

2Aε0 
⋅

The person pulling the plate b must apply an equal
force F in the opposite direction if the plate is only
slowly moved.

The work done by the person during the
displacement of the second plate is

        W = Fd

= 
Q 2d
2Aε0

 = 
Q 2

2 C

where C is the capacitance of the capacitor in the final
position. The work done by the person must be equal
to the increase in the energy of the system. Thus, a
capacitor of capacitance C has a stored energy

            U = 
Q 2

2 C
… (31.8)

where Q is the charge given to it. Using Q = CV, the
above equation may also be written as

U = 
1
2

 CV 2 … (31.9)

   or, U = 
1
2

 QV. … (31.10)

Example 31.7

   Find the energy stored in a capacitor of capacitance
100 µF when it is charged to a potential difference of
20 V.

Solution : The energy stored in the capacitor is

     U = 
1
2

 CV 2 = 
1
2

 (100 µF) (20 V) 2 = 0.02 J.

The energy stored in a capacitor is electrostatic
potential energy. When we pull the plates of a
capacitor apart, we have to do work against the
electrostatic attraction between the plates. In which
region of space is the energy stored ? When we increase
the separation between the plates from d1 to d2, an

amount Q 
2

2Aε0

 (d2 − d1) of work is performed by us and
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this much energy goes into the capacitor. On the other
hand, new electric field is created in a volume
A(d2 − d1) (figure 31.14). We conclude that the energy
Q 

2

2Aε0

 (d2 − d1) is stored in the volume A(d2 − d1) which

is now filled with the electric field. Thus, an electric
field has energy associated with it. The energy stored
per unit volume in the electric field is

      u = 

Q 2(d2 − d1)
2Aε0

A(d2 − d1)
 = 

Q 2

2A 2ε0

 

= 
1
2

 ε0 




Q
Aε0





 2

 = 
1
2

 ε0 E 2

where E is the intensity of the electric field.

Once it is established that a region containing

electric field E has energy 1
2
 ε0 E 2 per unit volume, the

result can be used for any electric field whether it is
due to a capacitor or otherwise.

31.6 DIELECTRICS

In dielectric materials, effectively there are no free
electrons. The monatomic materials are made of
atoms. Each atom consists of a positively charged
nucleus surrounded by electrons. In general, the centre
of the negative charge coincides with the centre of the
positive charge. Polyatomic materials, on the other
hand, are made of molecules. The centre of the
negative charge distribution in a molecule may or may
not coincide with the centre of the positive charge
distribution. If it does not coincide, each molecule has
a permanent dipole moment p

→
. Such materials are

known as polar materials. However, different
molecules have different directions of the dipole
moment because of the random thermal agitation in
the material. In any volume containing a large number
of molecules (say more than a thousand), the net dipole
moment is zero. If such a material is placed in an
electric field, the individual dipoles experience torque
due to the field and they try to align along the field.
On the other hand, thermal agitation tries to
randomise the orientation and hence, there is a partial
alignment. As a result, we get a net dipole moment in
any volume of the material.

In nonpolar materials, the centre of the positive
charge distribution in an atom or a molecule coincides
with the centre of the negative charge distribution. The
atoms or the molecules do not have any permanent
dipole moment. If such a material is placed in an
electric field, the electron charge distribution is slightly
shifted opposite to the electric field. This induces dipole

moment in each atom or molecule and thus, we get a
dipole moment in any volume of the material.

Thus, when a dielectric material is placed in an
electric field, dipole moment appears in any volume in
it. This fact is known as polarization of the material.

The polarization vector P
→

 is defined as the dipole
moment per unit volume. Its magnitude P is often
referred to as the polarization.

Consider a rectangular slab of a dielectric. The
individual dipole moments are randomly oriented
(figure 31.15a). In any volume containing a large
number of molecules, the net charge is zero. When an
electric field is applied, the dipoles get aligned along
the field. Figure (31.15b) and (31.15c) show the effect
of dipole alignment when a field is applied from left
to right. We see that the interior is still charge free
but the left surface of the slab gets negative charge
and the right surface gets positive charge. The
situation may be represented as in figure (31.15d). The
charge appearing on the surface of a dielectric when
placed in an electric field is called induced charge. As
the induced charge appears due to a shift in the
electrons bound to the nuclei, this charge is also called
bound charge.

The surface charge density of the induced charge
has a simple relationship with the polarization P.
Suppose, the rectangular slab of figure (31.15) has a
length l and area of cross-section A. Let σp be the
magnitude of the induced charge per unit area on the
faces. The dipole moment of the slab is then
(σpA)l = σp(Al).  The  polarization  is  dipole  moment
induced per unit volume. Thus,

           P = 
σp (Al)

Al
 = σp. … (31.11)

Although this result is deduced for a rectangular
slab, it is true in general. The induced surface charge
density is equal in magnitude to the polarization P.
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Dielectric Constant

Because of the induced charges, an extra electric

field is produced inside the material. Let E
→

0 be the

applied field due to external sources and E
→

p be the
field due to polarization (figure 31.16). The resultant

field is E
→

 = E
→

0 + E
→

p. For homogeneous and isotropic

dielectrics, the direction of E
→

p is opposite to the

direction of E
→

0. The resultant field E
→

 is in the same

direction as the applied field E
→

0 but its magnitude is
reduced. We can write

               E
→

 = 
E
→

0

K

where K is a constant for the given dielectric which
has a value greater than one.  This constant K is called
the dielectric constant or relative permittivity of the
dielectric. For vacuum, there is no polarization and

hence E
→

 = E
→

0 and K = 1.

 If a very high electric field is created in a
dielectric, the outer electrons may get detached from
their parent atoms. The dielectric then behaves like a
conductor. This phenomenon is known as dielectric
breakdown. The minimum field at which the
breakdown occurs is called the dielectric strength of the
material. Table (31.1) gives dielectric constants and
dielectric strengths for some of the dielectrics.

31.7. PARALLEL-PLATE CAPACITOR
    WITH A DIELECTRIC

Consider a parallel-plate capacitor with plate area
A and separation d between the plates (figure 31.17).
A dielectric slab of dielectric constant K is inserted in
the space between the plates. Suppose, the slab almost
completely fills the space between the plates. A charge
Q is given to the positive plate and –Q to the negative
plate of the capacitor. The electric field polarizes the
dielectric so that induced charges +Qp  and  −Qp appear
on the two faces of the slab.

Table 31.1 : Dielectric constants and
    dielectric strengths

Material Dielectric
constant

Dielectric
strength
(kVmm−1)

Vacuum 1 ∞
Pyrex Glass 5.6 ≈ 14

Mica 3–6 12
Neoprene rubber 6.9 12
Bakelite 4.9 24
Plexiglas 3.40 40
Fused quartz 3.8 8
Paper 3.5 14
Polystyrene 2.6 25
Teflon 2.1 60
Strontium titanate 310 8
Titanium dioxide 100 6
Water 80 –
Glycerin 42.5 –
Benzene 2.3 –
Air (1 atm) 1.00059 3
Air (100 atm) 1.0548 –

The electric field at a point between the plates due
to the charges +Q, −Q on the capacitor plates is

            E0 = 
σ
ε0

 = 
Q

Aε0

… (i)

in a direction left to right in the figure (31.17).

From the definition of dielectric constant, the
resultant field is

            E = 
E0

K
 = 

Q
ε0 AK

 ⋅ … (ii)

The potential difference between the plates is
V = Ed

          = 
Qd

ε0 AK
 ⋅

   The capacitance is

         C = 
Q
V

 = 
Kε0 A

d
 = KC0 … (31.12)

where C0 = 
ε0 A

d
 is the capacitance without the

dielectric. Thus,
The capacitance of a capacitor is increased by a

factor of K when the space between the plates is filled
with a dielectric of dielectric constant K.

This result is often taken as the definition of the
dielectric constant.

Magnitude of the Induced Charge

From (i), the electric field at a point between the
plates due to the charges +Q, −Q is

             E0 = 
Q

Aε0
 ⋅
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The field due to the charges Qp, −Qp is directed
oppositely and has magnitude

            Ep = 
σp

ε0
 = 

Qp

Aε0
 ⋅ 

The resultant field is
   E = E0 − Ep

= 
Q − Qp

Aε0
 ⋅ … (iii)

From equations (ii) and (iii),

          
Q − Qp

ε0 A
 = 

Q
ε0 AK

 

   or, Q − Qp = 
Q
K

   or, Qp = Q 

1 − 

1
K




 ⋅ … (31.13)

Example 31.8

   Two parallel-plate capacitors, each of capacitance 40 µF,
are connected in series. The space between the plates of
one capacitor is filled with a dielectric material of
dielectric constant K = 4. Find the equivalent capacitance
of the system.

Solution : The capacitance of the capacitor with the
dielectric is

       C1 = KC0 = 4 × 40 µF = 160 µF.

The other capacitor has capacitance C2 = 40 µF. As they
are connected in series, the equivalent capacitance is

     C = 
C1C2

C1 + C2

 = 
(160 µF) (40 µF)

200 µF
 = 32 µF.

Example 31.9

   A parallel-plate capacitor has plate area A and plate
separation d. The space between the plates is filled up to
a thickness x (< d) with a dielectric of dielectric constant
K. Calculate the capacitance of the system.

Solution :

The situation is shown in figure (31.18). The given
system is equivalent to the series combination of two
capacitors, one between a and c and the other between
c and b. Here c represents the upper surface of the
dielectric. This is because the potential at the upper
surface of the dielectric is constant and we can imagine
a thin metal plate being placed there.

The capacitance of the capacitor between a and c is

             C1 = 
Kε0 A

x

and that between c and b is

C2 = 
ε0 A
d − x

 ⋅

The equivalent capacitance is

      C = 
C1C2

C1 + C2

 = 
Kε0 A

Kd − x(K − 1)
 ⋅

31.8 AN ALTERNATIVE FORM OF GAUSS’S LAW

Let us again consider a parallel-plate capacitor
with a charge Q. The space between the plates is filled
with a dielectric slab of dielectric constant K. Let us
consider a Gaussian surface as shown in figure (31.19).
The charge enclosed by the surface is Q − Qp. From
Gauss’s law,

         ∫O  E
→

⋅dS
→

 = 
Q − Qp

ε0

… (i)

      = 
1
ε0

 

Q − Q 


1 − 

1
K








 = 

Q
ε0 K

   or,       ∫O K E
→

⋅dS
→

 = 
Qfree

ε0
 ⋅ … (31.14)

Qfree is used in place of Q to emphasise that it is the
free charge given to the plates and does not include
the bound charge appearing due to polarization.

Equation (31.14) is taken as another form of
Gauss’s law. This form differs from the usual form of
Gauss’s law in two respects. Firstly, the charge Qfree

appearing on the right-hand side is not the total charge
inside the Gaussian surface. It is the free charge or
external charge inside the Gaussian surface. The
bound charge Qp appearing due to polarization of the
dielectric is left out. Secondly, an extra factor K
appears on the left-hand side. The two differences
compensate the effects of each other and the two forms
of Gauss’s law are identical. Either of the two may be
used in any case.

Though we derived this result for a special case of
parallel-plate capacitor, it is true in any situation
where the dielectric used is homogeneous and
isotropic. Let us now write Gauss’s law in yet another
form valid for any case.
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Displacement Vector

The field due to the polarization is

           Ep = 
σp

ε0
 = 

P
ε0

where P is the polarization (the dipole moment per
unit volume). As the direction of Ep is opposite to the

polarization vector P
→

, we write

               E
→

p = − 
P
→

ε0
 ⋅

Now, E
→

 = E
→

0 + E
→

p

   or, E
→

 = E
→

0 − 
P
→

ε0

   or,    ε0 E
→

 + P
→

 = ε0 E
→

0 … (i)

   or,    ∫O (ε0 E
→

 + P
→

)⋅dS
→

 = ∫O ε0 E
→

0⋅dS
→

over any closed surface. As E
→

0 is the field produced by

the free charge Qfree, ∫O ε0 E
→

0⋅dS
→

 = Qfree from Gauss’s

law. Thus,

∫O (ε0 E
→

 + P
→

)⋅dS
→

 = Qfree. … (ii)

The quantity ε0 E
→

 + P
→

 is known as the electric

displacement vector D
→

. Equation (ii) above may be

written in terms of D
→

 as 

    ∫O D
→

⋅dS
→

 = Qfree … (31.15)

which is another form of Gauss’s law.

If there is no polarization, D
→

 = ε0 E
→

 and Qfree is
equal to the total charge inside the Gaussian surface.
Equation (31.15) then reduces to the usual form of
Gauss’s law.

In case of homogeneous and isotropic dielectrics,
E
→

0 = KE
→

 so that equation (i) above gives D
→

 = ε0 KE
→

 and
equation (31.15) reduces to (31.14).

31.9 ELECTRIC FIELD DUE TO A POINT CHARGE q
     PLACED IN AN INFINITE DIELECTRIC

Suppose, a point charge q is placed inside an
infinite dielectric and we wish to calculate the electric
field at a point P at a distance r from the charge q

(figure 31.20). We draw a spherical surface through P
with the centre at q. From Gauss’s law,

       ∫O K  E
→

⋅dS
→

 = 
q

ε0

or, KE 4πr 2 = 
q
ε0

   or,        E = 
q

4πε0 Kr 2
 ⋅ … (31.16)

The field is radially away from the charge. Note that
q is the total free charge inside the Gaussian surface.

It should be clear that the field 
q

4πε0Kr 
2 is due to the

free charge q and the polarization charges induced in
the dielectric medium. Because of the radially outward
field (assuming q to be positive), negative charges shift

inward. This produces an induced charge − q



1 − 1

K




 on

the surface of the cavity in the dielectric in which the
charge q is residing. The effective charge is, therefore,

q − q


1 − 1

K



 = q/K and hence the field is 

q

4πε0 Kr 
2 ⋅

31.10 ENERGY IN THE ELECTRIC
     FIELD IN A DIELECTRIC

Consider a parallel-plate capacitor filled with a
dielectric of dielectric constant K. The energy stored

in the capacitor is U = 1
2
 CV 2. The energy density in

the volume between the plates is

  u = 
U
Ad

 = 

1
2

 




Kε0 A
d




V 2

Ad
 = 

1
2

 Kε0




V
d





 2

 = 
1
2

 Kε0 E 2

where E = V/d is the electric field between the plates.
We see that the energy density in dielectrics is

greater than that in vacuum for the same electric field.
The dipole moments interact with each other so as to
give this additional energy.

31.11 CORONA DISCHARGE

Let us consider two conducting spheres A and B
connected to each other by a conducting wire. The
radius of A is r1 which is larger than the radius r2 of
B. A charge Q is given to this system. Suppose a part
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Q1 resides on the surface of A and the rest Q2 on the
surface of B. The potential of the sphere A is

          V1 = 
Q1

4πε0 r1
 

and that of the sphere B is

          V2 = 
Q2

4πε0 r2
 ⋅

As the two spheres are connected by a conducting
wire, their potentials must be the same. Thus,

        
Q1

4πε0 r1
 = 

Q2

4πε0 r2
 

or, σ1r1 = σ2r2

   or, 
σ1

σ2
 = 

r2

r1
 … (31.17)

where σ1 and σ2 are charge densities on the two
spheres. We see that the sphere with smaller radius
has larger charge density to maintain the same
potential.

Now consider a single conductor with a
nonspherical shape. If a charge is given to this
conductor (figure 31.22), the charge density will not be
uniform on the entire surface. A portion where the
surface is more “flat” may be considered as part of a
sphere of larger radius. The charge density at such a
portion will be smaller from equation (31.17). At
portions where the surface is more curved, the charge
density will be larger. More precisely, the charge
density will be larger where the radius of curvature
is small.

The electric field just outside the surface of a
conductor is σ/ε0. Thus, the electric field near the
portions of small radius of curvature (more curved
part) is large as compared to the field near the portions
of large radius of curvature (flatter part). If a
conductor has a pointed shape like a needle and a
charge is given to it, the charge density at the pointed
end will be very high. Correspondingly, the electric
field near these pointed ends will be very high which
may cause dielectric breakdown in air. The charge may
jump from the conductor to the air because of
increased conductivity of the air. Often this discharge
of air is accompanied by a visible glow surrounding
the pointed end. This phenomenon is called corona
discharge.

31.12 HIGH-VOLTAGE GENERATOR  

In 1929, Robert J van de Graaff designed a
machine which could produce large electrostatic
potential difference, of the order of 10 7 volts. This
machine, known as van de Graaff generator, is now
described.

A hollow, metallic sphere A is mounted on an
insulating stand. A pulley B is mounted at the centre
of the sphere and another pulley C is mounted near
the bottom. A belt of insulating material (such as silk)
goes over the pulleys. The pulley C is continuously
driven by an electric motor, or by hand for a smaller
machine used for demonstration. The belt, therefore,
continuously moves. Two comb-shaped conductors D
and E, having a number of metallic needles, are
mounted near the pulleys. The needles point towards
the belt. The lower comb D is maintained at a positive
potential of the order of 10 4 volts by a power supply
system. The upper comb E is connected to the metallic
sphere A.

Because of the high electric field near the needles
of D, the air becomes conducting (corona discharge).
The negative charges in the air move towards the
needles and the positive charges towards the belt. This
positive charge sticks to the belt. The negative charge
neutralises some of the positive charge on the comb
D. The power supply maintains the positive potential
of the needles by supplying more positive charge to it.
Effectively, positive charge is transferred from the
power supply to the belt. As the belt moves, this
positive charge is physically carried upwards. When it
reaches near the upper comb E, corona discharge takes
place and the air becomes conducting. The negative
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charges of the air move towards the belt and the
positive charges towards the needles of the comb. The
negative charges neutralise the positive charge on the
belt. The positive charges of the air which have moved
to the comb are transferred to the sphere. Effectively,
the positive charge on the belt is transferred to the
sphere. This positive charge quickly goes to the outer
surface of the sphere.

The machine, thus, continuously transfers positive
charge to the sphere. The potential of the sphere keeps
on increasing. The main limiting factor on the value
of this high potential is the radius of the sphere. If the
electric field just outside the sphere is sufficient for

dielectric breakdown of air, no more charge can be
transferred to it. The dielectric strength of air is
3 × 10 6 V m

−1. For a conducting sphere, the electric field

just outside the sphere is E = Q

4πε0 R 
2 and the potential

of the sphere is V = Q
4πε0 R

 ⋅ Thus, V = ER. To have a

field of 3 × 10 6 V m
−1 with a sphere of radius 1 m, its

potential should be 3 × 10 6 V. Thus, the potential of a

sphere of radius 1 m can be raised to 3 × 10 6 V by this
method. The potential can be increased by enclosing
the sphere in a highly evacuated chamber.

Worked Out Examples

 1. A parallel-plate capacitor has plates of area 200 cm 2 and
separation between the plates 1.00 mm. What potential
difference will be developed if a charge of 1.00 nC (i.e.,
1.00 × 10 – 9 C) is given to the capacitor ? If the plate
separation is now increased to 2.00 mm, what will be the
new potential difference ?

Solution : The capacitance of the capacitor is C = 
ε0 A
d

         = 8.85 × 10 − 12 Fm −1 × 
200 × 10 − 4 m 2

1 × 10 − 3 m
 

= 0.177 × 10 − 9 F = 0.177 nF.

The potential difference between the plates is

V = 
Q
C

 = 
1 nC

0.177 nF
 = 5.65  volts.

If the separation is increased from 1.00 mm to 2.00 mm,
the capacitance is decreased by a factor of 2. If the
charge remains the same, the potential difference will
increase by a factor of 2. Thus, the new potential
difference will be

        5.65 volts × 2 = 11.3 volts.

 2. An isolated sphere has a capacitance of 50 pF.
(a) Calculate its radius. (b) How much charge should be
placed on it to raise its potential to 10 4 V ?

Solution : (a) The capacitance of an isolated sphere is
C = 4πε0 R. Thus,

       50 × 10 − 12 F = 
R

9 × 10 9 mF −1 

or,      R = 50 × 10 − 12 × 9 × 10 9 m = 45 cm.

(b)   Q = CV

         = 50 × 10 − 12 F × 10 4 V = 0.5 µC.

 3. Consider the connections shown in figure (31-W1).
(a) Find the capacitance between the points A and B. (b)
Find the charges on the three capacitors. (c) Taking the
potential at the point B to be zero, find the potential at
the point D.

Solution : (a) The 12 µF and 6 µF capacitors are joined in
series. The equivalent of these two will have a
capacitance given by

          
1
C

 = 
1

12 µF
 + 

1
6 µF

 ,

or, C = 4 µF.

The combination of these two capacitors is joined in
parallel with the 2 µF capacitor. Thus, the equivalent
capacitance between A and B is

           4 µF + 2 µF = 6 µF.

(b) The charge supplied by the battery is

      Q = CV = 6 µF × 24 V = 144 µC.

The potential difference across the 2 µF capacitor is
24 V. The charge on this capacitor is, therefore,

          2 µF × 24 V = 48 µC.

The charge on the 12 µF and 6 µF capacitor is, therefore,

 144 µC − 48 µC = 96 µC.

(c) The potential difference across the 6 µF capacitor is
96 µC
6 µF

 = 16 V.
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As the potential at the point B is taken to be zero, the
potential at the point D is 16 V.

 4. If 100 volts of potential difference is applied between a
and b in the circuit of figure (31-W2a), find the potential
difference between c and d.

Solution : The charge distribution on different plates is
shown in figure (31-W2b). Suppose charge Q1 + Q2 is
given by the positive terminal of the battery, out of
which Q1 resides on the positive plate of capacitor (1)
and Q2 on that of (2). The remaining plates will have
charges as shown in the figure.
Take the potential at the point b to be zero. The
potential at a will be 100 V. Let the potentials at points
c and d be Vc  and  Vd respectively. Writing the equation
Q = CV for the four capacitors, we get,

        Q1 = 6 μF × 100 V = 600 μC … (i)

         Q2 = 6 μF × (100 V − Vc)  … (ii)

   Q2 = 6 μF × (Vc − Vd) … (iii)

  Q2 = 6 μF × Vd. … (iv)

From (ii) and (iii),

          100 V − Vc = Vc − Vd

   or,           2 Vc − Vd = 100 V … (v)

and from (iii) and (iv),

       Vc − Vd = Vd

   or,       Vc = 2 Vd. … (vi)

From (v) and (vi),

        Vd = 
100
3

  V  and  Vc = 200
3

 V

so that Vc − Vd = 100
3

 V.

 5. Find the charges on the three capacitors shown in figure
(31-W3a).

Solution : Take the potential at the junction of the
batteries to be zero. Let the left battery supply a charge
Q1 and the right battery a charge Q2. The charge on the
5 μF capacitor will be Q1 + Q2. Let the potential at the
junction of the capacitors be V1. The charges at different
plates and potentials at different points are shown in
figure (31-W3b).
Note that the charges on the three plates which are in
contact add to zero. It should be so, because, these plates
taken together form an isolated system which cannot
receive charges from the batteries. Applying the
equation Q = CV to the three capacitors, we get,

            Q1 = 2 μF(6 V − V1) … (i)

Q2 = 4 μF(6 V − V1)  … (ii)

   and Q1 + Q2 = 5 μF(V1 − 0). … (iii)

From (i) and (ii),

2 Q1 − Q2 = 0  or,  Q2 = 2 Q1.

From (ii) and (iii),

        5 Q2 + 4(Q1 + Q2) = 20 μF × 6 V

or, 4 Q1 + 9 Q2 = 120 μC

or, 4 Q1 + 18 Q1 = 120 μC

or, Q1 = 5.45 μC  and  Q2 = 10.9 μC.

Thus, the charges on the 2 μF, 4 μF and 5 μF capacitors
are 5.45 μC, 10.9 μC and 16.35 μC respectively.

 6. Find the equivalent capacitance of the system shown in
figure (31-W4a) between the points a and b.

Solution : Suppose, the capacitor C3 is removed from the
given system and a battery is connected between a and
b. The remaining system is shown in figure (31-W4b).
From the symmetry of the figure, the potential at c will
be the same as the potential at d. Thus, if the capacitor
C3 is connected between c and d, it will have no charge.
The charges of all the remaining four capacitors will
remain unchanged. Thus, the system of capacitors in
figure (31-W4a) is equivalent to that in the figure
(31-W4b). The equivalent capacitance of the system in
figure (31-W4b) can be calculated by applying the
formulae for series and parallel combinations. C1 and C2

are connected in series. Their equivalent capacitance is

            C = 
C1C2

C1 + C2

 ⋅
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Two such capacitors are joined in parallel. So the
equivalent capacitance of the given system is

           2C  
2 C1C2

C1  C2

 

 7. Find the equivalent capacitance between the point A and
B in figure (31-W5a).

Solution : Let us connect a battery between the points A
and B. The charge distribution is shown in figure
(31-W5b). Suppose the positive terminal of the battery
supplies a charge +Q and the negative terminal a charge
–Q. The charge Q is divided between plates a and e. A
charge Q1 goes to the plate a and the rest Q  Q1 goes
to the plate e. The charge –Q supplied by the negative
terminal is divided between plates d and h. Using the
symmetry of the figure, charge –Q1 goes to the plate h
and –(Q – Q1) to the plate d. This is because if you look
into the circuit from A or from B, the circuit looks
identical. The division of charge at A and at B should,
therefore, be similar. The charges on the other plates
may be written easily. The charge on the plate i is
2 Q1  Q which ensures that the total charge on plates
b, c and i remains zero as these three plates form an
isolated system.
We have,

      VA  VB  VA  VD  VD  VB

               
Q1

C1

  
Q  Q1

C2

 (i)

   Also,    VA  VB  VA  VD  VD  VE  VE  VB

 
Q1

C1

  
2 Q1  Q

C3

  
Q1

C1

    (ii)

We have to eliminate Q1 from these equations to get the
equivalent capacitance Q/VA  VB.

The first equation may be written as

           VA  VB  Q1




1
C1

  
1
C2




  

Q
C2

   or,    
C1C2

C2  C1

 VA  VB  Q1  
C1

C2  C1

 Q.   (iii)

The second equation may be written as

VA  VB  2 Q1




1
C1

  
1
C3




  

Q
C3

   or,   
C1C3

2C1  C3
 VA  VB  Q1  

C1

2C1  C3
 Q.  (iv)

Subtracting (iv) from (iii),

      VA  VB 




C1C2

C2  C1

  
C1C3

2C1  C3




               




C1

C2  C1

  
C1

2C1  C3



 Q

or,   VA  VB [2 C1C2C1  C3  C1C3C2  C1]

       C1[2 C1  C3  C2  C1] Q

or, C  
Q

VA  VB

  
2 C1C2  C2C3  C3C1

C1  C2  2 C3 


 8. Twelve capacitors, each having a capacitance C, are
connected to form a cube (figure 31-W6a). Find the
equivalent capacitance between the diagonally opposite
corners such as A and B.

Solution : Suppose the points A and B are connected to a
battery. The charges appearing on some of the capacitors
are shown in figure (31-W6b). Suppose the positive
terminal of the battery supplies a charge + Q through
the point A. This charge is divided on the three plates
connected to A. Looking from A, the three sides of the
cube have identical properties and hence, the charge will
be equally distributed on the three plates. Each of the
capacitors a, b and c will receive a charge Q/3.
The negative terminal of the battery supplies a charge
– Q through the point B. This is again divided equally
on the three plates connected to B. Each of the capacitors
d, e and f gets equal charge Q/3.

Now consider the capacitors g and h. As the three plates
connected to the point E form an isolated system, their
total charge must be zero. The negative plate of the
capacitor a has a charge – Q/3. The two plates of g and
h connected to E should have a total charge Q/3. By
symmetry, these two plates should have equal charges
and hence each of these has a charge Q/6.

The capacitors a, g and d have charges Q/3, Q/6 and Q/3
respectively.

We have,

     VA  VB  VA  VE  VE  VF  VF  VB
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          = 
Q/3

C
 + 

Q/6
C

 + 
Q/3

C
 = 

5 Q
6 C

or, Ceq = 
Q

VA − VB

 = 
6
5

 C.

 9. The negative plate of a parallel plate capacitor is given
a charge of –20 × 10 – 8 C. Find the charges appearing on
the four surfaces of the capacitor plates.

Solution :

Let the charge appearing on the inner surface of the
negative plate be –Q. The charge on its outer surface
will be Q − 20 × 10 − 8 C.

The charge on the inner surface of the positive plate will
be + Q from Gauss’s law and that on the outer surface
will be –Q as the positive plate is electrically neutral.
The distribution is shown in figure (31-W7).

To obtain the value of Q, consider the electric field at a
point P inside the upper plate.

Field due  to  surface  (1) = Q
2ε0 A

  upward,

due  to  surface  (2) = 
Q

2ε0 A
  upward,

    due  to  surface  (3) = 
Q

2ε0 A
  downward

and  due  to  surface  (4) = 
Q − 20 × 10 − 8 C

2ε0 A
  upward.

As P is a point inside the conductor, the field here must
be zero. Thus,
          Q = − Q + 20 × 10 − 8 C

or,         Q = 10 × 10 − 8 C.

The charges on the four surfaces may be written
immediately from figure (31-W7).

10. Three capacitors of capacitances 2 μF, 3 μF and 6 μF
are connected in series with a 12 V battery. All the
connecting wires are disconnected, the three positive
plates are connected together and the three negative
plates are connected together. Find the charges on the
three capacitors after the reconnection.

Solution : The equivalent capacitance of the three
capacitors joined in series is given by

        
1
C

 = 
1

2 μF
 + 

1
3 μF

 + 1
6 μF

or, C = 1 μF.

The charge supplied by the battery = 1 μF × 12 V
= 12 μC.

As the capacitors are connected in series, 12 μC charge
appears on each of the positive plates and –12 μC on
each of the negative plates. The charged capacitors are
now connected as shown in figure (31-W8).

The 36 μC charge on the three positive plates now
redistribute as Q1, Q2 and Q3 on the three connected
positive plates. Similarly, –36 μC redistributes as –Q1,
–Q2 and –Q3. The three positive plates are now at a
common potential and the three negative plates are also
at a common potential. Let the potential difference
across each capacitor be V. Then

             Q1 = (2 μF) V,
Q2 = (3 μF) V,

and Q3 = (6 μF) V.
Also,       Q1 + Q2 + Q3 = 36 μC.

Solving these equations,

     Q1 = 
72
11

 μC, Q2 = 
108
11

 μC  and  Q3 = 
216
11

 μC.

11. The connections shown in figure (31-W9a) are established
with the switch S open. How much charge will flow
through the switch if it is closed ?

Solution : When the switch is open, capacitors (2) and (3)

are in series. Their equivalent capacitance is 2
3
 μF. The

charge appearing on each of these capacitors is,

therefore, 24 V × 2
3
 μF = 16 μC.

The equivalent capacitance of (1) and (4), which are also

connected in series, is also 2
3
 μF and the charge on each

of these capacitors is also 16 μC. The total charge on the
two plates of (1) and (4) connected to the switch is,
therefore, zero.

The situation when the switch S is closed is shown in
figure (31-W9b). Let the charges be distributed as shown
in the figure. Q1 and Q2 are arbitrarily chosen for the
positive plates of (1) and (2). The same magnitude of
charges will appear at the negative plates of (3) and (4).
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Take the potential at the negative terminal to be zero
and at the switch to be V0.

   Writing equations for the capacitors (1), (2), (3) and (4),
           Q1  24 V  V0  1 F  (i)

Q2  24 V  V0  2 F  (ii)
Q1  V0  1 F  (iii)
Q2  V0  2 F.  (iv)

From (i) and (iii), V0  12 V.

Thus, from (iii) and (iv),

         Q1  12 C  and  Q2  24 C.

The charge on the two plates of (1) and (4) which are
connected to the switch is, therefore, Q2  Q1  12 C.

When the switch was open, this charge was zero. Thus,
12 C of charge has passed through the switch after it
was closed.

12. Each of the three plates shown in figure (31-W10a) has
an area of 200 cm 2 on one side and the gap between the
adjacent plates is 0.2 mm. The emf of the battery is 20 V.
Find the distribution of charge on various surfaces of the
plates. What is the equivalent capacitance of the system
between the terminal points ?

Solution : Suppose the negative terminal of the battery
gives a charge – Q to the plate B. As the situation is
symmetric on the two sides of B, the two faces of the
plate B will share equal charges – Q/2 each. From
Gauss’s law, the facing surfaces will have charges Q/2
each. As the positive terminal of the battery has supplied
just this much charge (+ Q) to A and C, the outer
surfaces of A and C will have no charge. The distribution
will be as shown in figure (31-W10b).
The capacitance between the plates A and B is

     8.85  10  12 F m 1  
200  10  4 m 2

2  10  4 m
 

           8.85  10  10 F  0.885 nF.

Thus, Q
2

  0.885 nF  20 V  17.7 nC.

The distribution of charge on various surfaces may be
written from figure (31-W10b).
The equivalent capacitance is

           
Q

20 V
  1.77 nF.

13. Find the capacitance of the infinite ladder shown in
figure (31-W11).

Solution : As the ladder is infinitely long, the capacitance
of the ladder to the right of the points P, Q is the same
as that of the ladder to the right of the points A, B. If
the equivalent capacitance of the ladder is C1, the given
ladder may be replaced by the connections shown in
figure (31-W12).

The equivalent capacitance between A and B is easily

found to be C  
CC1

C  C1

  But being equivalent to the

original ladder, the equivalent capacitance is also C1.

Thus,           C1  C  
CC1

C  C1

 

or, C1C  C1
 2  C 2  2 CC1

or, C1
 2  CC1  C 2  0

giving C1  
C  C 2  4 C 2

2
  

1  5
2

 C.

Negative value of C1 is rejected.

14. Find the energy stored in the electric field produced by
a metal sphere of radius R containing a charge Q.

Solution : Consider a thin spherical shell of radius x > R
and thickness dx concentric with the given metal sphere.
The energy density in the shell is

       u  
1
2

 0 E 2  
1
2

 0 




Q
40 x 2





 2

.

The volume of the shell is 4x 2dx. The energy contained
in the shell is, therefore,

     dU  
1
2

 0 




Q
40 x 2





 2

  4x 2dx  
Q 2dx

80 x 2 

The energy contained in the whole space outside the
sphere is

U   
R



 
Q 2dx

80 x 2  
Q 2

80 R
 

As the field inside the sphere is zero, this is also the
total energy stored in the field.

20 V

–
Q

/2

Q
/2

A B C

(a) (b)

Q
/2

A B C

–
Q

/2

Figure 31-W10
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Alternative Method

Considering a concentric spherical shell at infinity, we
have a spherical capacitor. The capacitance is
C = 4πε0 R. The energy stored in this capacitor is the
energy stored in the entire electric field. This energy is

            U = 
Q 2

2 C
 = 

Q 2

8πε0 R
 ⋅

15. A capacitor of capacitance C is charged by connecting it
to a battery of emf E  . The capacitor is now disconnected
and reconnected to the battery with the polarity reversed.
Calculate the heat developed in the connecting wires.

Solution : When the capacitor is connected to the battery,
a charge Q = CE  appears on one plate and – Q on the
other. When the polarity is reversed, a charge – Q
appears on the first plate and + Q on the second. A
charge 2Q, therefore, passes through the battery from
the negative to the positive terminal. The battery does
a work
            W = (2Q)E  = 2 CE 2

in the process. The energy stored in the capacitor is the
same in the two cases. Thus, the work done by the
battery appears as heat in the connecting wires. The
heat produced is, therefore, 2CE 2.

16. An uncharged capacitor is connected to a battery. Show
that half the energy supplied by the battery is lost as
heat while charging the capacitor.

Solution : Suppose the capacitance of the capacitor is C
and the emf of the battery is V. The charge given to the
capacitor is Q = CV. The work done by the battery is
          W = QV.

The battery supplies this energy. The energy stored in
the capacitor is

U = 
1
2

 CV 2 = 
1
2

 QV.

The remaining energy QV − 1
2
 QV = 1

2
 QV is lost as heat.

Thus, half the energy supplied by the battery is lost as heat.

17. A parallel-plate capacitor having plate area 100 cm 2 and
separation 1.0 mm holds a charge of 0.12 μC when
connected to a 120 V battery. Find the dielectric constant
of the material filling the gap.

Solution :

The capacitance of the capacitor is

       
0.12 μC
120 V

 = 1.0 × 10 − 9 F.

If K be the dielectric  constant, the capacitance is also

given by 
Kε0 A

d
 ⋅ Thus,

  
K × 8.85 × 10 − 12 F m −1 × 100 × 10 − 4 m 2

1.0 × 10 − 3 m
 = 1.0 × 10 − 9 F

or,             K = 11.3.

18. A parallel-plate capacitor is formed by two plates, each
of area 100 cm 2, separated by a distance of 1 mm. A
dielectric of dielectric constant 5.0 and dielectric strength
1.9 × 10  7 V m −1 is filled between the plates. Find the
maximum charge that can be stored on the capacitor
without causing any dielectric breakdown.

Solution : If Q be the charge on the capacitor, the surface
charge density is σ = Q/A and the electric field is

Q
KAε0

 ⋅ This should not exceed the dielectric strength

1.9 × 10 7 V m −1. Thus, the maximum charge is given by

          
Q

KAε0

 = 1.9 × 10 7 V m −1

or, Q = KAε0 × 1.9 × 10 7 V m −1

= (5.0) (10 − 2 m 2) (8.85 × 10 − 12 F m −1) × (1.9 × 10 7 V m −1)

= 8.4 × 10 − 6 C.

19. The space between the plates of a parallel-plate capacitor
of capacitance C is filled with three dielectric slabs of
identical size as shown in figure (31-W13). If the
dielectric constants of the three slabs are K1, K2 and
K3, find the new capacitance.

Solution : Consider each one third of the assembly as a
separate capacitor. The three positive plates are
connected together at point A and the three negative
plates are connected together at point B. Thus, the three
capacitors are joined in parallel. As the plate area is one
third of the original for each part, the capacitances of
these parts will be K1C/3, K2C/3 and K3C/3. The
equivalent capacitance is, therefore,

          Ceq = (K1 + K2 + K3) 
C
3

 ⋅

20. Figure (31-W14a) shows a parallel-plate capacitor having
square plates of edge a and plate-separation d. The gap
between the plates is filled with a dielectric of dielectric
constant K which varies parallel to an edge as
          K = K0 + αx
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where K and  are constants and x is the distance from
the left end. Calculate the capacitance.

Solution :

Consider a small strip of width dx at a separation x from
the left end (figure 31-W14b). This strip forms a small
capacitor of plate area adx. Its capacitance is

          dC  
K0  x0 adx

d
 

The given capacitor may be divided into such strips with
x varying from 0 to a. All these strips are connected in
parallel. The capacitance of the given capacitor is,

C   
0

a

 
K0  x0 adx

d
 

 
0 a 2

d
 



K0  

a
2



 .

21. A parallel-plate capacitor of capacitance 100 F is
connected to a power supply of 200 V. A dielectric slab
of dielectric constant 5 is now inserted into the gap
between the plates. (a) Find the extra charge flown
through the power supply and the work done by the
supply. (b) Find the change in the electrostatic energy of
the electric field in the capacitor.

Solution : (a) The original capacitance was 100 F. The
charge on the capacitor before the insertion of the
dielectric was, therefore,
        Q1  100 F  200 V  20 mC.

After the dielectric slab is introduced, the capacitance is
increased to 500 F. The new charge on the capacitor is,
therefore, 500 F  200 V  100 mC. The charge flown
through the power supply is, therefore,
100 mC  20 mC  80 mC. The work done by the power
supply is 200 V  80 mC  16 J.

(b) The electrostatic field energy of the capacitor without
the dielectric slab is

       U1  
1
2

 CV 2

       
1
2

  100 F  200 V 2  2 J

and that after the slab is inserted is

U2  
1
2

  500 F  200 V 2  10 J.

Thus, the energy is increased by 8 J.

22. Figure (31-W15) shows a parallel-plate capacitor with
plates of width b and length l. The separation between
the plates is d. The plates are rigidly clamped and
connected to a battery of emf V. A dielectric slab of
thickness d and dielectric constant K is slowly inserted
between the plates. (a) Calculate the energy of the system
when a length x of the slab is introduced into the
capacitor. (b) What force should be applied on the slab

to ensure that it goes slowly into the capacitor ? Neglect
any effect of friction or gravity.

Solution : (a) The plate area of the part with the dielectric
is bx. Its capacitance is

             C1  
K0 bx

d
 

Similarly, the capacitance of the part without the
dielectric is

C2  
0 bl  x

d
 

These two parts are connected in parallel. The
capacitance of the system is, therefore,

        C  C1  C2

 
0 b
d

 l  x K  1 .  (i)

The energy of the capacitor is

       U  
1
2

 CV 2  
0 bV 2

2 d
 [l  x K  1] .

(b) Suppose, the electric field attracts the dielectric slab
with a force F. An external force of equal magnitude F
should be applied in opposite direction so that the plate
moves slowly (no acceleration).

Consider the part of motion in which the dielectric moves
a distance dx further inside the capacitor. The
capacitance increases to C  dC. As the potential
difference remains constant at V, the battery has to
supply a further charge

             dQ  dCV
to the capacitor. The work done by the battery is,
therefore,

         dWb  V dQ  dCV 2.

The external force F does a work

dWe  F dx

during the displacement. The total work done on the
capacitor is

dWb  dWe  dCV 2  Fdx.

This should be equal to the increase dU in the stored
energy. Thus,

       
1
2

 dCV 2  dCV 2  Fdx

or, F  
1
2

 V 2 
dC
dx

 

Kd V

x

Figure 31-W15
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Using equation (i),

          F = 
ε0 bV 2(K − 1)

2d
 ⋅

Thus, the electric field attracts the dielectric into the

capacitor with a force 
ε0 bV 

2(K − 1)
2 d

 and this much force

should be applied in the opposite direction.

23. A parallel-plate capacitor is placed in such a way that
its plates are horizontal and the lower plate is dipped
into a liquid of dielectric constant K and density ρ. Each

plate has an area A. The plates are now connected to a
battery which supplies a positive charge of magnitude Q
to the upper plate. Find the rise in the level of the liquid
in the space between the plates.

Solution :

The situation is shown in figure (31-W16). A charge

−Q 
⎛
⎜
⎝
1 − 1

K

⎞
⎟
⎠
 is induced on the upper surface of the liquid

and Q 
⎛
⎜
⎝
1 − 1

K

⎞
⎟
⎠
 at the surface in contact with the lower

plate. The net charge on the lower plate is

−Q + Q 
⎛
⎜
⎝
1 − 1

K

⎞
⎟
⎠
 = − Q

K
 ⋅ Consider the equilibrium of the

liquid in the volume ABCD. The forces on this liquid are

(a) the force due to the electric field at CD,
(b) the weight of the liquid,
(c) the force due to atmospheric pressure and
(d) the force due to the pressure of the liquid below AB.

As AB is in the same horizontal level as the outside
surface, the pressure here is the same as the
atmospheric pressure. The forces in (c) and (d), therefore,
balance each other. Hence, for equilibrium, the forces in
(a) and (b) should balance each other.

The electric field at CD due to the charge Q is

             E1 = 
Q

2Aε0

in the downward direction. The field at CD due to the
charge −Q/K is 

            E2 = 
Q

2 Aε0 K
also in the downward direction. The net field at CD is

         E1 + E2 = 
(K + 1)Q
2 Aε0 K

 ⋅

The force on the charge −Q 
⎛
⎜
⎝
1 − 1

K

⎞
⎟
⎠
 at CD is

   F = Q ⎛⎜
⎝
1 − 

1
K

⎞
⎟
⎠
 
(K + 1)Q
2 Aε0 K

          = 
(K 2 − 1)Q 2

2 Aε0 K 2  

in the upward direction. The weight of the liquid
considered is hAρg. Thus,

          hAρg = 
(K 2 − 1)Q 2

2 Aε0 K 2  

or, h = 
(K 2 − 1)Q 2

2 A 2 K 2ε0 ρg
 ⋅

QUESTIONS FOR SHORT ANSWER

 1. Suppose a charge +Q1 is given to the positive plate and
a charge –Q2 to the negative plate of a capacitor. What
is the “charge on the capacitor” ?

 2. As C = 
⎛
⎜
⎝
1
V

⎞
⎟
⎠
 Q, can you say that the capacitance C is

proportional to the charge Q ?
 3. A hollow metal sphere and a solid metal sphere of equal

radii are given equal charges. Which of the two will have
higher potential ?

 4. The plates of a parallel-plate capacitor are given equal
positive charges. What will be the potential difference
between the plates ? What will be the charges on the
facing surfaces and on the outer surfaces ?

 5. A capacitor has capacitance C. Is this information
sufficient to know what maximum charge the capacitor
can contain ? If yes, what is this charge ? If no, what
other information is needed ?

 6. The dielectric constant decreases if the temperature is
increased. Explain this in terms of polarization of the
material.

 7. When a dielectric slab is gradually inserted between the
plates of an isolated parallel-plate capacitor, the energy
of the system decreases. What can you conclude about
the force on the slab exerted by the electric field ?
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OBJECTIVE I

 1. A capacitor of capacitance C is charged to a potential V.
The flux of the electric field through a closed surface
enclosing the capacitor is

(a) 
CV
ε0

     (b) 
2 CV

ε0

     (c) 
CV
2ε0

     (d) zero.

 2. Two capacitors each having capacitance C and
breakdown voltage V are joined in series. The
capacitance and the breakdown voltage of the
combination will be
(a) 2 C and 2 V          (b) C/2 and V/2
(c) 2 C and V/2          (d) C/2 and 2 V.

 3. If the capacitors in the previous question are joined in
parallel, the capacitance and the breakdown voltage of
the combination will be
(a) 2 C and 2 V          (b) C and 2 V
(c) 2 C and V            (d) C and V.

 4. The equivalent capacitance of the combination shown in
figure (31-Q1) is
(a) C     (b) 2 C     (c) C/2     (d) none of these.

 5. A dielectric slab is inserted between the plates of an
isolated capacitor. The force between the plates will
(a) increase            (b) decrease
(c) remain unchanged      (d) become zero.

 6. The energy density in the electric field created by a point
charge falls off with the distance from the point charge
as

(a) 
1
r

     (b) 
1
r 2      (c) 

1
r 3      (d) 

1
r 4 ⋅

 7. A parallel-plate capacitor has plates of unequal area.
The larger plate is connected to the positive terminal of
the battery and the smaller plate to its negative
terminal. Let Q+ and Q– be the charges appearing on the
positive and negative plates respectively.
(a) Q+ > Q−     (b) Q+ = Q−     (c) Q+ < Q−

(d) The information is not sufficient to decide the
       relation between Q+ and Q–.

 8. A thin metal plate P is inserted between the plates of
a parallel-plate capacitor of capacitance C in such a way

that its edges touch the two plates (figure 31-Q2). The
capacitance now becomes
(a) C/2     (b) 2 C     (c) 0     (d) indeterminate.

 9. Figure (31-Q3) shows two capacitors connected in series
and joined to a battery. The graph shows the variation
in potential as one moves from left to right on the branch
containing the capacitors.
(a) C1 > C2     (b) C1 = C2     (c) C1 < C2

(d) The information is not sufficient to decide the
       relation between C1 and C2.

10. Two metal plates having charges Q, −Q face each other
at some separation and are dipped into an oil tank. If
the oil is pumped out, the electric field between the
plates will
(a) increase           (b) decrease
(c) remain the same      (d) become zero.

11. Two metal spheres of capacitances C1 and C2 carry some
charges. They are put in contact and then separated.
The final charges Q1 and Q2 on them will satisfy

(a) 
Q1

Q2

 < 
C1

C2

  (b) 
Q1

Q2

 = 
C1

C2

  (c) 
Q1

Q2

 > 
C1

C2

  (d) 
Q1

Q2

 = 
C2

C1

 ⋅

12. Three capacitors of capacitances 6 µF each are available.
The minimum and maximum capacitances, which may
be obtained are
(a) 6 µF, 18 µF        (b) 3 µF, 12 µF 
(c) 2 µF, 12 µF        (d) 2 µF, 18 µF.

OBJECTIVE II

 1. The capacitance of a capacitor does not depend on
(a) the shape of the plates
(b) the size of the plates
(c) the charges on the plates
(d) the separation between the plates.

 2. A dielectric slab is inserted between the plates of an
isolated charged capacitor. Which of the following
quantities will remain the same ?
(a) The electric field in the capacitor
(b) The charge on the capacitor

C

C
C

Figure 31-Q1

P

Figure 31-Q2

V

x
C C1 2

(a) (b)

Figure 31-Q3
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(c) The potential difference between the plates
(d) The stored energy in the capacitor

 3. A dielectric slab is inserted between the plates of a
capacitor. The charge on the capacitor is Q and the
magnitude of the induced charge on each surface of the
dielectric is Q′.
(a) Q′ may be larger than Q.
(b) Q′ must be larger than Q.
(c) Q′ must be equal to Q.
(d) Q′ must be smaller than Q.

 4. Each plate of a parallel plate capacitor has a charge q
on it. The capacitor is now connected to a battery. Now,
(a) the facing surfaces of the capacitor have equal and
      opposite charges
(b) the two plates of the capacitor have equal and
      opposite charges
(c) the battery supplies equal and opposite charges to
      the two plates
(d) the outer surfaces of the plates have equal charges

 5. The separation between the plates of a charged parallel-
plate capacitor is increased. Which of the following
quantities will change ?
(a) Charge on the capacitor
(b) Potential difference across the capacitor
(c) Energy of the capacitor
(d) Energy density between the plates

 6. A parallel-plate capacitor is connected to a battery. A
metal sheet of negligible thickness is placed between the
plates. The sheet remains parallel to the plates of the
capacitor.
(a) The battery will supply more charge.
(b) The capacitance will increase.
(c) The potential difference between the plates will
       increase.
(d) Equal and opposite charges will appear on the two
       faces of the metal plate.

 7. Following operations can be performed on a capacitor:
X – connect the capacitor to a battery of emf E .
Y – disconnect the battery.
Z – reconnect the battery with polarity reversed.
W – insert a dielectric slab in the capacitor.
(a) In XYZ (perform X, then Y, then Z) the stored
      electric energy remains unchanged and no thermal
      energy is developed.
(b) The charge appearing on the capacitor is greater after
      the action XWY than after the action XYW.
(c) The electric energy stored in the capacitor is greater
      after the action WXY than after the action XYW.
(d) The electric field in the capacitor after the action XW
      is the same as that after WX.

EXERCISES

 1. When 1.0 × 10 12 electrons are transferred from one
conductor to another, a potential difference of 10 V
appears between the conductors. Calculate the
capacitance of the two-conductor system.

 2. The plates of a parallel-plate capacitor are made of
circular discs of radii 5.0 cm each. If the separation
between the plates is 1.0 mm, what is the
capacitance ?

 3. Suppose, one wishes to construct a 1.0 farad capacitor
using circular discs. If the separation between the discs be
kept at 1.0 mm, what would be the radius of the discs ?

 4. A parallel-plate capacitor having plate area 25 cm 2 and
separation 1.00 mm is connected to a battery of 6.0 V.
Calculate the charge flown through the battery. How much
work has been done by the battery during the process ?

 5. A parallel-plate capacitor has plate area 25.0 cm 2 and
a separation of 2.00 mm between the plates. The
capacitor is connected to a battery of 12.0 V. (a) Find
the charge on the capacitor. (b) The plate separation is
decreased to 1.00 mm. Find the extra charge given by
the battery to the positive plate.

 6. Find the charges on the three capacitors connected to a
battery as shown in figure (31-E1). Take C1 = 2.0 μF,
C2 = 4.0 μF, C3 = 6.0 μF and V = 12 volts.

 7. Three capacitors having capacitances 20 μF, 30 μF and
40 μF are connected in series with a 12 V battery. Find
the charge on each of the capacitors. How much work
has been done by the battery in charging the capacitors ?

 8. Find the charge appearing on each of the three
capacitors shown in figure (31-E2).

 9. Take C1 = 4.0 μF and C2 = 6.0 μF  in figure (31-E3).
Calculate the equivalent capacitance of the combination
between the points indicated.
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10. Find the charge supplied by the battery in the
arrangement shown in figure (31-E4).

11. The outer cylinders of two cylindrical capacitors of
capacitance 2.2 μF each, are kept in contact and the inner
cylinders are connected through a wire. A battery of emf
10 V is connected as shown in figure (31-E5). Find the total
charge supplied by the battery to the inner cylinders.

12. Two conducting spheres of radii R1 and R2 are kept widely
separated from each other. What are their individual
capacitances ? If the spheres are connected by a metal wire,
what will be the capacitance of the combination ? Think in
terms of series–parallel connections.

13. Each of the capacitors shown in figure (31-E6) has a
capacitance of 2 μF. Find the equivalent capacitance of
the assembly between the points A and B. Suppose, a
battery of emf 60 volts is connected between A and B.
Find the potential difference appearing on the individual
capacitors.

14. It is required to construct a 10 μF capacitor which can
be connected across a 200 V battery. Capacitors of
capacitance 10 μF are available but they can withstand
only 50 V. Design a combination which can yield the
desired result.

15. Take the potential of the point B in figure (31-E7) to be
zero. (a) Find the potentials at the points C and D. (b)
If a capacitor is connected between C and D, what charge
will appear on this capacitor ?

16. Find the equivalent capacitance of the system shown in
figure (31-E8) between the points a and b.

17. A capacitor is made of a flat plate of area A and a second
plate having a stair-like structure as shown in figure
(31-E9). The width of each stair is a and the height is
b. Find the capacitance of the assembly.

18. A cylindrical capacitor is constructed using two coaxial
cylinders of the same length 10 cm and of radii 2 mm
and 4 mm. (a) Calculate the capacitance. (b) Another
capacitor of the same length is constructed with
cylinders of radii 4 mm and 8 mm. Calculate the
capacitance.

19. A 100 pF capacitor is charged to a potential difference
of 24 V. It is connected to an uncharged capacitor of
capacitance 20 pF. What will be the new potential
difference across the 100 pF capacitor ?

20. Each capacitor shown in figure (31-E10) has a
capacitance of 5.0 μF. The emf of the battery is 50 V.
How much charge will flow through AB if the switch S
is closed ?

21. The particle P shown in figure (31-E11) has a mass of
10 mg and a charge of – 0.01 μC. Each plate has a
surface area 100 cm 2 on one side. What potential
difference V should be applied to the combination to hold
the particle P in equilibrium ?

22. Both the capacitors shown in figure (31-E12) are made
of square plates of edge a. The separations between the
plates of the capacitors are d1 and d2 as shown in the
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figure. A potential difference V is applied between the
points a and b. An electron is projected between the
plates of the upper capacitor along the central line. With
what minimum speed should the electron be projected
so that it does not collide with any plate ? Consider only
the electric forces.

23. The plates of a capacitor are 2.00 cm apart. An electron–
proton pair is released somewhere in the gap between
the plates and it is found that the proton reaches the
negative plate at the same time as the electron reaches
the positive plate. At what distance from the negative
plate was the pair released ? 

24. Convince yourself that parts (a), (b) and (c) of figure
(31-E13) are identical. Find the capacitance between the
points A and B of the assembly.

25. Find the potential difference Va  Vb between the points
a and b shown in each part of the figure (31-E14).

26. Find the equivalent capacitances of the combinations
shown in figure (31-E15) between the indicated points.

27. Find the capacitance of the combination shown in figure
(31-E16) between A and B.

28. Find the equivalent capacitance of the infinite ladder
shown in figure (31-E17) between the points A and B.

29. A finite ladder is constructed by connecting several
sections of 2 F, 4 F capacitor combinations as shown
in figure (31-E18). It is terminated by a capacitor of
capacitance C. What value should be chosen for C, such
that the equivalent capacitance of the ladder between
the points A and B becomes independent of the number
of sections in between ?

30. A charge of + 2.0  10 – 8 C is placed on the positive plate
and a charge of – 1.0  10 – 8 C on the negative plate of
a parallel-plate capacitor of capacitance 1.2  10 – 3 F.
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Calculate the potential difference developed between
the plates.

31. A charge of 20 C is placed on the positive plate of an
isolated parallel-plate capacitor of capacitance 10 F.
Calculate the potential difference developed between
the plates.

32.  A charge of 1 C is given to one plate of a parallel-plate
capacitor of capacitance 0.1 F and a charge of 2 C is
given to the other plate. Find the potential difference
developed between the plates.

33. Each of the plates shown in figure (31-E19) has surface
area (96/0)  10 – 12 F–m on one side and the separation
between the consecutive plates is 4.0 mm. The emf of
the battery connected is 10 volts. Find the magnitude of
the charge supplied by the battery to each of the plates
connected to it.

34. The capacitance between the adjacent plates shown in
figure (31-E20) is 50 nF. A charge of 1.0 C is placed on
the middle plate. (a) What will be the charge on the outer
surface of the upper plate ? (b) Find the potential difference
developed between the upper and the middle plates.

35. Consider the situation of the previous problem. If 1.0 C
is placed on the upper plate instead of the middle, what
will be the potential difference between (a) the upper
and the middle plates and (b) the middle and the lower
plates ?

36. Two capacitors of capacitances 20.0 pF and 50.0 pF are
connected in series with a 6.00 V battery. Find (a) the
potential difference across each capacitor and (b) the
energy stored in each capacitor.

37. Two capacitors of capacitances 4.0 F and 6.0 F are
connected in series with a battery of 20 V. Find the
energy supplied by the battery.

38. Each capacitor in figure (31-E21) has a capacitance of
10 F. The emf of the battery is 100 V. Find the energy
stored in each of the four capacitors.

39. A capacitor with stored energy 4.0 J is connected with
an identical capacitor with no electric field in between.
Find the total energy stored in the two capacitors.

40. A capacitor of capacitance 2.0 F is charged to a
potential difference of 12 V. It is then connected to an
uncharged capacitor of capacitance 4.0 F as shown in
figure (31-E22). Find (a) the charge on each of the two
capacitors after the connection, (b) the electrostatic
energy stored in each of the two capacitors and (c) the
heat produced during the charge transfer from one
capacitor to the other.

41. A point charge Q is placed at the origin. Find the
electrostatic energy stored outside the sphere of radius
R centred at the origin.

42. A metal sphere of radius R is charged to a potential V.
(a) Find the electrostatic energy stored in the electric
field within a concentric sphere of radius 2 R. (b) Show
that the electrostatic field energy stored outside the
sphere of radius 2 R equals that stored within it.

43. A large conducting plane has a surface charge density
1.0  10 – 4 C m –2. Find the electrostatic energy stored
in a cubical volume of edge 1.0 cm in front of the plane.

44. A parallel-plate capacitor having plate area 20 cm 2 and
separation between the plates 1.00 mm is connected to
a battery of 12.0 V. The plates are pulled apart to
increase the separation to 2.0 mm. (a) Calculate the
charge flown through the circuit during the process. (b)
How much energy is absorbed by the battery during the
process ? (c) Calculate the stored energy in the electric
field before and after the process. (d) Using the
expression for the force between the plates, find the
work done by the person pulling the plates apart. (e)
Show and justify that no heat is produced during this
transfer of charge as the separation is increased.

45. A capacitor having a capacitance of 100 F is charged
to a potential difference of 24 V. The charging battery
is disconnected and the capacitor is connected to another
battery of emf 12 V with the positive plate of the
capacitor joined with the positive terminal of the battery.
(a) Find the charges on the capacitor before and after
the reconnection. (b) Find the charge flown through the
12 V battery. (c) Is work done by the battery or is it
done on the battery ? Find its magnitude. (d) Find the
decrease in electrostatic field energy. (e) Find the heat
developed during the flow of charge after reconnection.

46. Consider the situation shown in figure (31-E23). The
switch S is open for a long time and then closed. (a) Find
the charge flown through the battery when the switch
S is closed. (b) Find the work done by the battery.
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(c) Find the change in energy stored in the capacitors.
(d) Find the heat developed in the system.

47. A capacitor of capacitance 5.00 F is charged to 24.0 V
and another capacitor of capacitance 6.0 F is charged
to 12.0 V. (a) Find the energy stored in each capacitor.
(b) The positive plate of the first capacitor is now
connected to the negative plate of the second and vice
versa. Find the new charges on the capacitors. (c) Find
the loss of electrostatic energy during the process.
(d) Where does this energy go ?

48. A 5.0 F capacitor is charged to 12 V. The positive plate
of this capacitor is now connected to the negative
terminal of a 12 V battery and vice versa. Calculate the
heat developed in the connecting wires.

49. The two square faces of a rectangular dielectric slab
(dielectric constant 4.0) of dimensions  20 cm  20 cm
 1.0 mm are metal-coated. Find the capacitance
between the coated surfaces.

50. If the above capacitor is connected across a 6.0 V battery,
find (a) the charge supplied by the battery, (b) the
induced charge on the dielectric and (c) the net charge
appearing on one of the coated surfaces.

51. The separation between the plates of a parallel-plate
capacitor is 0.500 cm and its plate area is 100 cm 2. A
0.400 cm thick metal plate is inserted into the gap with
its faces parallel to the plates. Show that the capacitance
of the assembly is independent of the position of the
metal plate within the gap and find its value.

52. A capacitor stores 50 C charge when connected across
a battery. When the gap between the plates is filled with
a dielectric, a charge of 100 C flows through the
battery. Find the dielectric constant of the material
inserted.

53. A parallel-plate capacitor of capacitance 5 F is
connected to a battery of emf 6 V. The separation
between the plates is 2 mm. (a) Find the charge on the
positive plate. (b) Find the electric field between the
plates. (c) A dielectric slab of thickness 1 mm and
dielectric constant 5 is inserted into the gap to occupy
the lower half of it. Find the capacitance of the new
combination. (d) How much charge has flown through
the battery after the slab is inserted ?

54. A parallel-plate capacitor has plate area 100 cm 2 and
plate separation 1.0 cm. A glass plate (dielectric constant
6.0) of thickness 6.0 mm and an ebonite plate (dielectric
constant 4.0) are inserted one over the other to fill the
space between the plates of the capacitor. Find the new
capacitance.

55. A parallel-plate capacitor having plate area 400 cm 2 and
separation between the plates 1.0 mm is connected to a
power supply of 100 V. A dielectric slab of thickness
1.0 mm and dielectric constant 5.0 is inserted into the
gap. (a) Find the increase in electrostatic energy. (b) If
the power supply is now disconnected and the dielectric
slab is taken out, find the further increase in energy.
(c) Why does the energy increase in inserting the slab
as well as in taking it out ?

56. Find the capacitances of the capacitors shown in figure
(31-E24). The plate area is A and the separation between

the plates is d. Different dielectric slabs in a particular
part of the figure are of the same thickness and the
entire gap between the plates is filled with the dielectric
slabs.

57. A capacitor is formed by two square metal-plates of edge
a, separated by a distance d. Dielectrics of dielectric
constants K1 and K2 are filled in the gap as shown in
figure (31-E25). Find the capacitance.

58. Figure (31-E26) shows two identical parallel plate
capacitors connected to a battery through a switch S.
Initially, the switch is closed so that the capacitors are
completely charged. The switch is now opened and the
free space between the plates of the capacitors is filled
with a dielectric of dielectric constant 3. Find the ratio
of the initial total energy stored in the capacitors to the
final total energy stored.

59. A parallel-plate capacitor of plate area A and plate
separation d is charged to a potential difference V and
then the battery is disconnected. A slab of dielectric
constant K is then inserted between the plates of the
capacitor so as to fill the space between the plates. Find
the work done on the system in the process of inserting
the slab.

60. A capacitor having a capacitance of 100 F is charged
to a potential difference of 50 V. (a) What is the
magnitude of the charge on each plate ? (b) The charging
battery is disconnected and a dielectric of dielectric
constant 2.5 is inserted. Calculate the new potential
difference between the plates. (c) What charge would
have produced this potential difference in absence of the
dielectric slab. (d) Find the charge induced at a surface
of the dielectric slab.

61. A sphercial capacitor is made of two conducting
spherical shells of radii a and b. The space between the
shells is filled with a dielectric of dielectric constant K
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up to a radius c as shown in figure (31-E27). Calculate
the capacitance.

62. Consider an assembly of three conducting concentric
spherical shells of radii a, b and c as shown in figure
(31-E28). Find the capacitance of the assembly between
the points A and B.

63. Suppose the space between the two inner shells of the

previous problem is filled with a dielectric of dielectric
constant K. Find the capacitance of the system between
A and B.

64. An air-filled parallel-plate capacitor is to be constructed
which can store 12 C of charge when operated at
1200 V. What can be the minimum plate area of the
capacitor? The dielectric strength of air is 3  10 6 V m1.

65. A parallel-plate capacitor with the plate area 100 cm 2

and the separation between the plates 1.0 cm is
connected across a battery of emf 24 volts. Find the force
of attraction between the plates.

66. Consider the situation shown in figure (31-E29). The
width of each plate is b. The capacitor plates are rigidly
clamped in the laboratory and connected to a battery of
emf E . All surfaces are frictionless. Calculate the value
of M for which the dielectric slab will stay in
equilibrium.

67. Figure (31-E30) shows two parallel plate capacitors with
fixed plates and connected to two batteries. The
separation between the plates is the same for the two
capacitors. The plates are rectangular in shape with
width b and lengths l1 and l2. The left half of the
dielectric slab has a dielectric constant K1 and the right
half K2. Neglecting any friction, find the ratio of the emf
of the left battery to that of the right battery for which
the dielectric slab may remain in equilibrium.

68. Consider the situation shown in figure (31-E31). The

plates of the capacitor have plate area A and are
clamped in the laboratory. The dielectric slab is released
from rest with a length a inside the capacitor. Neglecting
any effect of friction or gravity, show that the slab will
execute periodic motion and find its time period.

ANSWERS

OBJECTIVE I

 1. (d)  2. (d)  3. (c)  4. (b)  5. (c)  6. (d)
 7. (b)  8. (d)  9. (c) 10. (a) 11. (b) 12. (d)

OBJECTIVE II

 1. (c)  2. (b)  3. (d)  4. (a), (c), (d)  5. (b), (c)
 6. (d)  7. (b), (c), (d)

EXERCISES

 1. 1.6  10  8 F

 2. 6.95  10  5 F
 3. 6 km

 4. 1.33  10  10 C, 8.0  10  10 J

 5. (a) 1.33  10  10 C (b) 1.33  10  10 C
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 6. 24 μC, 48 μC, 72 μC

 7. 110 μC  on  each,  1.33 × 10 − 3 J

 8. 48 μC on the 8 μF capacitor and 24 μC on each of the
    4 μF capacitors
 9. (a) 5 μF  (b) 10 μF
10. 110 μC
11. 44 μC
12. 4πε0 R1, 4πε0 R2;  4πε0 (R1 + R2)
13. 2 μF, 20 V
15. (a) 50/3 μV at each point (b) zero

16. C3 + 
2 C1C2

C1 + C2

17. 
ε0 A(3 d 2 + 6 bd + 2 b 2)

3 d(d + b) (d + 2 b)
 

18. (a) 8 pF (b) same as in (a)
19. 20 V

20. 3.3 × 10 − 4 C
21. 43 mV

22. 
⎛
⎜
⎝

Vea 2

md1(d1 + d2)
⎞
⎟
⎠

 1/2

23. 1.08 × 10 − 3 cm

24. 2.25 μF

25. (a) 
12
11

 V (b) – 8 V (c) zero (d) – 10.3 V

26. (a) 
11
6

 μF (b) 
11
4

 μF (c) 8 μF (d) 8 μF

27. 1 μF
28. 2 μF
29. 4 μF

30. 12.5 V
31. 1 V
32. 5 V

33. 0.16 μC

34. (a) 0.50 μC (b) 10 V
35. (a) 10 V (b) 10 V

36. (a) 1.71 V, 4.29 V (b) 184 pJ, 73.5 pJ
37. 960 μJ
38. 8 mJ in (a) and (d), 2 mJ in (b) and (c)

39. 2.0 J
40. (a) 8 μC, 16 μC (b) 16 μJ, 32 μJ, (c) 96 μJ

41. 
Q 2

8πε0 R
 

42. (a) πε0 RV 2

43. 5.6 × 10 − 4 J

44. (a) 1.06 × 10 − 10 C (b) 12.7 × 10 − 10 J

    (c) 12.7 × 10 − 10 J, 6.35 × 10 − 10 J (d) 6.35 × 10 − 10 J
45. (a) 2400 μC, 1200 μC (b) 1200 μC (c) 14.4 mJ

    (d) 21.6 mJ (e) 7.2 mJ
46. (a)  CE /2, (b) CE 2/2 (c) CE 2/4 (d) CE 2/4

47. (a) 1.44 mJ, 0.432 mJ (b) 21.8 μC, 26.2 μC, (c) 1.77 mJ

48. 1.44 mJ

49. 1.42 nF

50. (a) 8.5 nC (b) 6.4 nC (c) 2.1 nC
51. 88 pF
52. 3

53. (a) 30 μC (b) 3 × 10 3 V m −1 (c) 8.3 μF (d) 20 μC
54. 44 pF

55. (a) 1.18 μJ (b) 1.97 μJ

56. (a) 
2 K1K2ε0 A
d(K1 + K2)

  (b) 
3ε0A K1K2K3

d(K1K2 + K2K3 + K3K1)
 

    (c) 
ε0 A
2 d

 (K1 + K2)

57. 
ε0 K1K2a 2 ln 

K1

K2

(K1 − K2)d
 

58. 3 : 5

59. 
ε0 AV 2

2 d
 
⎛
⎜
⎝
1
K

 − 1
⎞
⎟
⎠

60. (a) 5 mC (b) 20 V (c) 2 mC (d) 3 mC

61. 
4πε0 Kabc

Ka(b − c) + b(c − a)

62. 
4πε0 ac
c − a

63. 
4πε0 Kabc

Ka(c − b) + c(b − a)

64. 0.45 m 2

65. 2.5 × 10 − 7 N

66. 
ε0 b E 2(K − 1)

2 dg

67. √⎯⎯⎯K2 − 1
K1 − 1

68. 8 √⎯⎯⎯⎯⎯(l − a) lmd
ε0 AE 2(K − 1)
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CHAPTER 32

ELECTRIC CURRENT IN CONDUCTORS

32.1 ELECTRIC CURRENT AND CURRENT DENSITY

When there is a transfer of charge from one side
of an area to the other, we say that there is an electric
current through the area. If the moving charges are
positive, the current is in the direction of motion. If
they are negative, the current is opposite to the
direction of motion. If a charge Q crosses an area in
time t, we define the average electric current through
the area during this time as

           i

  

Q
t

 

The current at time t is

 i  lim
t0 

 
Q
t

  
dQ
dt

   (32.1)

Thus, electric current through an area is the rate
of transfer of charge from one side of the area to the
other. The SI unit of current is ampere. If one coulomb
of charge crosses an area in one second, the current is
one ampere. It is one of the seven base units accepted
in SI.

We shall now define a vector quantity known as
electric current density at a point. To define the current
density at a point P, we draw a small area S through
P perpendicular to the flow of charges (figure 32.1a).
If i be the current through the area S, the average
current density is

j

  

i
S

 

The current density at the point P is

j  lim
S0

 
i
S

  
di
dS

 

The direction of the current density is the same as
the direction of the current. Thus, it is along the
motion of the moving charges if the charges are
positive and opposite to the motion of the charges if
the charges are negative. If a current i is uniformly
distributed over an area S and is perpendicular to it,

            j  
i
S

   (32.2)

Now let us consider an area S which is not
necessarily perpendicular to the current (figure 32-1b).
If the normal to the area makes an angle  with the
direction of the current, the current density is,

           j  
i

S cos
or, i  j S cos

where i is the current through S. If S


 be the area-
vector corresponding to the area S, we have

i  j

S


.
For a finite area,

i    jdS


.  (32.3)

Note carefully that an electric current has
direction as well as magnitude but it is not a vector
quantity. It does not add like vectors. The current
density is a vector quantity.

Example 32.1

   An electron beam has an aperture 1.0 mm 2. A total of
6.0  10 16 electrons go through any perpendicular cross
section per second. Find (a) the current and (b) the
current density in the beam.

Solution :

(a) The total charge crossing a perpendicular cross
section in one second is

           q  ne

 6.0  10 16  1.6  10  19 C

 9.6  10  3 C.

The current is
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      i = 
q
t

      = 
9.6 × 10 − 3 C

1 s
 = 9.6 × 10 − 3 A.

As the charge is negative, the current is opposite to the
direction of motion of the beam.

(b) The current density is

      j = 
i
S

 = 
9.6 × 10 − 3 A

1.0 mm 2  = 9.6 × 10 3 A m −2.

Electric current can be obtained in a variety of
ways. When a metal is heated to high temperatures,
it emits electrons. These electrons travel in space.
Considering any area perpendicular to their velocity,
there is a current through it.

In many solutions, positive and negative ions
wander. If the solution is placed in an electric field,
the positive ions move (inside the solution) along the
field and the negative ions move opposite to the field.
Both movements contribute to a current in the
direction of the field. 

When a battery is connected across a capacitor,
charges flow from the battery to the capacitor through
the connecting wires. There is a current through any
cross section of the wires as long as the charges keep
going to the plates.

In this chapter, we shall study the electric current
in a conductor when an electric field is established
inside it.

32.2 DRIFT SPEED

A conductor contains a large number of loosely
bound electrons which we call free electrons or
conduction electrons. The remaining material is a
collection of relatively heavy positive ions which we
call lattice. These ions keep on vibrating about their
mean positions. The average amplitude depends on the
temperature. Occasionally, a free electron collides or
interacts in some other fashion with the lattice. The
speed and direction of the electron changes randomly
at each such event. As a result, the electron moves in
a zig-zag path. As there is a large number of free
electrons moving in random directions, the number of
electrons crossing an area ∆S from one side very nearly
equals the number crossing from the other side in any
given time interval. The electric current through the
area is, therefore, zero.

When there is an electric field inside the conductor,
a force acts on each electron in the direction opposite
to the field. The electrons get biased in their random
motion in favour of the force. As a result, the electrons
drift slowly in this direction. At each collision, the

electron starts afresh in a random direction with a
random speed but gains an additional velocity v′ due
to the electric field. This velocity v′ increases with time
and suddenly becomes zero as the electron makes a
collision with the lattice and starts afresh with a
random velocity. As the time t between successive
collisions is small, the electron slowly and steadily
drifts opposite to the applied field (figure 32.2). If the
electron drifts a distance l in a long time t, we define
drift speed as

             vd = 
l
t
 ⋅

If τ be the average time between successive
collisions, the distance drifted during this period is

       l = 
1
2

 a(τ) 2 = 
1
2





eE
m




 (τ) 2.

The drift speed is

vd = 
l
τ
 = 

1
2





eE
m




 τ.

It is proportional to the electric field E and to the
average collision-time τ.

The random motion of free electrons does not
contribute to the drift of these electrons. Also, the
average collision-time is constant for a given material
at a given temperature. We, therefore, make the
following assumption for our present purpose of
discussing electric current.

When no electric field exists in a conductor, the
free electrons stay at rest (vd = 0) and when a field E
exists, they move with a constant velocity

vd = 
eτ

2 m
 E = kE … (32.4)

opposite to the field. The constant k depends on the
material of the conductor and its temperature.

Let us now find the relation between the current
density and the drift speed. Consider a cylindrical
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conductor of cross-sectional area A in which an electric
field E exists. Consider a length vd t of the conductor
(figure 32.3). The volume of this portion is Avdt. If
there are n free electrons per unit volume of the wire,
the number of free electrons in this portion is
nAvd t.  All these electrons cross the area A in time
t. Thus, the charge crossing this area in time t is

        Q  nAvd t e

or, i  
Q
t

  nAvd e

   and j  
i
A

  nevd.  (32.5)

Example 32.2

   Calculate the drift speed of the electrons when 1 A of
current exists in a copper wire of cross section 2 mm 2.
The number of free electrons in 1 cm 3 of copper is
8.5  10 22.

Solution : We have
          j  nevd

or, vd  
j

n e
  

i
A ne

  
1 A

2  10  6 m 2 8.5  10 22  10 6 m  3 1.6  10  19 C

 0.036 mm s 1.

We see that the drift speed is indeed small.

32.3 OHM’S LAW

Using equations (32.4) and (32.5),

          j  nevd  
ne 2
2 m

 E

   or, j  E  (32.6)

where  depends only on the material of the conductor
and its temperature. This constant is called the
electrical conductivity of the material. Equation (32.6)
is known as Ohm’s law.

The resistivity of a material is defined as

   
1


   (32.7)

Ohm’s law tells us that the conductivity (or resistivity)
of a material is independent of the electric field
existing in the material. This is valid for conductors
over a wide range of field.

Suppose we have a conductor of length l and
uniform cross sectional area A (figure 32.4a). Let us
apply a potential difference V between the ends of the
conductor. The electric field inside the conductor is
E  V/l. If the current in the conductor is i, the current

density is j  i
A

  Ohm’s law j  E then becomes

          
i
A

   
V
l

   or, V  
1


 
l
A

 i   
l
A

 i

   or, V  R i  (32.8)

   where         R   
l
A

  (32.9)

is called the resistance of the given conductor. The
quantity 1/R is called conductance.

Equation (32.8) is another form of Ohm’s law which
is widely used in circuit analysis. The unit of resistance
is called ohm and is denoted by the symbol . An object
of conducting material, having a resistance of desired
value, is called a resistor. A resistor is represented by
the symbol shown in figure (32.4b).

From equation (32.9), the unit of resistivity  is
ohm metre, also written as m. The unit of
conductivity  is (ohm m) – 1 written as mho m 1.

Example 32.3

   Calculate the resistance of an aluminium wire of length
50 cm and cross sectional area 2.0 mm 2. The resistivity
of aluminium is  2.6  10 – 8 m.

Solution :

The resistance is R   l
A

      
2.6  10  8 m  0.50 m

2  10  6 m 2   0.0065 .

We arrived at Ohm’s law (equation 32.6 or 32.8)
by making several assumptions about the existence
and behaviour of the free electrons. These assumptions
are not valid for semiconductors, insulators, solutions,
etc. Ohm’s law cannot be applied in such cases.

Colour Code for Resistors

Resistors of different values are commercially
available. To make a resistor, carbon with a suitable
binding agent is molded into a cylinder. Wire leads are

A E

i

V

(a) (b)

Figure 32.4

Figure 32.5
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attached to this cylinder and the entire resistor is
encased in a ceramic or plastic jacket. The two leads
connect the resistor to a circuit. These resistors are
widely used in electronic circuits such as those for
radios, amplifiers, etc. The value of the resistance is
indicated by four coloured-bands, marked on the
surface of the cylinder (figure 32.5). The meanings of
the four positions of the bands are shown in figure
(32.5) and the meanings of different colours are given
in table (32.1).

Table 32.1 : Resistance codes
(resistance given in ohm)

Colour Digit Multiplier Tolerance
Black 0 1
Brown 1 10
Red 2 102

Orange 3 103

Yellow 4 104

Green 5 105

Blue 6 106

Violet 7 107

Gray 8 108

White 9 109

Gold 0.1 5%
Silver 0.01 10%

For example, suppose the colours on the resistor
shown in figure (32.5) are brown, yellow, green and
gold as read from left to right. Using table (32.1), the
resistance is

     (14 × 10 5 ± 5%)Ω = (1.4 ± 0.07) MΩ.

Sometimes, the tolerance band is missing from the
code so that there are only three bands. This means
the tolerance is 20%.

32.4 TEMPERATURE DEPENDENCE
    OF RESISTIVITY

As the temperature of a conductor is increased, the
thermal agitation increases and the collisions become
more frequent. The average time τ between the
successive collisions decreases and hence the drift
speed decreases. Thus, the conductivity decreases and
the resistivity increases as the temperature increases.
For small temperature variations, we can write for
most of the materials,

       ρ(T) = ρ(T0) [1 + α(T − T0)]

where ρ(T)  and  ρ(T0) are resistivities at temperatures
T and T0 respectively and α is a constant for the given
material. In fact, α depends to a small extent on the
temperature. The constant α is called the temperature
coefficient of resistivity. Table (32.2) lists the resistivity

at room temperature and the average value of α for
some materials.

Table 32.2 : Resistivities of different materials

Material ρ(Ωm)  α(K − 1)

Silver 1.47 × 10 {− 8   0.0038

Copper 1.72 × 10 − 8   0.0039

Gold 2.35 × 10 − 8   0.0034

Aluminium 2.63 × 10 − 8   0.0039

Tungsten 5.51 × 10 − 8   0.0045

Nickel 86.84 × 10 − 8   0.0060

Iron 9.71 × 10 − 8   0.0050

Magnesium 44 × 10 − 8   0.0000

Mercury 96 × 10 − 8   0.0009

Nichrome 100 × 10 − 8   0.0004

Silicon 640 – 0.075

Germanium 0.46 – 0.048

Fused quartz 7.5 × 10 17

The resistance of a given conductor depends on its
length and area of cross section besides the resistivity
(equation 32.9). As temperature changes, the length
and the area also change. But these changes are quite
small and the factor l/A may be treated as constant.
Then R ∝ ρ and hence

        R(T) = R(T0) [1 + α(T − T0)].
From table (32.2), we see that resistivity varies

over a wide range. We have metals with resistivity of
the order of 10 – 8 Ωm. They are good conductors of
electricity. Fused quartz has resistivity as high as
7.5 × 10 17 Ωm. This is an insulator. Then we have
materials like silicon and germanium which have
resistivity much smaller than that of insulators but
much larger than that of the metals. They are called
semiconductors.

Thermistor

The temperature coefficient of resistivity is
negative for semiconductors. This means that the
resistivity decreases as we raise the temperature of
such a material. The picture of a large number of free
electrons colliding with each other and with the lattice
is not adequate for semiconductors. The magnitude of
the temperature coefficient of resistivity is often quite
large for a semiconducting material. This fact is used
to construct thermometers to detect small changes in
temperatures. Such a device is called a thermistor.
Thermistors are usually prepared from oxides of
various metals such as nickel, iron, cobalt, copper, etc.
These compounds are also semiconductors. A
thermistor is usually enclosed in a capsule with epoxy
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surface. The thermistor is dipped in the bath whose
temperature is to be measured. The circuit is
completed by connecting a battery. The current
through the thermistor is measured. If the
temperature increases, the current also increases
because of the decrease in resistivity. Thus, by noting
the change in the current, one can find the change in
temperature. A typical thermistor can easily measure
a change in temperature of the order of 10 − 3 °C.

Superconductors

There are certain materials for which the
resistivity suddenly becomes zero below a certain
temperature. This temperature is called the critical
temperature for this transition. The material in this
state is called a superconductor. Above the critical
temperature, the resistivity follows the trend of a
normal metal (figure 32.6). This phenomenon was
observed for mercury in 1911 by H Kamerlingh Onnes.
The critical temperature for mercury is 4.2 K.

If an electric current is set up in a superconducting
material, it can persist for long time without any
applied emf. Steady currents have been observed for
several years in superconducting loops without any
observable decrease. Superconductors are used to
construct very strong magnets. This has useful
applications in material science research and
high-energy particle physics. Possible applications of
superconductors are ultrafast computer switches and
transmission of electric power through
superconducting power lines. However, the
requirement of low temperature is posing difficulty.
Scientists are putting great effort to construct
compounds and alloys which would be superconducting
at room temperature (300 K). Superconductivity at
around 125 K has already been achieved and efforts
are on to improve upon this.

32.5 BATTERY AND EMF

A battery is a device which maintains a potential
difference between its two terminals A and B. Figure
(32.7) shows a schematic diagram of a battery. Some
internal mechanism exerts forces on the charges of the
battery material. This force drives the positive charges

of the battery material towards A and the negative
charges of the battery material towards B. We show

the force on a positive charge q as F
→

b. As positive
charge accumulates on A and negative charge on B, a
potential difference develops and grows between A and

B. An electric field E
→

 is developed in the battery

material from A to B and exerts a force F
→

e = qE
→

 on a
charge q. The direction of this force is opposite to that

of F
→

b. In steady state, the charge accumulation on A
and B is such that Fb = Fe. No further accumulation
takes place.

If a charge q is taken from the terminal B to the
terminal A, the work done by the battery force
Fb  is  W = Fb d where d is the distance between A
and B. The work done by the battery force per unit
charge is

            E = 
W
q

 = 
Fbd
q

 ⋅ … (32.10)

This quantity is called the emf of the battery. The
full form of emf is electromotive force. The name is
misleading in the sense that emf is not a force, it is
work done/charge. We shall continue to denote this
quantity by the short name emf. If nothing is
connected externally between A and B,

Fb = Fe = qE

or, Fbd = qEd = qV,

where V = Ed is the potential difference between the
terminals. Thus,

E = 
Fbd
q

 = V.

Thus, the emf of a battery equals the potential
difference between its terminals when the terminals are
not connected externally.

Potential difference and emf are two different
quantities whose magnitudes may be equal in certain
conditions. The emf is the work done per unit charge
by the battery force Fb which is nonelectrostatic in
nature. The potential difference originates from the
electrostatic field created by the charges accumulated
on the terminals of the battery.

A battery is often prepared by putting two rods or
plates of different metals in a chemical solution. Such
a battery, using chemical reactions to generate emf, is
often called a cell.
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Now suppose the terminals of a battery are
connected by a conducting wire as shown in figure (32.8).
As the terminal A is at a higher potential than B, there
is an electric field in the wire in the direction shown in
the figure. The free electrons in the wire move in the
opposite direction and enter the battery at the terminal
A. Some electrons are withdrawn from the terminal B
which enter the wire through the right end. Thus, the
potential difference between A and B tends to decrease.
If this potential difference decreases, the electrostatic
force Fe inside the battery also decreases. The force Fb

due to the battery mechanism remains the same. Thus,
there is a net force on the positive charges of the battery
material from B to A. The positive charges rush towards
A and neutralise the effect of the electrons coming at
A from the wire. Similarly, the negative charges rush
towards B. Thus, the potential difference between A and
B is maintained.

For calculation of current, motion of a positive charge
in one direction is equivalent to the motion of a negative
charge in opposite direction. Using this fact, we can
describe the above situation by a simpler model. The
positive terminal of the battery supplies positive charges
to the wire. These charges are pushed through the wire
by the electric field and they reach the negative terminal
of the battery. The battery mechanism drives these
charges back to the positive terminal against the electric
field existing in the battery and the process continues. This
maintains a steady current in the circuit.

Current can also be driven into a battery in the
reverse direction. In such a case, positive charge enters
the battery at the positive terminal, moves inside the
battery to the negative terminal and leaves the battery
from the negative terminal. Such a process is called
charging of the battery. The more common process in
which the positive charge comes out of the battery from
the positive terminal is called discharging of the battery.

32.6 ENERGY TRANSFER IN AN ELECTRIC CIRCUIT

Figure (32.9) shows a simple circuit in which a
resistor CD having a resistance R is connected to a

battery of emf E  through two connecting wires CA
and DB. The connecting wires are assumed to have
negligible resistance. This ensures that potential
differences across AC and across BD are zero even
when there is a current through them. The potential
difference across the resistor is the same as that across
the battery. If the current in the circuit is i, this
potential difference is

     V = VA − VB = VC − VD = iR.

Thermal Energy Produced in the Resistor

In time t, a charge q = it goes through the circuit.
As this charge moves from C to D, the electric potential
energy decreases by

         U = qV = (it) (iR) = i 2Rt.  … (32.11)

This loss in electric potential energy appears as
increased thermal energy of the resistor. Thus, a
current i for a time t through a resistance R increases
the thermal energy by i 2

Rt. The power developed is

            P = 
U
t

 = i 2R. … (32.12)

Using Ohm’s law, this can also be written as

P = 
V 2

R
 = Vi.

Example 32.4

   A resistor develops 400 J of thermal energy in 10 s when
a current of 2 A is passed through it. (a) Find its
resistance. (b) If the current is increased to 4 A, what
will be the energy developed in 10 s.

Solution :

(a) Using    U = i 2Rt,

400 J = (2 A) 2 R(10 s)

or, R = 10 Ω.

(b) The thermal energy developed, when the current is
4 A, is

U = i 2Rt

= (4 A) 2 × (10 Ω) × (10 s) = 1600 J.

Internal Resistance of a Battery

As the charge q = it goes through the battery from
the negative terminal B to the positive terminal A,
work is done by the nonelectrostatic battery force Fb.

This work is U1 = qE = E it. As the potential of A is
higher than the potential of B by an amount V, the
electric potential energy increases by an amount

           U2 = V(it).
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The remaining energy U1  U2 appears as thermal
energy of the battery material. The fraction appearing
as thermal energy depends on the battery material and
the battery mechanism. If no thermal energy is
developed as the charge goes through the battery,

           E it  Vit

or, E   V.

Such a battery is called an ideal battery. The
potential difference between the terminals of an ideal
battery remains equal to its emf even if there is a
current through it. As discussed earlier, an ideal
battery is denoted by the symbol shown in figure
(32.10a). The potential difference between the facing
parallel lines is V  E , the longer line being at the
higher potential.

A nonideal battery develops thermal energy as a
current passes through it and the potential difference
between the terminals is smaller than the emf. Such
a battery may be represented by the symbol shown in
figure (32.10b). This is a combination of an ideal
battery of emf E and a resistance r. If there is a
current i through the battery in the direction indicated
in figure (32.10c), the potential difference between the
terminals is

     VA  VB  VA  VC  VB  VC

 E   ir.

The thermal energy developed in time t is i 2rt. The
addition of a resistance r accounts for the difference
between E and V as well as for the thermal energy
developed in the battery. This resistance is called the
internal resistance of the battery.

Example 32.5

   A battery of emf 2.0 V and internal resistance 0.50 
supplies a current of 100 mA. Find (a) the potential
difference across the terminals of the battery and (b) the
thermal energy developed in the battery in 10 s.

Solution : The situation is the same as that shown in
figure (32.10c).

(a) The potential difference across the terminals is

     VA  VB  VA  VC  VB  VC

       E   ir

 2.0 V  0.100 A 0.50   1.95 V.

(b) The thermal energy developed in the battery is

    U  i 2rt  0.100 A 2 0.50  10 s  0.05 J.

32.7 KIRCHHOFF’S LAWS

The Junction Law

The sum of all the currents directed towards a point
in a circuit is equal to the sum of all the currents
directed away from the point.

Thus, in figure (32.11),
            i1  i2  i3  i4.  (i)

If we take the current directed towards a point as
positive and that directed away from the point as
negative, we can restate the junction law as, the
algebraic sum of all the currents directed towards a
point is zero.

In figure (32.11), the currents directed towards the
junction point are i1, i2,  i3 and  i4.

Thus,
          i1  i2   i3   i4  0
which is the same as (i).

The junction law follows from the fact that no point
in a circuit keeps on accumulating charge or keeps on
supplying charge. Charges pass through the point. So,
the net charge coming towards the point should be
equal to that going away from it in the same time.

The Loop Law

The algebraic sum of all the potential differences
along a closed loop in a circuit is zero.

While using this rule, one starts from a point on
the loop and goes along the loop, either clockwise or
anticlockwise, to reach the same point again. Any
potential  drop  encountered  is taken to be positive
and any potential rise is taken to be negative. The net
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sum of all these potential differences should be zero.
In figure (32.12), we show a loop ABCDEFA of a
circuit. As we start from A and go along the loop
clockwise to reach the same point A, we get the
following potential differences:

          VA − VB = i1R1

VB − VC = i2R2

VC − VD = − E 1
VD − VE = i3R3

VE − VF = − i4R4

VF − VA = E 2 .

Adding all these,

     0 = i1R1 + i2R2 − E 1 + i3R3 − i4R4 + E 2 .

The loop law follows directly from the fact that
electrostatic force is a conservative force and the work
done by it in any closed path is zero.

32.8 COMBINATION OF RESISTORS
    IN SERIES AND PARALLEL

Several resistors may be combined to form a
network. The combination should have two end points
to connect it with a battery or other circuit elements.
If a potential difference V is applied to the
combination, it draws some current i. We define
equivalent resistance of the combination as

            Req = V/i.

This single resistance draws the same current as
the given combination when the same potential
difference is applied across the end points.

Series Combination

Two or more resistors are said to be connected in series
if the same current passes through all the resistors.

Figure (32.13) shows three resistors having
resistances R1, R2 and R3 connected in series. The
combination has two points P and N through which it
can be connected to a battery or other circuit elements.
Any current going through R1 also goes through
R2  and  R3.

Suppose we apply a potential difference V between
the points P and N. A current i passes through all the
resistors. Using Kirchhoff’s loop law for the loop
PABNP,
          iR1 + iR2 + iR3 − V = 0

or,        i = 
V

R1 + R2 + R3

or,       
V
i

 = R1 + R2 + R3.

Thus, the equivalent resistance is
         Req = R1 + R2 + R3.

This argument may be extended for any number
of resistors connected in series.
          Req = R1 + R2 + R3 + … … (32.13)

Parallel Combination

Two or more resistors are said to be connected in
parallel if the same potential difference exists across
all the resistors.

Figure (32.14) shows three resistors having
resistances R1, R2 and R3 connected in parallel. The
combination has two end points P and N. One end of
each resistor is joined to P and other end to N. Thus,
the potential difference across any resistor is the same.

To find the equivalent resistance of the
combination, let us apply a potential difference V
between the points P and N. If the current through P
is i, the equivalent resistance is
            Req = V/i. … (i)

The current i is divided at the junction P. Suppose
a current i1 goes through R1, i2 through R2 and i3

through R3. These combine at N to give a total current
i. Using Kirchhoff’s junction law at P,
            i = i1 + i2 + i3. … (ii)

The potential difference across each resistor is
VP − VN = V. Using Ohm’s law for the resistances
R1, R2 and R3 separately;

          i1 = 
V
R1

 ,  i2 = 
V
R2

  and  i3 = 
V
R3

 ⋅

   Adding the above three equations and using (ii),

       i = V 


1
R1

 + 
1
R2

 + 
1
R3




 .

   Using (i),
1

Req
 = 

1
R1

 + 
1
R2

 + 
1
R3

 ⋅

The process may be generalised for any number of
resistors connected in parallel, so that
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1

Req
 = 

1
R1

 + 
1
R2

 + 
1
R3

 + … … (32.14)

For two resistors in parallel,

    
1

Req
 = 

1
R1

 + 
1
R2

  or,  Req = 
R1R2

R1 + R2
 ⋅

Note that the equivalent resistance is smaller than
the smallest individual resistance.

Example 32.6

   Find the equivalent resistance of the network shown in
figure (32.15) between the points A and B.

Solution : The 10 Ω resistor and the 30 Ω resistor are
connected in parallel. The equivalent resistance between
A and C is

           R1 = 
(10 Ω) (30 Ω)
10 Ω + 30 Ω

 = 7.5 Ω.

This is connected with 2.5 Ω in series. The equivalent

resistance between A and B is 7.5 Ω + 2.5 Ω = 10 Ω.

Division of Current in Resistors Joined in Parallel

Consider the situation shown in figure (32.16).
Using Ohm’s law on resistors R1 and R2,
       Va − Vb = i1R1  and  Va − Vb = i2R2.

   Thus, i1R1 = i2R2

   or, 
i1

i2
 = 

R2

R1
 ⋅ … (i)

We see that the current is divided in resistors,
connected in parallel, in inverse ratio of the resistances.

From (i),     
i1

i1 + i2
 = 

R2

R1 + R2

   or,         
i1

i
 = 

R2

R1 + R2

   or, i1 = 
R2

R1 + R2
 i.

Similarly,

              i2 = 
R1

R1 + R2
 i.

32.9 GROUPING OF BATTERIES

Series Connection

Suppose two batteries having emfs E 1  and  E 2 

and internal resistances r1  and  r2 are connected in
series as shown in figure (32.17). The points a and b
act as the terminals of the combination. Suppose an
external resistance R is connected across the
combination. From Kirchhoff’s loop law,

      Ri + r2i − E 2 + r1i − E 1 = 0

or,      i = 
E 1 + E 2

R + (r1 + r2)
 = 

E 0
R + r0

 ⋅

where i is the current through the resistance R.
We see that the combination acts as a battery of

emf E 0 = E 1 + E 2 having an internal resistance
r0 = r1 + r2.

If the polarity of one of the batteries is reversed,
the equivalent emf will be | E 1 − E 2 | .

Parallel Connection

Now suppose the batteries are connected in
parallel as shown in figure (32.18). The currents are
also shown in  the figure. Applying Kirchhoff’s loop
law in the loop containing E 1, r1 and R,

             Ri + r1i1 − E 1 = 0. … (i)

Similarly, applying Kirchhoff’s law in the loop
containing E 2 ,  r2  and  R,

 Ri + r2(i − i1) − E 2 = 0 … (ii)
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Multiply (i) by r2, (ii) by r1 and add. This gives,

    iR(r1 + r2) + r1r2i − E 1 r2 − E 2 r1 = 0

or,  i = 
E 1 r2 + E 2 r1

R(r1 + r2) + r1r2
 = 

E 1 r2 + E 2 r1

r1 + r2

R + 
r1r2

r1 + r2

 = 
E 0

R + r0
 ⋅

We see that the combination acts as a battery of
emf

         E 0 = 
E 1 r2 + E 2 r1

r1 + r2

and internal resistance

r0 = 
r1 r2

r1 + r2
 ⋅

If E 1 = E 2 = E and  r1 = r2 = r,  E 0 = E and
r0 = r/2.

32.10 WHEATSTONE BRIDGE

Wheatstone bridge is an arrangement of four
resistances which can be used to measure one of them
in terms of the rest.

The arrangement is shown in figure (32.19). Four
resistors with resistances R1, R2, R3 and R4 are
connected to form a loop. There are four joints A, B,
C and D. A battery is connected between two opposite
joints A and B and a galvanometer is connected
between the other two opposite joints C and D.

We shall discuss the construction and working of
a galvanometer later. Here, we only state that a
galvanometer has a needle which deflects when an
electric current passes through the galvanometer. The
needle deflects towards left if the current passes in one
direction and towards right if the current is reversed.

The current i from the battery is divided at A in
two parts. A part i1 goes through R1 and the rest i2

goes through R3. For a particular relation between the
resistances, there is no current through the
galvanometer. The Wheatstone bridge is then said to
be balanced. In this case, the current in R2 is the same
as the current in R1 and the current in R4 is the same
as that in R3. As there is no current through the
galvanometer, the potential difference across its
terminals is zero. Thus,

            VC = VD.

Applying Ohm’s law to R1  and  R2 ,

         VA − VC = i1R1

and VC − VB = i1R2.

   Thus, 
VA − VC

VC − VB

 = 
R1

R2
 ⋅ … (ii)

Applying Ohm’s law to R3  and  R4,

VA − VD = i2R3

and        VD − VB = i2R4.

   Thus,
VA − VD

VD − VB

 = 
R3

R4
 ⋅ … (iii)

As VC = VD , left sides of (ii) and (iii) are equal.
Thus,

             
R1

R2
 = 

R3

R4
 ⋅ … (32.15)

This is the condition for which a Wheatstone
bridge is balanced.

To measure the resistance of a resistor, it is
connected as one of the four resistors in the bridge.
One of the other three should be a variable resistor.
Let us suppose R4 is the resistance to be measured
and R3 is the variable resistance. When the
Wheatstone bridge is connected, in general, there will
be a deflection in the galvanometer. The value of the
variable resistance R3 is adjusted so that the deflection
in the galvanometer becomes zero. In this case, the
bridge is balanced and from equation (32.15),

          R4 = 
R2

R1
 R3.

Knowing R1, R2  and  R3, the value of R4 is
calculated.

Example 32.7

   Find the value of R in figure (32.20) so that there is no
current in the 50 Ω resistor.

Solution :

This is a Wheatstone bridge with the galvanometer

replaced by the 50 Ω resistor. There will be no current

in the 50 Ω resistor if the bridge is balanced.

In this case, 
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10 Ω
20 Ω

 = 
R

40 Ω

or, R = 20 Ω.

32.11 AMMETER AND VOLTMETER

Ammeter is a device to measure an electric current
and voltmeter is a device to measure a potential
difference. In both the instruments there is a coil,
suspended between the poles of a magnet. When a
current is passed through the coil, it deflects. The
angle of deflection is proportional to the current going
through the coil. A needle is fixed to the coil. When
the coil deflects, the needle moves on a graduated
scale.

Ammeter

In an ammeter, a resistor having a small
resistance is connected in parallel with the coil. This
resistor is called the shunt. The current to be measured
is passed through the ammeter by connecting it in
series with the segment which carries the current. Plus
and minus signs are marked near the terminals of the
ammeter. The current should enter the ammeter
through the terminal marked “plus”. When no current
passes through the ammeter, the needle stays at zero
which is marked at the left extreme of the scale.

Suppose the coil has a resistance Rc and the small
resistance connected in parallel (shunt) has a value r.
When a current i is sent through the ammeter, the
current gets divided in two parts. A part i1 goes
through the coil and the rest, i − i1, through the shunt.
As the potential difference across Rc is the same as
that across r,
            i1Rc = (i − i1)r

   or,          i1 = 
r

Rc + r
 i. … (i)

The deflection is proportional to i1 and hence to i.
The scale is graduated to read the value of i directly.

The equivalent resistance of an ammeter is given by

            Req = 
Rcr

Rc + r
 ⋅

When the ammeter is connected in a segment of a
circuit, the resistance of the segment increases by this
amount Req. This reduces the main current which we
wish to measure. To minimise this error, the
equivalent resistant Req should be small. This is one
reason why the shunt having a small resistance r is
connected in parallel to the coil. This makes Req small.

Galvanometer is very similar to an ammeter in
construction. When no current passes through it, the
needle stays in the middle of the graduated scale. This
point is marked zero. Current can be passed through
the galvanometer in either direction. The needle
deflects accordingly towards left or towards right.

Example 32.8

   The ammeter shown in figure (32.23) consists of a 480 Ω
coil connected in parallel to a 20 Ω shunt. Find the
reading of the ammeter.

Solution : The equivalent resistance of the ammeter is

           
(480 Ω) (20 Ω)
480 Ω + 20 Ω

 = 19.2 Ω.

The equivalent resistance of the circuit is

          140.8 Ω + 19.2 Ω = 160 Ω .

The current is i = 
20 V

160 Ω
 = 0.125 A.

This current goes through the ammeter and hence the
reading of the ammeter is 0.125 A.

Voltmeter

In a voltmeter, a resistor having a high resistance
R is connected in series with the coil. The end points
(terminals) are connected to the points A and B
between which the potential difference is to be
measured. Plus and minus signs are marked on the
terminals. The terminal marked “plus” should be
connected to the point at higher potential. When no
potential difference is applied between the terminals,
the needle stays at zero which is marked at the left
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extreme of the scale. When the potential difference is
applied, a current passes through the coil and the high
resistance. If Rc be the resistance of the coil and V be
the potential difference applied to the voltmeter, the
current in the coil is

            i = 
V

Rc + R
 ⋅

The deflection is proportional to the current i and
hence to V. The scale is graduated to read the potential
difference directly.

When the voltmeter is used in a circuit, its
resistance Req = Rc + R is connected in parallel to some
element of the circuit. This changes the overall current
in the circuit and hence, the potential difference to be
measured is also changed. To minimise the error due
to this, the equivalent resistance Req of the voltmeter
should be large. (When a large resistance is connected
in parallel to a small resistance, the equivalent
resistance is only slightly less than the smaller one.)
That is why, a large resistance R is added in series
with the coil of a voltmeter.

32.12 STRETCHED-WIRE POTENTIOMETER

An ideal voltmeter which does not change the
original potential difference, should have infinite
resistance. But in the design described above, the
resistance cannot be made infinite. Potentiometer is a
device which does not draw any current from the given
circuit and still measures the potential difference.
Thus, it is equivalent to an ideal voltmeter.

The stretched-wire potentiometer consists of a long
wire AB, usually 5 to 10 metres long, fixed on a wooden
platform (figure 32.25). The wire has a uniform cross
section. Usually, separate pieces of wire, each 1 m
long, are fixed parallel to each other on the platform.
The wires are joined to each other by thick copper
strips so that the combination acts as a single wire of
desired length (5 to 10 metres). The ends A and B are
connected to a driving circuit consisting of a strong
battery, a plug key and a rheostat. The driving circuit
sends a constant current i through the wire AB. Thus,
the potential gradually decreases from A to B. One end
of a galvanometer is connected to a metal rod fixed on

the wooden platform. A “jockey” may be slid on this
metal rod and may touch the wire AB at any desired
point. In this way the galvanometer gets connected to
the point of AB which is touched by the jockey. The
length of the wire between the end A and this point
can be measured with the help of a metre scale fixed
on the platform. The other end C of the galvanometer
and the high-potential end A of the wire, form the two
end points (terminals) of the potentiometer. These
points are connected to the points between which the
potential difference is to be measured.

Suppose, we have to measure the potential difference
between the points a and b. Also let a be at a higher
potential and b at a lower potential.  The end A of the
wire AB is connected to the point a and the end C of
the galvanometer is connected to the point b. The circuit
is represented schematically in figure (35.26).

The connecting wire Aa has a negligible resistance
and hence potentials of A and a are equal. Suppose,
the potential drop across ab is smaller than the
potential drop across AB. Then there will be a point
P on AB which will have the same potential as b. If
the jockey is slid to touch the wire at this point P, the
potential difference across the galvanometer is zero
and there will be no current through it. The process
of measurement is to search for a point P so that there
is no deflection in the galvanometer.

Suppose, the driving circuit sets up a potential
difference V0 between the ends A and B of the
potentiometer wire. As the wire is uniform, the
resistance of a piece of the wire is proportional to its
length. Hence, the potential difference across a piece
of wire is also proportional to its length. If AB = L and
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AP  l, the potential difference between the points A
and P is

           V  V0 
l
L

   (i)

This is equal to the potential difference between a
and b which we had to measure.

In order to get the value of the potential difference
V, the total potential drop V0 on AB must be known.
One way to do this is to use a standard cell having
known and constant emf in place of ab. If the emf of
the standard cell is E  and the potentiometer is
balanced (no deflection in the galvanometer) when
AP  l0, we have, from (i),

                E  V0 
l0

L
 

or, V0  
L
l0

 E .

The potential difference V between a and b is,
from (i)

             V  l
l0

 E .

This process of finding V0 is called calibration of
the potentiometer. Note that there is no current
through the standard cell when the potentiometer is
balanced during its calibration. Thus, the emf E equals
the potential difference between its terminals.

Comparison of Emf’s of Two Batteries

The driving circuit of the potentiometer is set up
with a strong battery so that the potential difference
V0 across AB is larger than the emf of either battery.
One of the batteries is connected between the positive
end A and the galvanometer. The jockey is adjusted to
touch the wire at a point P1 so that there is no
deflection in the galvanometer. The length AP1  l1 is
noted. Now, the first battery is replaced by the second
and the length AP2  l2 for the balance is noted. If the
length AB = L, the emf of the first battery is, from (i)
above,

            E 1  
l1

L
 V0

and that of the second battery is

             E 2  
l2

L
 V0.

   Thus, 
E 1
E 2

  
l1

l2
 

Note that no calibration is needed in this case.

One can use a two-way key to connect both the
batteries together as shown in figure (32.28). When
the key is pressed in the plug S1, the first battery is
brought into the circuit. When the key is taken out
from S1 and pressed in the plug S2, the second battery
is brought into the circuit.

The value of emf of a battery can also be obtained
by this same method by taking the other battery to be
a standard cell. The emf of the standard cell is known
and hence the emf of the given battery can be obtained.

Measurement of Internal Resistance of a Battery

Figure (32.29) shows the arrangement for
measuring the internal resistance of a battery. The emf
of the battery is E  and its internal resistance is r. A
known resistance R is connected across the battery
together with a plug key K. The potentiometer circuit
is set up as usual. The plug key K is opened and the
balance point P is searched on the wire AB so that
there is no deflection in the galvanometer. As the key
is open, there is no current through the resistance R.
Hence, there is no current through the battery and the
potential difference across the terminals a, b is the
same as the emf E of the battery. If AP  l, we have

            E   
l
L

 V0  (i)

Battery

P
A B

G

Figure 32.27

Figure 32.28
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with the symbols having their usual meanings.
Now the key K is closed and the new balance point

P ′ is searched. There is a current

        i = 
E

R + r
 through the battery.

The potential difference between a and b is

        Va − Vb = Ri = 
E R

R + r
 ⋅

If AP′ = l′, we have

          
E R

R + r
 = 

l′
L

 V0. … (ii)

Dividing (ii) by (i),
R

R + r
 = 

l′
l

or,         r = 
R(l − l′)

l′
 ⋅

32.13 CHARGING AND DISCHARGING
     OF CAPACITORS

Charging

When a capacitor is connected to a battery, positive
charge appears on one plate and negative charge on
the other. The potential difference between the plates
ultimately becomes equal to the emf of the battery.
The whole process takes some time and during this
time there is an electric current through the
connecting wires and the battery. Figure (32.30a)
shows a typical connection. The resistance of the
connecting wires and the internal resistance of the
battery taken together is shown as the resistance R.
The capacitor has capacitance C.

Suppose, the battery is connected at t = 0. Suppose
the charge on the capacitor and the current in the
circuit are q and i respectively at time t. The potential
drop on the capacitor is q/C and on the resistor it is
Ri. Also, the charge deposited on the positive plate in

time dt is       dq = idt

so that          i = 
dq
dt

 ⋅

 Using Kirchhoff’s loop law,

          
q
C

 + Ri − E  = 0

   or,         Ri = E  − 
q
C

   or, R 
dq
dt

 = 
E C − q

C

   or,        ∫ 
0

q

 
dq

E C − q
 = ∫ 

0

t

 
1

CR
 dt

or,       − ln 
E C − q

E C
 = 

t
CR

   or,       1 − 
q
E C

 = e − t/CR

   or,          q = E C(1 − e − t/CR). … (32.16)

This gives the charge on the capacitor at time t.
As t increases, q also increases. The maximum charge
is obtained, in principle, at t = ∞ and its value is
E C. The constant CR has dimensions of time and is
called time constant of the circuit. In one time constant
τ(= CR), the charge accumulated on the capacitor is

        q = E C 

1 − 

1
e




 = 0.63 E C.

Thus, 63% of the maximum charge is deposited in
one time constant. Figure (32.30b) shows a plot of q
versus t.

Discharging

If the plates of a charged capacitor are connected
through a conducting wire, the capacitor gets
discharged. Again there is a flow of charge through
the wires and hence there is a current. Suppose a
capacitor of capacitance C has a charge Q. At t = 0, the
plates are connected through a resistance R (figure
32.31a). Let the charge on the capacitor be q and the
current in the circuit be i at time t.
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Using Kirchhoff’s loop law,

               
q
C

 − Ri = 0.

Here i = − dq
dt

 because the charge q decreases as

time passes.

   Thus,       R 
dq
dt

 = − 
q
C

 ⋅

or,     
dq
q

 = − 
1

CR
 dt

or,      ∫ 
Q

q

 
dq
q

 = ∫ 
0

t

 − 
1

CR
 dt

or,        ln 
q
Q

 = − 
t

CR

   or,  q = Q e 
– t/CR

. … (32.17)

In principle, discharging is complete only at
t = ∞. The constant CR is the time constant. At

t = CR, the remaining charge is q = 
Q

e
 = 0.37 Q. Thus,

63% of the discharging is complete in one time
constant. Figure (32.31b) shows the charge as a
function of time.

Example 32.9

   A capacitor of capacitance 100 µF is charged by
connecting it to a battery of emf 12 V and internal
resistance 2 Ω. (a) Find the time constant of the circuit.
(b) Find the time taken before 99% of the maximum
charge is stored on the capacitor.

Solution : The time constant is
         τ = CR = (100 µF) (2 Ω) = 200 µs.

The charge at time t is

            q = E C (1 − e – t/CR).

Putting q = 0.99 E C,

 0.99 = 1 − e – t/(200 µs)

or,      − 
t

200 µs
 = ln(0.01)

or, t = 920 µs = 0.92 ms.

Example 32.10

   The plates of a 50 µF capacitor charged to 400 µC are
connected through a resistance of 1.0 kΩ. Find the charge
remaining on the capacitor 1 s after the connection is
made.

Solution : The time constant is

           CR = (50 µF) (1.0 kΩ) = 50 ms.

At   t = 1 s,  t/CR = 1 s/50 ms = 20.

The charge remaining on the capacitor is

           q = Q e – t/CR

       = (400 µC) e – 20 = 8.2 × 10 – 7 µC.

We see that in a typical charging or discharging
circuit, the time constant is of the order of a
millisecond. Also, four to five time constants are
sufficient for 99% of the charging or discharging. Thus,
for practical purposes, we can assume that charging
or discharging is complete in a fraction of a second.

32.14 ATMOSPHERIC ELECTRICITY

The earth and the atmosphere surrounding it show
very interesting electric phenomena. The earth has a
negative charge spread with approximately uniform
density over its surface. The average surface charge
density on the earth is little less than one nanocoulomb
per square metre. There is a corresponding electric
field of about 100 V m −1 in the atmosphere above the
earth. This field is in the vertically downward
direction. This means, if you look at a flat desert, the
electric potential increases by about 100 V as you move
up by 1 m. The potential keeps on increasing as one
goes higher in atmosphere but the magnitude of the
electric field gradually decreases. At about 50 km from
the earth’s surface, the field is negligible. The total
potential difference between the earth’s surface and
the top of the atmosphere is about 400 kV.

The atmosphere contains a number of ions, both
positively charged and negatively charged. The main
source of these ions is cosmic rays which come from
outside the earth, even from outside the solar system.
These rays come down to the earth and ionize
molecules in the air. Air contains dust particles which
become charged by friction as they move through the
air. This is another source of the presence of charged
ions in air. Because of the electric field in the
atmosphere, positive ions come down and negative ions
go up. Thus, there is an electric current in the
atmosphere. This current is about 3.5 × 10 

– 12 A over
a square metre area parallel to the earth’s surface.
When the total surface area of the earth is considered,
1800 A of current reaches the earth.

The density of ions increases with height over the
earth’s surface. Also, the density of air decreases and
the ions can travel larger distances between collisions.
Both these factors contribute to the fact that
“conductivity of air” increases with altitude. At about
50 km above the earth’s surface, the air becomes
highly conducting. We can draw an equivalent picture
by assuming that at about this height there is a
perfectly conducting surface having a potential of
400 kV and current comes down from this surface to
the earth.
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If 1800 A of current flows towards the earth, the
entire negative charge of the earth should get neutralised
in about half an hour and the electric field in the
atmosphere should reduce to zero. But it is not so. So,
there must be some mechanism which brings negative
charge back to the earth, so that the 400 kV potential
difference is maintained. This situation is like that of a
battery. The current provided by a battery discharges it.
There is a source of emf which maintains the potential
difference across the battery’s terminals. So, what is the
source that charges our atmospheric battery. The answer
is thunderstorms and lightning.

Because of the difference in temperature and
pressure between different parts of the atmosphere,
air packets keep on moving in a rather systematic
fashion. As the upper atmosphere is cool (temperature
is around 10C at a height of 3–4 km and 20C at
a height of 6–7 km), water vapour condenses to form
small water droplets and tiny ice particles. A parcel of
air with these droplets and ice particles forms a
thunderstorm. A typical thunderstorm may have an
average horizontal extension of about 7–8 km and a
vertical extension of about 3 km. A matured
thunderstorm is formed with its lower end at a height
of about 3–4 km above the earth’s surface and the
upper end at about 6–7 km above the earth’s surface.

The upper part of a thunderstorm contains excess
positive charge and the lower part contains excess
negative charge. The density of negative charge in the
clouds in the lower part of the storm is very high. This
negative charge creates a potential difference of 20 to
100 MV between these clouds and the earth. Note that

this potential difference is much larger than the
400 kV between the earth and the top of atmosphere
and is opposite in sign. Figure (32.32) represents a
typical situation.

The high electric field between the lower part of
the storm and the earth is often sufficient for the
dielectric breakdown of air and the air becomes
conducting. Negative charge thus jumps from the cloud
to the earth’s surface. This phenomenon is called
lightning. The positive charge in the upper part of the
storm gradually moves up to enter the high-altitude
 50 km layer of high conductivity. In one lightning
stroke, about 20 C of negative charge is deposited to
the earth. It takes about 5 s for the clouds to regain
the charge for the next lightning stroke. There are a
number of thunderstorms everyday throughout the
earth. They charge the atmospheric battery by
supplying negative charge to the earth and positive
charge to the upper atmosphere. In the area of clear
weather, the battery is discharged by the movement
of positive ions towards the earth and negative ions
away from it (the 1800 A current discussed earlier).

Worked Out Examples

 1. An electron moves in a circle of radius 10 cm with a
constant speed of 4.0  10 6 m s 1. Find the electric
current at a point on the circle.

Solution : Consider a point A on the circle. The electron
crosses this point once in every revolution. In one
revolution, the electron travels 2  10 cm distance.
Hence, the number of revolutions made by the electron
in one second is

           
4.0  10 6 m

20  10  2 m
  

2


  10 7.

The charge crossing the point A per second is

     
2


  10 7  1.6  10  19 C  
3.2


  10  12 C.

Thus, the electric current at this point is

      
3.2


  10  12 A  1.0  10  12 A.

 2. A current of 2.0 A exists in a wire of cross sectional area
1.0 mm 2. If each cubic metre of the wire contains
6.0  10 28 free electrons, find the drift speed.

Solution : The current density in the wire is

      j  
i
A

  
2.0 A

1 mm 2  2.0  10 6 A m 2.

The drift speed is

     v  
j

ne
  

2.0  10 6 A m 2

6.0  10 28 m  3  1.6  10  19 C

 2.1  10  4 m s 1.

Figure 32.32
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 3. Find the resistance of a copper coil of total wire-length
10 m and area of cross section 1.0 mm 2. What would be
the resistance of a similar coil of aluminium ? The
resistivity of copper  1.7  10 – 8  m and that of
aluminium  2.6  10 – 8  m.

Solution : The resistance of the copper coil is

     
l
A

  
1.7  10  8  m  10 m

1.0  10  6 m 2   0.17 .

The resistance of the similar aluminium coil will be

         
2.6  10  8  m  10 m

1.0  10  6 m 2   0.26 .

 4. A parallel-plate capacitor has plates of area 10 cm 2

separated by a distance of 1 mm. It is filled with the
dielectric mica and connected to a battery of emf 6 volts.
Find the leakage current through the capacitor.
Resistivity of mica  1  10 13  m.

Solution : The resistance of the mica between the two
faces is

         
l
A

  
1  10 13  m  10  3 m

10.0  10  4 m 2  

 1  10 13 .

The leakage current  
6 V

1  10 13 
  6  10  13 A.

 5. Find the resistance of a hollow cylindrical conductor of
length 1.0 m and inner and outer radii 1.0 mm and
2.0 mm respectively. The resistivity of the material is
2.0  10 – 8  m.

Solution : The area of cross section of the conductor
through which the charges will flow is

       A  2.0 mm 2  1.0 mm 2

 3.0   mm 2.

The resistance of the wire is, therefore,

   R   
l
A

  
2.0  10  8  m  1.0 m

3.0    10  6 m 2   2.1  10  3 .

 6. A battery of emf 2 V and internal resistance 0.5  is
connected across a resistance of 9.5 . How many
electrons cross through a cross section of the resistance
in 1 second ?

Solution : The current in the circuit is

         i  
2 V

9.5   0.5 
  0.2 A.

Thus, a net transfer of 0.2 C per second takes place
across any cross section in the circuit. The number of
electrons crossing the section in 1 second is, therefore,

     
0.2 C

1.6  10  19 C
  0.125  10 19  1.25  10 18.

 7. A battery of emf 2.0 volts and internal resistance 0.10 
is being charged with a current of 5.0 A . What is the
potential difference between the terminals of the battery ?

Solution :

As the battery is being charged, the current goes into
the positive terminal as shown in figure (32-W1).

The potential drop across the internal resistance is

           5.0 A  0.10   0.50 V.

Hence, the potential drop across the terminals will be

           2.0 V  0.50 V  2.5 V.

 8. Figure (32-W2) shows n batteries connected to form a
circuit. The resistances denote the internal resistances of
the batteries which are related to the emf’s as ri  kEi

where k is a constant. The solid dots represent the
terminals of the batteries. Find (a) the current through
the circuit and (b) the potential difference between the
terminals of the ith battery.

Solution : (a) Suppose the current is i in the indicated
direction. Applying Kirchoff’s loop law,
   E 1  ir1  E 2  ir2  E 3  ir3    E n  irn  0

or, i  
E 1  E 2  E 3    E n

r1  r2  r3    rn

 
E 1  E 2  E 3    E n

kE 1  E 2  E 3    E n
  

1
k

 

(b) The potential difference between the terminals of the
ith battery is
              E i   iri

              E i   


1
k



 kE i  0.

 9. A copper rod of length 20 cm and cross-sectional area
2 mm 2 is joined with a similar aluminium rod as shown
in figure (32-W3). Find the resistance of the combination
between the ends. Resistivity of copper  1.7  10 – 8  m
and that of aluminium  2.6  10 – 8  m.
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Solution : The resistance of the copper rod

     = ρ 
l
A

 = 
(1.7 × 10 − 8 Ω m) × (20 × 10 − 2 m)

2.0 × 10 − 6 m 2  

= 1.7 × 10 − 3 Ω.

Similarly, the resistance of the aluminium rod

 = 2.6 × 10 − 3 Ω.

These rods are joined in parallel so that the equivalent
resistance R between the ends is given by

1
R

 = 
1

1.7 × 10 − 3 Ω
 + 

1
2.6 × 10 − 3 Ω

or, R = 
1.7 × 2.6

4.3
 × 10 − 3 Ω ≈ 1.0 mΩ.

10. A wire of resistance 10 Ω is bent to form a complete circle.
Find its resistance between two diametrically opposite
points.

Solution :

Let ABCDA be the wire of resistance 10 Ω. We have to
calculate the resistance of this loop between the
diametrically opposite points A and C. The wires ADC
and ABC will have resistances 5 Ω each. These two are
joined in parallel between A and C. The equivalent
resistance R between A and C is, therefore, given by

           R = 
5 Ω × 5 Ω
5 Ω + 5 Ω

 = 2.5 Ω.

11. Find the currents in the different resistors shown in
figure (32-W5).

Solution : The two 2 Ω resistors are in series so that their
equivalent resistance is 4 Ω. The two 8 Ω resistors are
in parallel and their equivalent resistance is also 4 Ω.
The circuit may be redrawn as in figure (32-W6a).
Suppose the middle 4 Ω resistor is removed. The
remaining circuit is redrawn in figure (32-W6b). It is
easy to see that no current will go through any resistor.
If we take the potential at b to be zero, the potential at

d will be 2 V. The potential at a and c will also be 2 V.
As there is no current in the 4 Ω resistors, the potential
at e will also be 2 V. Thus, there is no potential
difference between d and e. When a 4 Ω resistor is added
between d and e, no current will be drawn into it and
hence no change will occur in the remaining part of the
circuit. This circuit is then the same as the given circuit.
Thus, the current in all the resistors in the given circuit
is zero.

12. Find the current supplied by the battery in the circuit
shown in figure (32-W7).

Solution : All the resistors shown in the figure are
connected in parallel between the terminals of the
battery. The equivalent resistance R between the
terminals is, therefore, given by

       
1
R

 = 
1

12 Ω
 + 

1
12 Ω

 + 
1

12 Ω
 + 

1
12 Ω

or, R = 3 Ω.

The current supplied by the battery is

i = 
V
R

 = 
3 V
3 Ω

 = 1 A.

13. Find the equivalent resistance between the points a and
b of the network shown in figure (32-W8).

Solution : The two resistors 4 Ω and 2 Ω  at the right end
are joined in series and may be replaced by a single
resistor of 6 Ω. This 6 Ω is connected with the adjacent
3 Ω resistor in parallel. The equivalent resistance of
these two is
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6 Ω × 3 Ω
6 Ω + 3 Ω

 = 2 Ω.

This is connected in series with the adjacent 4 Ω
resistor giving an equivalent resistance of 6 Ω which is
connected in parallel with the 3 Ω resistor. Their
equivalent resistance is 2 Ω which is connected in series
with the first 4 Ω resistor from left. Thus, the equivalent
resistance between a and b is 6 Ω.

14. Find the effective resistance between the points A and B
in figure (32-W9).

Solution : The resistors AF and FE are in series. Their
equivalent resistance is 3 Ω + 3 Ω = 6 Ω. This is
connected in parallel with AE. Their equivalent between
A and E is, therefore, 

              
6 Ω × 6 Ω
6 Ω + 6 Ω

 = 3 Ω.

This 3 Ω resistance between A and E is in series with
ED and the combination is in parallel with AD. Their
equivalent between A and D is again 3 Ω.

Similarly, the equivalent of this 3 Ω, DC and AC is 3 Ω.
This 3 Ω is in series with CB and the combination is in
parallel with AB. The equivalent resistance between A
and B is, therefore,

            
6 Ω × 3 Ω
6 Ω + 3 Ω

 = 2 Ω. 

15. Find the equivalent resistance of the network shown in
figure (32-W10) between the points a and b when (a) the
switch S is open and (b) the switch S is closed.

Solution : (a) When the switch is open, 6 Ω and 12 Ω
resistors on the upper line are in series giving an
equivalent of 18 Ω. Similarly, the resistors on the lower
line have equivalent resistance 18 Ω. These two 18 Ω
resistances are connected in parallel between a and b so
that the equivalent resistance is 9 Ω.

(b) When the switch is closed, the 6 Ω and 12 Ω resistors
on the left are in parallel giving an equivalent resistance
of 4 Ω. Similarly, the two resistors on the right half are
equivalent to 4 Ω. These two are connected in series
between a and b so that the equivalent resistance is 8 Ω.

16. Each resistor shown in figure (32-W11) has a resistance
of 10 Ω and the battery has an emf of 6 V. Find the
current supplied by the battery.

Solution : Suppose a current i starts from the positive
terminal of the battery. By symmetry, it divides equally
in the resistors ab and fe, so that each of these carries
a current i/2. The current going into the negative
terminal is also i and by symmetry, equal currents
should come from ed and bc. Thus, the current in ed is
also i/2 and hence there will be no current in eb.
We have,

       Va − Vc = (Va − Vb) + (Vb − Vc)

or,        6 V = 
i
2

 × 10 Ω + i
2

 × 10 Ω

giving i = 0.6 A.

This is a balanced Wheatstone bridge.

17. Find the equivalent resistance of the network shown in
figure (32-W12) between the points A and B. 

Solution : Suppose an ideal battery of emf E  is connected
across the points A and B. The circuit is a Wheatstone
bridge with the galvanometer replaced by a 50 Ω
resistance. As the bridge is balanced (R1 /R2 = R3 /R4),
there will be no current through the 50 Ω resistance. We
can just remove the 50 Ω resistance without changing
any other current. The circuit is then equivalent to two
resistances 30 Ω and 60 Ω connected in parallel. The
equivalent resistance is

          R = 
(30 Ω) × (60 Ω)
(30 Ω) + (60 Ω)

 = 20 Ω.
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18. In the circuit shown in figure (32-W13a) E, F, G and H
are cells of emf 2, 1, 3 and 1 V respectively. The
resistances 2, 1, 3 and 1 Ω are their respective internal
resistances. Calculate (a) the potential difference between
B and D and (b) the potential differences across the
terminals of each of the cells G and H.

Solution : Suppose a current i1 goes in the branch BAD
and a current i2 in the branch DCB. The current in DB
will be i1 – i2 from the junction law. The circuit with the
currents shown is redrawn in figure (32-W13b). Applying
the loop law to BADB we get,
   (2 Ω)i1 − 2 V + 1 V + (1 Ω)i1 + (2 Ω)(i1 − i2) = 0

   or,  (5 Ω)i1 − (2 Ω)i2 = 1 V. … (i)

Applying the same law to the loop DCBD, we get

   − 3 V + (3 Ω)i2 + (1 Ω)i2 + 1 V − (2 Ω) (i1 − i2) = 0

   or,  − (2 Ω)i1 + (6 Ω)i2 = 2 V. … (ii)

From (i) and (ii),

       i1 = 
5
13

 A, i2 = 
6
13

 A

so that i1 − i2 = − 1
13

 A.

The current in BD is from B to D.

(a) VB − VD = (2 Ω) 


1
13

 A


 = 

2
13

 V.

(b) The potential difference across the cell G is

           VC − VD = − (3 Ω)i2 + 3 V

          = 

3 V − 

18
13

 V


 = 21

13
 V.

The potential difference across the cell H is

  VC − VB = (1 Ω)i2 + 1 V = (1 Ω) 


6
13

 A


 + 1 V = 19

13
 V.

19. Find the equivalent resistance between the points a and
b of the circuit shown in figure (32-W14a).

Solution : Suppose a current i enters the circuit at the
point a, a part i1 goes through the 10 Ω resistor and the
rest i − i1 through the 5 Ω resistor. By symmetry, the
current i coming out from the point b will be composed
of a part i1 from the 10 Ω resistor and i − i1 from the 5 Ω

resistor. Applying Kirchhoff’s junction law, we can find
the current through the middle 5 Ω resistor. The current
distribution is shown in figure (32-W14b).
We have

     Va − Vb = (Va − Vc) + (Vc − Vb)
 = (10 Ω)i1 + (5 Ω) (i − i1)

= (5 Ω)i + (5 Ω) i1. … (i)

Also, Va − Vb = (Va − Vc) + (Vc − Vd) + (Vd − Vb)
 = (10 Ω)i1 + (5 Ω) (2i1 − i) + (10 Ω)i1

 = − (5 Ω)i + (30 Ω)i1 … (ii)

Multiplying (i) by 6 and subtracting (ii) from it, we
eliminate i1 and get,

            5(Va − Vb) = (35 Ω)i

or, 
Va − Vb

i
 = 7 Ω.

Thus, the equivalent resistance between the points a and
b is 7 Ω.

20. Find the currents going through the three resistors R1,
R2 and R3 in the circuit of figure (32-W15a).

Solution : Let us take the potential of the point A to be
zero. The potential at C will be E 1 and that at D will
be E 2. Let the potential at B be V. The currents through
the three resistors are i1, i2 and i1 + i2 as shown in figure
(32.15b). Note that the current directed towards B
equals the current directed away from B.
Applying Ohm’s law to the three resistors R1, R2 and R3,
we get

              E 1 − V = R1i1 … (i)

 E 2 − V = R2i2 … (ii)

   and V − 0 = R3(i1 + i2). … (iii)

Adding (i) and (iii),
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        E 1 = R1i1 + R3(i1 + i2)
 = (R1 + R3)i1 + R3i2 … (iv)

and adding (ii) and (iii),

       E 2 = R2i2 + R3(i1 + i2)
 = (R2 + R3)i2 + R3i1. … (v)

Equations (iv) and (v) may be directly written from
Kirchhoff’s loop law applied to the left half and the right
half of the circuit.

Multiply (iv) by (R2 + R3), (v) by R3 and subtract to
eliminate i2. This gives

       i1 = 
E 1(R2 + R3) − E 2R3

(R1 + R3) (R2 + R3) − R3
 2 

           = 
E 1(R2 + R3) − E 2R3

R1R2 + R2R3 + R3R1

 ⋅

Similarly, eliminating i1 from (iv) and (v) we obtain,

 i2 = 
E 2(R1 + R3) − E 1R3

R1R2 + R2R3 + R3R1

 ⋅

And so,

      i1 + i2 = 
E 1R2 + E 2R1

R1R2 + R2R3 + R3R1

 ⋅

21. Find the equivalent resistance between the points a and
c of the network shown in figure (32-W16a). Each
resistance is equal to r.

Solution : Suppose a potential difference V is applied
between a and c so that a current i enters at a and the
same current leaves at c (figure 32-W16b). The current
i divides in three parts at a. By symmetry, the part in
ad and in ab will be equal. Let each of these currents
be i1. The current through ao is i − 2i1. Similarly,
currents from dc, bc and oc combine at c to give the total
current i. Since the situation at c is equivalent to that
at a, by symmetry, the currents in dc and bc will be i1

and that in oc will be i − 2i1.

Applying Kirchhoff’s junction law at d, we see that the
current in do is zero. Similarly, the current in ob is zero.
We can remove do and ob for further analysis. It is then
equivalent to three resistances, each of value 2r, in
parallel. The equivalent resistance is, therefore, 2r/3.

22. Twelve wires, each having resistance r, are joined to form
a cube as shown in figure (32-W17). Find the equivalent

resistance between the ends of a face diagonal such as a
and c.

Solution : Suppose a potential difference V is applied
between the points a and c so that a current i enters at
a and the same current leaves at c. The current
distribution is shown in figure (32-W18a).

By symmetry, the paths ad and ab are equivalent and
hence will carry the same current i1. The path ah will
carry the remaining current i – 2i1 (using Kirchhoff’s
junction law). Similarly at junction c, currents coming
from dc and bc will be i1 each and from fc will be
i − 2i1. Kirchhoff’s junction law at b and d shows that
currents through be and dg will be zero and hence may
be ignored for further analysis. Omitting these two
wires, the circuit is redrawn in figure (32-W18b).

The wire hef and hgf are joined in parallel and have

equivalent resistance 
(2r) (2r)

(2r) + (2r)
 = r between h and f. This

is joined in series with ah and fc giving equivalent
resistance r + r + r = 3r. This 3r is joined in parallel with
adc (2r) and abc (2r) between a and c.

The equivalent resistance R between a and c is,
therefore, given by

           
1
R

 = 
1
3r

 + 
1
2r

 + 
1
2r

 ,

giving R = 
3
4

 r ⋅

23. Find the equivalent resistance of the circuit of the
previous problem between the ends of an edge such as a
and b in figure (32-W19a).
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Solution : Suppose a current i enters the circuit at the
point a and the same current leaves the circuit at the
point b. The current distribution is shown in figure
(32-W19b). The paths through ad and ah are equivalent
and carry equal current i1. The current through ab is
then i − 2i1.

The same distribution holds at the junction b. Currents
in eb and cb are i1 each. The current i1 in ah is divided
into a part i2 in he and i1 – i2 in hg. Similar is the division
of current i1 in ad into dc and dg. The rest of the currents
may be written easily using Kirchhoff’s junction law.

The potential difference V between a and b may be
written from the paths ab, aheb and ahgfcb as

        V = (i − 2i1)r

V = (i1 + i2 + i1)r

and V = [i1 + (i1 − i2) + 2(i1 − i2) + (i1 − i2) + i1]r

which may be written as

 V = (i − 2i1)r

V = (2i1 + i2)r

and V = (6i1 − 4i2)r.

Eliminating i1 and i2 from these equations,

V
i

 = 7
12

 r

which is the equivalent resistance.

24. Find the equivalent resistance between the points a and
b of the infinite ladder shown in figure (32-W20a).

Solution : Let the equivalent resistance between a and b
be R. As the ladder is infinite, R is also the equivalent
resistance of the ladder to the right of the points c and
d. Thus, we can replace the part to the right of cd by a
resistance R and redraw the circuit as in figure
(32-W20b).

This gives

          R = r + 
rR

r + R

or,         rR + R 2 = r 2 + 2rR

or,         R 2 − rR − r 2 = 0

or,       R = 
r + √r 2 + 4r 2

2
 = 

1 + √5
2

 r.

25. Find the equivalent resistance of the network shown in
figure (32-W21) between the points a and b.

Solution :

Suppose a current i enters the network at point a and
the same current leaves it at point b. Suppose, the
currents in ac, ad and ae are i1, i2 and i3 respectively.
Similar will be the distribution of current at b. The
current i leaving at b is composed of i1 from db, i2 from
cb and i3 from eb. The situation is shown in figure
(32-W22a).

As the current in ae is equal to that in eb, the current
in ce will be equal to the current in ed from the junction
law. If we assume that the branches ced and aeb do not
physically touch at e, nothing will be changed in the
current distribution. We can then represent the branch
aeb by a single resistance of 10 Ω connected between a
and b. Similarly, the branch ced may be replaced a single
5 Ω resistor between c and d. The circuit is redrawn in
figure (32-W22b). This is same as the circuit in figure
(32-W14a) connected in parallel with a resistance of 10
Ω. So the network is equivalent to a parallel combination
of 7 Ω and 10 Ω resistor. The equivalent resistance of
the whole network is, therefore,
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          R = 
(7 Ω) × (10 Ω)

7 Ω + 10 Ω
 ≈ 4.1 Ω.

26. (a) Find the current i supplied by the battery in the
network shown in figure (32-W23) in steady state. (b)
Find the charge on the capacitor.

Solution : (a) Once the capacitor is charged, no current
will go through it and hence the current through the
middle branch of the circuit is zero in steady state. The
4 Ω resistor will have no current in it and may be
omitted for current analysis. The 2 Ω and 6 Ω resistors
are, therefore, connected in series and hence

          i = 
2 V

2 Ω + 6 Ω
 = 0.25 A.

(b) The potential drop across the 6 Ω resistor is 6 Ω ×
0.25 A = 1.5 V. As there is no current in the 4 Ω resistor,
there is no potential drop across it. The potential
difference across the capacitor is, therefore, 1.5 V. The
charge on this capacitor is

       Q = CV = 2 µF × 1.5 V = 3 µC.

27. A part of a circuit in steady state along with the currents
flowing in the branches, the values of resistances, etc., is
shown in figure (32-W24). Calculate the energy stored in
the capacitor.

Solution : To get the energy stored in the capacitor, we
shall calculate the potential difference between the
points P and Q. In steady state, there is no current in
the capacitor branch. Applying Kirchhoff’s junction law
at P, the current in the 5 Ω − 1 Ω branch will be 3 A
and hence
           VP − VS = 6 Ω × 3 A = 18 V.

Applying the same theorem at Q, the current in the 2 Ω
resistor will be 1 A towards Q so that

         VS − VQ = 2 Ω × 1 A = 2 V.

Thus, VP − VQ = (VP − VS) + (VS − VQ) = 20 V.

The energy stored in the capacitor

          = 
1
2

 CV 2 = 
1
2

 × 4 µF × 400 V 2

 = 800 µJ.

28. (a) Find the potential drops across the two resistors shown
in figure (32-W25a). (b) A voltmeter of resistance 600 Ω
is used to measure the potential drop across the 300 Ω
resistor. What will be the measured potential drop ?

Solution :

(a) The current in the circuit is 100 V
300 Ω + 200 Ω

 = 0.2 A.

The potential drop across the 300 Ω resistor is

          300 Ω × 0.2 A = 60 V.

Similarly, the drop across the 200 Ω  resistor is 40 V.

(b) The equivalent resistance, when the voltmeter is
connected across 300 Ω, is (figure 32-W25b)

      R = 200 Ω + 
600 Ω × 300 Ω
600 Ω + 300 Ω

 = 400 Ω.

Thus, the main current from the battery is

i = 
100 V
400 Ω

 = 0.25 A.

The potential drop across the 200 Ω resistor is, therefore,
200 Ω × 0.25 A = 50 V and that across 300 Ω is also 50 V.
This is also the potential drop across the voltmeter and
hence the reading of the voltmeter is 50 V.

29. A galvanometer has a coil of resistance 100 Ω showing
a full-scale deflection at 50 µA. What resistance should
be added to use it as (a) a voltmeter of range 50 V (b)
an ammeter of range 10 mA ?

Solution : (a) When a potential difference of 50 V is
applied across the voltmeter, full-scale deflection should
take place. Thus, 50 µA should go through the coil. We
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add a resistance R in series with the given coil to achieve
this (figure 32-W26a).
We have,

      50 µA = 
50 V

100 Ω + R

or,       R = 10 6 Ω − 100 Ω ≈ 10 6 Ω.
(b) When a current of 10 mA is passed through the
ammeter, 50 µA should go through the coil. We add a
resistance r in parallel to the coil to achieve this (figure
32-W26b).

The current through the coil is  

50 µA = (10 mA) r
r + 100 Ω

or, r ≈ 0.5 Ω.

30. The electric field between the plates of a parallel-plate
capacitor of capacitance 2.0 µF drops to one third of its
initial value in 4.4 µs when the plates are connected by
a thin wire. Find the resistance of the wire.

Solution : The electric field between the plates is

           E = 
Q

Aε0

 = 
Q0

Aε0

 e − t/RC

or, E = E0 e − t/RC.

In the given problem, E = 
1
3

 E0  at  t = 4.4 µs.

Thus, 
1
3

 = e − 
4.4 µs

RC

or,  
4.4 µs

RC
 = ln 3 = 1.1

or, R = 
4.4 µs

1.1 × 2.0 µF
 = 2.0 Ω.

31. A capacitor is connected to a 12 V battery through a
resistance of 10 Ω. It is found that the potential difference
across the capacitor rises to 4.0 V in 1 µs. Find the
capacitance of the capacitor.

Solution : The charge on the capacitor during charging is
given by

         Q = Q0(1 − e − t/RC).
Hence, the potential difference across the capacitor is

       V = Q/C = Q0/C(1 − e − t/RC).

Here at t = 1 µs, the potential difference is 4 V whereas
the steady state potential difference is Q0 /C = 12 V. So,

4 V = 12 V(1 − e − t/RC)

or,        1 − e − t/RC = 
1
3

or,        e − t/RC = 2
3

or,        
t

RC
 = ln




3
2




 = 0.405

or, RC = 
t

0.405
 = 

1 µs
0.405

 = 2.469 µs

or, C = 
2.469 µs

10 Ω
 ≈ 0.25 µF.

32. A capacitor charged to 50 V is discharged by connecting
the two plates at t = 0. If the potential difference across
the plates drops to 1.0 V at t = 10 ms, what will be the
potential difference at t = 20 ms ?

Solution : The potential difference at time t is given by

           V = Q/C = (Q0/C) e − t/RC

or, V = V0e − t/RC.

According to the given data,

         1 V = (50 V) e − 10 ms/RC

or,     e − 10 ms/RC = 
1
50

 ⋅

The potential difference at t = 20 ms is

      V = V0e − t/RC

= (50 V) e − 20 ms/RC = (50 V) e − 10 ms/RC


2

= 0.02 V.

33. A 5.0 µF capacitor having a charge of 20 µC is
discharged through a wire of resistance 5.0 Ω. Find the
heat dissipated in the wire between 25 to 50 µs after the
connections are made.

Solution : The charge on the capacitor at time t after the
connections are made is

        Q = Q0 e − t/RC

or, i = 
dQ
dt

 = − (Q0/RC) e − t/RC.

Heat dissipated during the time t1  to  t2 is

U = ∫ 
t1

t2

 i 2R dt

         = ∫ 
t1

t2

 
Q0 

2

RC 2 e − 2t/RC dt

= 
Q0

 2

2 C
 


e 

− 
2 t1
R C − e 

− 
2 t2
R C



 . … (i)

The time constant RC is 5 Ω × 5.0 µF = 25 µs.

Putting t1 = 25 µs, t2 = 50 µs and other values in (i),

 U = 
(20 µC) 2

2 × 5.0 µF
 (e − 2 − e − 4) = 4.7 µJ.
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QUESTIONS FOR SHORT ANSWER

 1. Suppose you have three resistors each of value 30 Ω.
List all the different resistances you can obtain using
them.

 2. A proton beam is going from east to west. Is there an
electric current ? If yes, in what direction ?

 3. In an electrolyte, the positive ions move from left to right
and the negative ions from right to left. Is there a net
current ? If yes, in what direction ? 

 4. In a TV tube, the electrons are accelerated from the rear
to the front. What is the direction of the current ?

 5. The drift speed is defined as vd = ∆l/∆t where ∆l is the
distance drifted in a long time ∆t. Why don’t we define
the drift speed as the limit of ∆l/∆t as ∆t → 0 ?

 6. One of your friends argues that he has read in previous
chapters that there can be no electric field inside a
conductor. And hence there can be no current through
it. What is the fallacy in this argument ?

 7. When a current is established in a wire, the free
electrons drift in the direction opposite to the current.
Does the number of free electrons in the wire
continuously decrease ?

 8. A fan with copper winding in its motor consumes less
power as compared to an otherwise similar fan having
aluminium winding. Explain.

 9. The thermal energy developed in a current-carrying
resistor is given by U = i 2Rt and also by U = Vit. Should
we say that U is proportional to i 2 or to i ?

10. Consider a circuit containing an ideal battery connected
to a resistor. Do “work done by the battery” and “the
thermal energy developed” represent two names of the
same physical quantity ?

11. Is work done by a battery always equal to the thermal
energy developed in electrical circuits ? What happens
if a capacitor is connected in the circuit ?

12. A nonideal battery is connected to a resistor. Is work
done by the battery equal to the thermal energy
developed in the resistor ?  Does your answer change if
the battery is ideal ?

13. Sometimes it is said that “heat is developed” in a
resistance when there is an electric current in it. Recall
that heat is defined as the energy being transferred due
to the temperature difference. Is the statement under
quotes technically correct ?

14. We often say “a current is going through the wire”. What
goes through the wire, the charge or the current ?

15. Would you prefer a voltmeter or a potentiometer to
measure the emf of a battery ?

16. Does a conductor become charged when a current is
passed through it ?

17. Can the potential difference across a battery be greater
than its emf ?

 OBJECTIVE I

 1. A metallic resistor is connected across a battery. If the
number of collisions of the free electrons with the lattice
is somehow decreased in the resistor (for example, by
cooling it), the current will
(a) increase               (b) decrease
(c) remain constant         (d) become zero.

 2. Two resistors A and B have resistances RA and RB

respectively with RA < RB. The resistivities of their
materials are ρA  and  ρB.
(a) ρA > ρB     (b) ρA = ρB      (c) ρA < ρB  
(d) The information is not sufficient to find the relation
       between ρA  and  ρB.

 3. The product of resistivity and conductivity of a
cylindrical conductor depends on
(a) temperature            (b) material 
(c) area of cross section       (d) none of these.

 4. As the temperature of a metallic resistor is increased,
the product of its resistivity and conductivity
(a) increases         (b) decreases
(c) remains constant    (d) may increase or decrease.

 5. In an electric circuit containing a battery, the charge
(assumed positive) inside the battery
(a) always goes from the positive terminal to the
       negative  terminal

(b) may go from the positive terminal to the negative
       terminal
(c) always goes from the negative terminal to the
       positive  terminal
(d) does not move.

 6. A resistor of resistance R is connected to an ideal
battery. If the value of R is decreased, the power
dissipated in the resistor will
(a) increase   (b) decrease   (c) remain unchanged.

 7. A current passes through a resistor. Let K1 and K2

represent the average kinetic energy of the conduction
electrons and the metal ions respectively.
(a) K1 < K2       (b) K1 = K2  
(c) K1 > K2       (d) Any of these three may occur.

 8. Two resistors R and 2R are connected in series in an
electric circuit. The thermal energy developed in R and
2R are in the ratio
(a) 1 : 2     (b) 2 : 1     (c) 1 : 4     (d) 4 : 1.

 9. Two resistances R and 2R are connected in parallel in
an electric circuit. The thermal energy developed in R
and 2R are in the ratio
(a) 1 : 2     (b) 2 : 1     (c) 1 : 4     (d) 4 : 1.

10. A uniform wire of resistance 50 Ω is cut into 5 equal
parts. These parts are now connected in parallel. The
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equivalent resistance of the combination is
(a) 2 Ω    (b) 10 Ω    (c) 250 Ω    (d) 6250 Ω.

11. Consider the following two statements:
(A) Kirchhoff’s junction law follows from conservation of
       charge.
(B) Kirchhoff’s loop law follows from conservative
       nature of electric field.
(a) Both A and B are correct.
(b) A is correct but B is wrong.
(c) B is correct but A is wrong.
(d) Both A and B are wrong.

12. Two nonideal batteries are connected in series. Consider
the following statements:
(A) The equivalent emf is larger than either of the two
       emfs.
(B) The equivalent internal resistance is smaller than
       either of the two internal resistances.
(a) Each of A and B is correct.
(b) A is correct but B is wrong.
(c) B is correct but A is wrong.
(d) Each of A and B is wrong.

13. Two nonideal batteries are connected in parallel.
Consider the following statements:
(A) The equivalent emf is smaller than either of the two
       emfs.
(B) The equivalent internal resistance is smaller than
       either of the two internal resistances.

(a) Both A and B are correct.
(b) A is correct but B is wrong.
(c) B is correct but A is wrong.
(d) Both A and B are wrong.

14. The net resistance of an ammeter should be small to
ensure that
(a) it does not get overheated
(b) it does not draw excessive current
(c) it can measure large currents
(d) it does not appreciably change the current to be
       measured.

15. The net resistance of a voltmeter should be large to
ensure that
(a) it does not get overheated
(b) it does not draw excessive current
(c) it can measure large potential differences
(d) it does not appreciably change the potential
       difference to be measured.

16. Consider a capacitor-charging circuit. Let Q1 be the
charge given to the capacitor in a time interval of 10 ms
and Q2 be the charge given in the next time interval of
10 ms. Let 10 µC charge be deposited in a time interval
t1 and the next 10 µC charge is deposited in the next
time interval t2.
(a) Q1 > Q2, t1 > t2       (b) Q1 > Q2, t1 < t2

(c) Q1 < Q2, t1 > t2        (d) Q1 < Q2, t1 < t2

 OBJECTIVE II

 1. Electrons are emitted by a hot filament and are
accelerated by an electric field as shown in figure
(32-Q1). The two stops at the left ensure that the
electron beam has a uniform cross-section.
(a) The speed of the electron is more at B than at A.
(b) The electric current is from left to right.
(c) The magnitude of the current is larger at B than
       at A.
(d) The current density is more at B than at A.

 2. A capacitor with no dielectric is connected to a battery
at t = 0. Consider a point A in the connecting wires and
a point B in between the plates.
(a) There is no current through A.
(b) There is no current through B.
(c) There is a current through A as long as the charging
       is not complete.
(d) There is a current through B as long as the charging
       is not complete.

 3. When no current is passed through a conductor,
(a) the free electrons do not move

(b) the average speed of a free electron over a large
       period of time is zero
(c) the average velocity of a free electron over a large
       period of time is zero
(d) the average of the velocities of all the free electrons
       at an instant is zero.

 4. Which of the following quantities do not change when a
resistor connected to a battery is heated due to the
current ?
(a) Drift speed        (b) Resistivity
(c) Resistance        (d) Number of free electrons

 5. As the temperature of a conductor increases, its
resistivity and conductivity change. The ratio of
resistivity to conductivity
(a) increases   (b) decreases   (c) remains constant
(d) may increase or decrease depending on the actual
       temperature.

 6. A current passes through a wire of nonuniform
cross-section. Which of the following quantities are
independent of the cross section ?
(a) The charge crossing in a given time interval
(b) Drift speed
(c) Current density
(d) Free-electron density

 7. Mark out the correct options.
(a) An ammeter should have small resistance.
(b) An ammeter should have large resistance.
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(c) A voltmeter should have small resistance.
(d) A voltmeter should have large resistance.

 8. A capacitor of capacitance 500F is connected to a
battery through a 10 k resistor. The charge stored on
the capacitor in the first 5 s is larger than the charge
stored in the next
(a) 5 s   (b) 50 s   (c) 500 s   (d) 5000 s

 9. A capacitor C1 of capacitance 1F and a capacitor C2 of
capacitance 2F are separately charged by a common
battery for a long time. The two capacitors are then

separately discharged through equal resistors. Both the
discharge circuits are connected at t  0.
(a) The current in each of the two discharging circuits
       is zero at t  0.
(b) The currents in the two discharging circuits at t  0
       are equal but not zero.
(c) The currents in the two discharging circuits at t  0
       are unequal.
(d) C1 loses 50% of its initial charge sooner than C2 loses
       50% of its initial charge.

EXERCISES

 1. The amount of charge passed in time t through a
cross-section of a wire is 
            Qt  At 2  Bt  C.
(a) Write the dimensional formulae for A, B and C.
(b) If the numerical values of A, B and C are 5, 3 and
1 respectively in SI units, find the value of the current
at t  5 s.

 2. An electron gun emits 2.0  10 16 electrons per second.
What electric current does this correspond to?

 3. The electric current existing in a discharge tube is
2.0A. How much charge is transferred across a
cross-section of the tube in 5 minutes ?

 4. The current through a wire depends on time as 
            i  i0  t,
where i0  10 A  and    4 A s 1. Find the charge crossed
through a section of the wire in 10 seconds.

 5. A current of 1.0 A exists in a copper wire of cross-section
1.0 mm 2. Assuming one free electron per atom calculate
the drift speed of the free electrons in the wire. The
density of copper is 9000 kg m –3.

 6. A wire of length 1 m and radius 0.1 mm has a resistance
of 100 . Find the resistivity of the material.

 7. A uniform wire of resistance 100  is melted and recast
in a wire of length double that of the original. What
would be the resistance of the wire ?

 8. Consider a wire of length 4 m and cross-sectional area 1
mm 2 carrying a current of 2 A. If each cubic metre of the
material contains 10 29 free electrons, find the average time
taken by an electron to cross the length of the wire.

 9. What length of a copper wire of cross-sectional area
0.01 mm 2 will be needed to prepare a resistance of
1 k ? Resistivity of copper  1.7  10  8  m.

10. Figure (32-E1) shows a conductor of length l having a
circular cross section. The radius of cross section varies
linearly from a to b. The resistivity of the material is .
Assuming that b  a << l, find the resistance of the
conductor.

11. A copper wire of radius 0.1 mm and resistance 1 k is
connected across a power supply of 20 V. (a) How many
electrons are transferred per second between the supply
and the wire at one end ? (b) Write down the current
density in the wire.

12. Calculate the electric field in a copper wire of
cross-sectional area 2.0 mm 2 carrying a current of 1 A.
The resistivity of copper  1.7  10  8  m. 

13. A wire has a length of 2.0 m and a resistance of 5.0 .
Find the elecric field existing inside the wire if it carries
a current of 10 A.

14. The resistances of an iron wire and a copper wire at 20C
are 3.9  and 4.1  respectively. At what temperature will
the resistances be equal ? Temperature coefficient of
resistivity for iron is 5.0  10  3 K  1 and for copper it is

4.0  10  3 K 1. Neglect any thermal expansion.
15. The current in a conductor and the potential difference

across its ends are measured by an ammeter and a
voltmeter. The meters draw negligible currents. The
ammeter is accurate but the voltmeter has a zero error
(that is, it does not read zero when no potential
difference is applied). Calculate the zero error if the
readings for two different conditions are 1.75 A, 14.4 V
and 2.75 A, 22.4 V.

16. Figure (32-E2) shows an arrangement to measure the emf
E  and internal resistance r of a battery. The voltmeter has
a very high resistance and the ammeter also has some
resistance. The voltmeter reads 1.52 V when the switch S
is open. When the switch is closed the voltmeter reading
drops to 1.45 V and the ammeter reads 1.0 A. Find the
emf and the internal resistance of the battery.

17. The potential difference between the terminals of a
battery of emf 6.0 V and internal resistance 1  drops
to 5.8 V when connected across an external resistor. Find
the resistance of the external resistor.
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18. The potential difference between the terminals of a 6.0 V
battery is 7.2 V when it is being charged by a current
of 2.0 A. What is the internal resistance of the battery ?

19. The internal resistance of an accumulator battery of emf
6 V is 10 Ω when it is fully discharged. As the battery
gets charged up, its internal resistance decreases to 1 Ω.
The battery in its completely discharged state is
connected to a charger which maintains a constant
potential difference of 9 V. Find the current through the
battery (a) just after the connections are made and (b)
after a long time when it is completely charged.

20. Find the value of i1 /i2 in figure (32-E3) if (a) R = 0.1 Ω,
(b) R = 1 Ω (c) R = 10 Ω. Note from your answers that in
order to get more current from a combination of two
batteries they should be joined in parallel if the external
resistance is small and in series if the external resistance
is large as compared to the internal resistances.

21. Consider N = n1n2 identical cells, each of emf E  and
internal resistance r. Suppose n1 cells are joined in series
to form a line and n2 such lines are connected in parallel.
The combination drives a current in an external
resistance R. (a) Find the current in the external
resistance. (b) Assuming that n1 and n2 can be
continuously varied, find the relation between n1, n2, R
and r for which the current in R is maximum.

22. A battery of emf 100 V and a resistor of resistance 10 kΩ
are joined in series. This system is used as a source to
supply current to an external resistance R. If R is not
greater than 100 Ω, the current through it is constant
up to two significant digits. Find its value. This is the
basic principle of a constant-current source.

23. If the reading of ammeter A1 in figure (32-E4) is 2.4 A,
what will the ammeters A2 and A3 read ? Neglect the
resistances of the ammeters.

24. The resistance of the rheostat shown in figure (32-E5)
is 30 Ω. Neglecting the meter resistance, find the

minimum and maximum currents through the ammeter
as the rheostat is varied.

25. Three bulbs, each having a resistance of 180 Ω, are
connected in parallel to an ideal battery of emf 60 V.
Find the current delivered by the battery when (a) all
the bulbs are switched on, (b) two of the bulbs are
switched on and (c) only one bulb is switched on.

26. Suppose you have three resistors of 20 Ω, 50 Ω and
100 Ω. What minimum and maximum resistances can
you obtain from these resistors ?

27. A bulb is made using two filaments. A switch selects
whether the filaments are used individually or in
parallel. When used with a 15 V battery, the bulb can
be operated at 5 W, 10 W or 15 W. What should be the
resistances of the filaments ?

28. Figure (32-E6) shows a part of a circuit. If a current of
12 mA exists in the 5 kΩ resistor, find the currents in
the other three resistors. What is the potential difference
between the points A and B ?

29. An ideal battery sends a current of 5 A in a resistor.
When another resistor of value 10 Ω is connected in
parallel, the current through the battery is increased to
6 A. Find the resistance of the first resistor.

30. Find the equivalent resistance of the network shown in
figure (32-E7) between the points a and b.

31. A wire of resistance 15.0 Ω is bent to form a regular
hexagon ABCDEFA. Find the equivalent resistance of
the loop between the points (a) A and B, (b) A and C
and (c) A and D.

32. Consider the circuit shown in figure (32-E8). Find the
current through the 10 Ω resistor when the switch S is
(a) open (b) closed.
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33. Find the currents through the three resistors shown in
figure (32-E9).

34. Figure (32-E10) shows a part of an electric circuit. The
potentials at the points a, b and c are 30 V, 12 V and 2 V
respectively. Find the currents through the three resistors.

35. Each of the resistors shown in figure (32-E11) has a
resistance of 10 Ω and each of the batteries has an emf
of 10 V. Find the currents through the resistors a and
b in the two circuits.

36. Find the potential difference Va − Vb in the circuits
shown in figure (32-E12).

37. In the circuit shown in figure (32-E13), E1 = 3 V,
E2 = 2 V, E3 = 1 V and r1 = r2 = r3 = 1 Ω. Find the potential
difference between the points A and B and the current
through each branch.

38. Find the current through the 10 Ω resistor shown in
figure (32-E14).

39. Find the current in the three resistors shown in figure
(32-E15).

40. What should be the value of R in figure (32-E16) for
which the current in it is zero ? 

41. Find the equivalent resistance of the circuits shown in
figure (32-E17) between the points a and b. Each resistor
has a resistance r.

42. Find the current measured by the ammeter in the circuit
shown in figure (32-E18).
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43. Consider the circuit shown in figure (32-E19a). Find (a)
the current in the circuit, (b) the potential drop across
the 5 Ω resistor, (c) the potential drop across the 10 Ω
resistor. (d) Answer the parts (a), (b) and (c) with
reference to figure (32-E19b).

44. Twelve wires, each having equal resistance r, are joined
to form a cube as shown in figure (32-E20). Find the
equivalent resistance between the diagonally opposite
points a and f.

45. Find the equivalent resistances of the networks shown
in figure (32-E21) between the points a and b.

46. An infinite ladder is constructed with 1 Ω and 2 Ω
resistors as shown in figure (32-E22). (a) Find the
effective resistance between the points A and B. (b) Find
the current that passes through the 2 Ω resistor nearest
to the battery. 

47. The emf E  and the internal resistance r of the battery
shown in figure (32-E23) are 4.3 V and 1.0 Ω
respectively. The external resistance R is 50 Ω. The
resistances of the ammeter and voltmeter are 2.0 Ω and
200 Ω respectively. (a) Find the readings of the two

meters. (b) The switch is thrown to the other side. What
will be the readings of the two meters now ?

48. A voltmeter of resistance 400 Ω is used to measure the
potential difference across the 100 Ω resistor in the circuit
shown in figure (32-E24). (a) What will be the reading of
the voltmeter ? (b) What was the potential difference across
100 Ω before the voltmeter was connected ?

49. The voltmeter shown in figure (32-E25) reads 18 V
across the 50 Ω resistor. Find the resistance of the
voltmeter.

50. A voltmeter consists of a 25 Ω coil connected in series
with a 575 Ω resistor. The coil takes 10 mA for full scale
deflection. What maximum potential difference can be
measured on this voltmeter ?

51. An ammeter is to be constructed which can read currents
up to 2.0 A. If the coil has a resistance of 25 Ω and
takes 1 mA for full-scale deflection, what should be the
resistance of the shunt used ?

52. A voltmeter coil has resistance 50.0 Ω and a resistor of
1.15 kΩ is connected in series. It can read potential
differences upto 12 volts. If this same coil is used to
construct an ammeter which can measure currents up to
2.0 A, what should be the resistance of the shunt used ?

53. The potentiometer wire AB shown in figure (32-E26) is
40 cm long. Where should the free end of the
galvanometer be connected on AB so that the
galvanometer may show zero deflection ? 
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54. The potentiometer wire AB shown in figure (32-E27) is
50 cm long. When AD = 30 cm, no deflection occurs in
the galvanometer. Find R.

55. A 6-volt battery of negligible internal resistance is
connected across a uniform wire AB of length 100 cm.
The positive terminal of another battery of emf 4 V and
internal resistance 1 Ω is joined to the point A as shown
in figure (32-E28). Take the potential at B to be zero.
(a) What are the potentials at the points A and C ? (b) At
which point D of the wire AB, the potential is equal to
the potenial at C ? (c) If the points C and D are
connected by a wire, what will be the current through
it ? (d) If the 4 V battery is replaced by 7.5 V battery,
what would be the answers of parts (a) and (b) ?

56. Consider the potentiometer circuit arranged as in figure
(32-E29). The potentiometer wire is 600 cm long. (a) At
what distance from the point A should the jockey touch
the wire to get zero deflection in the galvanometer? (b) If
the jockey touches the wire at a distance of 560 cm from
A, what will be the current in the galvanometer ?

57. Find the charge on the capacitor shown in figure
(32-E30).

58. (a) Find the current in the 20 Ω resistor shown in figure
(32-E31). (b) If a capacitor of capacitance 4 µF is joined
between the points A and B, what would be the
electrostatic energy stored in it in steady state ?

59. Find the charges on the four capacitors of capacitances
1 µF, 2 µF, 3 µF and 4 µF shown in figure (32-E32).

60. Find the potential difference between the points A and
B and between the points B and C of figure (32-E33) in
steady state.

61. A capacitance C, a resistance R and an emf E  are
connected in series at t = 0. What is the maximum value
of (a) the potential difference across the resistor, (b) the
current in the circuit, (c) the potential difference across
the capacitor, (d) the energy stored in the capacitor,
(e) the power delivered by the battery and (f) the power
converted into heat.

62. A parallel-plate capacitor with plate area 20 cm 2 and
plate separation 1.0 mm is connected to a battery. The
resistance of the circuit is 10 kΩ. Find the time constant
of the circuit.

63. A capacitor of capacitance 10 µF is connected to a battery
of emf 2 V. It is found that it takes 50 ms for the charge
on the capacitor to become 12.6 µC. Find the resistance
of the circuit.

64. A 20 µF capacitor is joined to a battery of emf 6.0 V
through a resistance of 100 Ω. Find the charge on the
capacitor 2.0 ms after the connections are made.

65. The plates of a capacitor of capacitance 10 µF, charged
to 60 µC, are joined together by a wire of resistance 10 Ω
at t = 0. Find the charge on the capacitor in the circuit
at (a) t = 0, (b) t = 30 µs, (c) t = 120 µs and (d)  t
= 1.0 ms.

66. A capacitor of capacitance 8.0 µF is connected to a
battery of emf 6.0 V through a resistance of 24 Ω. Find
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the current in the circuit (a) just after the connections
are made and (b) one time constant after the connections
are made.

67. A parallel-plate capacitor of plate area 40 cm 2 and
separation between the plates 0.10 mm is connected to
a battery of emf 2.0 V through a 16 Ω resistor. Find the
electric field in the capacitor 10 ns after the connections
are made.

68. A parallel-plate capacitor has plate area 20 cm 2, plate
separation 1.0 mm and a dielectric slab of dielectric
constant 5.0 filling up the space between the plates. This
capacitor is joined to a battery of emf 6.0 V through a
100 kΩ resistor. Find the energy of the capacitor 8.9 µs
after the connections are made.

69. A 100 µF capacitor is joined to a 24 V battery through
a 1.0 MΩ resistor. Plot qualitative graphs (a) between
current and time for the first 10 minutes and (b) between
charge and time for the same period.

70. How many time constants will elapse before the current
in a charging RC circuit drops to half of its initial value ?
Answer the same question for a discharging RC circuit.

71. How many time constants will elapse before the charge
on a capacitor falls to 0.1% of its maximum value in a
discharging RC circuit ?

72. How many time constants will elapse before the energy
stored in the capacitor reaches half of its equilibrium
value in a charging RC circuit ? 

73. How many time constants will elapse before the power
delivered by the battery drops to half of its maximum
value in an RC circuit ?

74. A capacitor of capacitance C is connected to a battery
of emf E at t = 0 through a resistance R. Find the
maximum rate at which energy is stored in the
capacitor. When does the rate has this maximum value?

75. A capacitor of capacitance 12.0 µF is connected to a
battery of emf 6.00 V and internal resistance 1.00 Ω
through resistanceless leads. 12.0 µs after the
connections are made, what will be (a) the current in
the circuit, (b) the power delivered by the battery, (c) the
power dissipated in heat and (d) the rate at which the
energy stored in the capacitor is increasing.

76. A capacitance C charged to a potential difference V is
discharged by connecting its plates through a resistance
R. Find the heat dissipated in one time constant after
the connections are made. Do this by calculating

∫  i 2R dt and also by finding the decrease in the energy

stored in the capacitor.

77. By evaluating ∫  i 2Rdt, show that when a capacitor is

charged by connecting it to a battery through a resistor,
the energy dissipated as heat equals the energy stored
in the capacitor.

78. A parallel-plate capacitor is filled with a dielectric
material having resistivity ρ and dielectric constant K.

The capacitor is charged and disconnected from the
charging source. The capacitor is slowly discharged
through the dielectric. Show that the time constant of
the discharge is independent of all geometrical
parameters like the plate area or separation between
the plates. Find this time constant.

79. Find the charge on each of the capacitors 0.20 ms after
the switch S is closed in figure (32-E34).

 80. The switch S shown in figure (32-E35) is kept closed
for a long time and is then opened at t = 0. Find the
current in the middle 10 Ω resistor at t = 1.0 ms.

81. A capacitor of capacitance 100 µF is connected across a
battery of emf 6.0 V through a resistance of 20 kΩ for
4.0 s. The battery is then replaced by a thick wire. What
will be the charge on the capacitor 4.0 s after the battery
is disconnected ?

82. Consider the situation shown in figure (32-E36). The
switch is closed at t = 0 when the capacitors are
uncharged. Find the charge on the capacitor C1 as a
function of time t. 

83. A capacitor of capacitance C is given a charge Q. At
t = 0, it is connected to an uncharged capacitor of equal
capacitance through a resistance R. Find the charge on
the second capacitor as a function of time.

84. A capacitor of capacitance C is given a charge Q. At
t = 0, it is connected to an ideal battery of emf E through
a resistance R. Find the charge on the capacitor at
time t. 
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ANSWERS

OBJECTIVE I

 1. (a)  2. (d)  3. (d)  4. (c)  5. (b)  6. (a)
 7. (c)  8. (a)  9. (b) 10. (a) 11. (a) 12. (b)
13. (c) 14. (d) 15. (d) 16. (b)

OBJECTIVE II

 1. (a) 2. (b), (c) 3. (c), (d)
 4. (d) 5. (a) 6. (a), (d)
 7. (a), (d) 8. all 9. (b), (d)

EXERCISES

 1. (a) IT − 1, I, IT (b) 53 A

 2. 3.2 × 10 − 3 A

 3. 6.0 × 10 − 4 C
 4. 300 C

 5. 0.074 mm s−1

 6. π × 10 − 6 Ω m
 7. 400 Ω

 8. 3.2 × 10 4 s ≈ 8.9 hours
 9. 0.6 km

10. 
ρl

πab

11. (a) 1.25 × 10 17  (b) 6.37 × 10 5 A/m 2

12. 8.5 mV m−1

13. 25 V m−1

14. 84.5°C
15. 0.4 V
16. 1.52 V, 0.07 Ω
17. 29 Ω
18. 0.6 Ω
19. (a) 0.3 A (b) 3 A
20. (a) 0.57 (b) 1 (c) 1.75

21. (a) 
n1E

R + 
n1r
n2

  (b) rn1 = Rn2

22. 10 mA
23. 1.6 A, 4.0 A
24. 0.15 A, 0.83 A
25. (a) 1.0 A (b) 0.67 A (c) 0.33 A
26. 12.5 Ω, 170 Ω
27. 45 Ω, 22.5 Ω
28. 4 mA in 20 kΩ resistor, 8 mA in 10 kΩ resistor and
       12 mA in 100 kΩ resistor, 1340 V

29. 2 Ω
30. r/3
31. (a) 2.08 Ω (b) 3.33 Ω (c) 3.75 Ω

32. (a) 0.1 A (b) 0.3 A

33. zero in the upper 4 Ω resistor and 0.2 A in the rest two
34. 1 A through 10 Ω, 0.4 Ω through 20 Ω and 0.6 A
       through 30 Ω
35. 1 A in a and zero in b in both the circuits

36. (a) 

E 1

R1

 + 
E 2

R2

1
R1

 + 
1
R2

 + 
1
R3

 (b) same as (a)

37. 2 V, i1 = 1 A, i2 = 0, i3 = − 1 A

38. zero
39. zero
40. any value of R will do
41. (a) r/2 (b) 4 r/5
42. 0.4 A

43. (a) 1.2 A (b) 6 V (c) 12 V (d) same as the parts (a), (b)
       and (c)

44. 
5
6

 r

45. (a) 
5
8

 r (b) 
4
3

 r (c) r (d) 
r
4

 (e) r

46. (a) 2 Ω (b) 1.5 A
47. (a) 0.1 A, 4.0 V (b) 0.08 A, 4.2 V
48. (a) 24 V (b) 28 V
49. 130 Ω
50. 6 V
51. 1.25 × 10 – 2 Ω
52. 0.251 Ω
53. 16 cm from A
54. 4 Ω
55. (a) 6 V, 2 V (b) AD = 66.7 cm (c) zero (d) 6 V, – 1.5 V,
       no such point D exists.

56. (a) 320 cm (b) 
3 E
22 r

57. 4 µC
58. (a) 0.2 A (b) 32 µJ
59. 2 µC, 8 µC, 9 µC and 12 µC
60. 25 V, 75 V

61. (a) E (b) 
E
R

 (c) E (d) 
1
2

 CE  2 (e) 
E  2

R
 (f) 

E  2

R
62. 0.18 µs
63. 5 kΩ
64. 76 µC
65. (a) 60 µC (b) 44 µC (c) 18 µC (d) 0.003 µC
66. (a) 0.25 A (b) 0.09 A

67. 1.7 × 10 4 V m −1

68. 6.3 × 10 − 10 J
70. 0.69 in both cases
71. 6.9
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72. 1.23
73. 0.69

74. 
E  2

4 R
 , CR ln2

75. (a) 2.21 A (b) 13.2 W (c) 4.87 W (d) 8.37 W

76. 
1
2

 (1 − 1/e 2) CV 2

78. ε0ρK

79. 10.37 µC
80. 11 mA
81. 70 µC

82. q = E C(1 − e − t/rc), where C = 
C1C2

C1 + C2

 ⋅

83. 
Q
2

 (1 − e − 2t/RC)

84. C E (1 − e − t/CR) + Q e − t/CR
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CHAPTER 33

THERMAL AND CHEMICAL EFFECTS
OF ELECTRIC CURRENT

We have seen that an electric current through a
resistor increases its thermal energy. Also, there are
other situations in which an electric current can
produce or absorb thermal energy. All these are termed
as thermal effects of electric current. We shall study
them in sections (33.1) to (33.6). The chemical effects,
such as electrolysis, are discussed in sections (33.7)
onwards.

33.1 JOULE’S LAWS OF HEATING

When there is an electric current in a resistor, the
thermal energy of the resistor increases. If the
potential difference between the ends of a resistor is
V and a current i passes through it, the work done by
the electric field on the free electrons in time t is

   W = (potential difference) × (charge)
= V(it)

= (iR) (it) = i 2Rt. … (33.1)

The work by the field is converted into thermal
energy of the resistor through the collisions with the
lattice. This thermal energy is generally referred to as
the heat produced in the resistor and is denoted by H.
(Strictly speaking, this energy is not heat as it does
not correspond to any temperature difference. Because
of the increased thermal energy, the temperature of
the resistor may rise. It may then transfer “heat” to
the surrounding.) It follows from equation (33.1) that

(a) the heat produced in a given resistor in a given
time is proportional to the square of the current in
it, i.e.,
              H ∝ i 2

(b) the heat produced in a given resistor by a given
current is proportional to the time for which the current
exists in it, i.e.,
 H ∝ t

(c) the heat produced in a resistor by a given
current in a given time is proportional to its resistance,

i.e.,
              H ∝ R.

The heating effects of an electric current were
studied by James Prescott Joule and he arrived at the
three laws stated above. These are thus known as
Joule’s laws. 

Example 33.1

   Find the heat developed in each of the three resistors
shown in figure (33.1) in 1 minute.

Solution : The equivalent resistance of 6 Ω and 3 Ω
resistors is

            
(6 Ω) × (3 Ω)

6 Ω + 3 Ω
 = 2 Ω. 

This is connected in series with the 1 Ω resistor. The
equivalent resistance of the circuit is

           R = 2 Ω + 1 Ω = 3 Ω.

The current through the battery is

i = 
9 V
3 Ω

 = 3 A.

The current through the 1 Ω resistor is, therefore, 3 A.
The heat developed in this resistor is

H = i 2Rt

            = (3 A) 2 × (1 Ω) × (60 s) = 540 J.

The current through the 6 Ω resistor is

           (3 A) × 
3 Ω

6 Ω + 3 Ω
 = 1 A.

The heat developed in it

        = (1 A) 2 × (6 Ω) × (60 s) = 360 J.
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The current through the 3 Ω resistor is 3 A − 1 A = 2 A.
The heat developed in it

        = (2 A) 2 × (3 Ω) × (60 s) = 720 J.

33.2 VERIFICATION OF JOULE’S LAWS

Figure (33.2) shows the apparatus and the
connections. K-oil is taken in a copper calorimeter
provided with a nonconducting lid and a stirrer. A
resistor is dipped in the oil. It is joined to the external
circuit through the leads coming out of the lid of the
calorimeter. A thermometer is provided to measure the
temperature of the oil. The calorimeter is called Joule’s
calorimeter.

H ∝ i 2

The external circuit consists of a battery, a
rheostat and a plug key in series with the resistor. An
ammeter is also connected in the circuit to measure
the current. The temperature θ1 of the K-oil is noted.
The plug key is closed to pass a constant current
through the circuit for a known time t. The value of
the current i1 is measured by the ammeter. The liquid
is stirred continuously and the final temperature θ2 is
noted. Thus, the rise in temperature ∆θ1 = θ2 − θ1 is
calculated.

The system is allowed to cool down to room
temperature. The resistance of the rheostat is changed
and the key is closed. The current i2 is measured by
the ammeter and is passed for the same time t. The
rise in temperature ∆θ2 is found as above.

The heat produced in the resistor is used to
increase the temperature of the K-oil. Thus, the heat
produced is proportional to the rise in temperature. It
is found that

              
∆θ1

∆θ2
 = 

i1
 2

i2
 2 ⋅

This shows that ∆θ ∝ i 2

or,           H ∝ i 2.

H ∝ t

The arrangement described above can also be used
to verify the second law, H ∝ t. A current i is passed
through the resistor and the temperature is noted at
regular time intervals. It is found that the temperature
rises uniformly, i.e., it increases by equal amounts in
equal times. This shows that equal amounts of heat
are produced in equal time intervals. Thus, the heat
produced is proportional to the time.

H ∝ R

To verify this law, two Joule’s calorimeters are
taken (figure 33.3). Equal amounts of K-oil are taken
in the two calorimeters. Different resistances R1 and
R2 are dipped in the K-oil and the two are joined in
series. The system is connected to a battery, a rheostat
and a plug key. The initial temperatures of the two
calorimeters are noted and a current is passed for some
time. The temperatures of the two calorimeters are
noted at the end. Let ∆θ1 be the rise in the temperature
of the first calorimeter and ∆θ2 be the rise in the
temperature of the second calorimeter. The heat
produced in each resistor is proportional to the rise in
the temperature of the corresponding calorimeter. It is
found that

              
∆θ1

∆θ2
 = 

R1

R2

or,       ∆θ ∝ R

or,       H ∝ R.

33.3 SEEBECK EFFECT

Figure (33.4) shows two metallic strips, made of
different metals and joined at the ends to form a loop.
If the junctions are kept at different temperatures,
there is an electric current in the loop. This effect is
called the Seebeck effect and the emf developed is
called the Seebeck emf or thermo-emf.

The magnitude and the direction of the emf depend
on the metals and the temperatures of the hot and
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cold junctions. Such a combination of two metals is
called a thermocouple.

Thermoelectric Series

For given temperatures of hot and cold junctions,
the direction of the current in a thermocouple depends
on the metals chosen. Metals are arranged in a
particular sequence which may be used to predict the
direction of the current in the temperature range
0C to 100C. This sequence known as the
thermoelectric series, is as follows:

antimony, nichrome, iron, zinc, copper, gold, silver,
lead, aluminium, mercury, platinum–rhodium,
platinum, nickel, costantan, bismuth.

At the cold junction, the current is from the metal
coming earlier in the series to the metal coming latter
in the series. For example, in a copper–iron
thermocouple, the current will be from iron to copper
at the cold junction. Also, the series gives an idea of
the relative magnitude of emf for different
thermocouples. Farther apart two metals lie in the
series, larger is the emf produced.

Neutral and Inversion Temperature

Figure (33.5) shows a copper–nickel thermocouple.
A sensitive galvanometer is connected in series to
measure the current. Suppose one of the junctions is
kept at a fixed low temperature 0C and the other is
gradually heated. There will be a current in the circuit
as shown in the figure. At the cold junction it is from
copper to nickel and at the hot junction it is from nickel
to copper. As the temperature of the hot junction is
gradually increased, the magnitude of the current
increases till the temperature becomes nearly 390C.
After this, the current decreases till the temperature
of the hot junction becomes 780C. At this temperature
the current becomes zero. If the hot junction is heated
further, the direction of the current is reversed and
the magnitude increases.

If the cold junction of the copper–nickel thermo-
couple is not at 0C but say at 10C, the current will
be again maximum when the hot junction is at 390C.
But the inversion of the direction of the current will
take place at 770C instead of 780C. As the current
is proportional to the emf developed, the above

observations also indicate the behaviour of the
thermo-emf.

Copper and nickel were taken above only as an
example. The behaviour of any other thermocouple will
be, in general, similar. The numeric values will, of
course, be different. Also even for a copper–nickel
thermocouple, the neutral temperature depends on the
purity, heat treatment, etc., of the metals.

The temperature of the hot junction at which the
thermo-emf is maximum is called the neutral
temperature and the temperature at which the thermo-
emf changes its sign (current reverses) is called the
inversion temperature. If c, n and i denote the
temperature of the cold junction, the neutral
temperature and the inversion temperature
respectively, we have
           n  c  i  n.  (33.2)

At this stage, let us explain the sign convention. The
thermo-emf developed in a thermocouple of metals A and
B is denoted by E AB and is taken to be positive if the
direction of the current is from A to B at the hot junction.

Figure (33.6) shows graphically the variation in
thermo-emf as the temperature of the hot junction
changes. If the cold junction is at 0C and the hot
junction at  (in Celsius), the thermo-emf depends on
the temperature as

         E AB  aAB  
1
2

 bAB 2  (33.3)

where aAB and bAB are constants for the pair of metals
A and B.

   This gives

 
dE AB

d
  aAB  bAB.  (33.4)

The quantity 
dE AB

d
 is called thermoelectric power at

temperature .

The emf is maximum when 
dEAB

d
  0 or,    

aAB

bAB
 

This is the neutral temperature. The emf becomes zero
at    2aAB /bAB. This is the inversion temperature.

Figure 33.5
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Example 33.2

   The cold junction of a thermocouple is maintained at
10°C. No thermo-emf is developed when the hot junction
is maintained at 530°C. Find the neutral temperature.

Solution : Clearly, 530°C is the inversion temperature θi

of the couple. If θn be the neutral temperature and θc

be the temperature of the cold junction,
           θi − θn = θn − θc

or,       θn = 
θi + θc

2
 = 

530°C + 10°C
2

 = 270°C.

Table (33.1) gives the values of a and b for some
of the metals with lead. Note that there is no neutral
temperature or inversion temperature above 0°C for
the thermocouple if a and b have the same sign.

Table 33.1 : Coefficients a and b for thermocouples

Metal with
lead (Pb)

   a
µV°C −1

  b
µV°C −2

Aluminium  – 0.47   0.003

Bismuth – 43.7 – 0.47

Copper    2.76   0.012

Gold    2.90   0.0093

Iron   16.6 – 0.030

Nickel   19.1 – 0.030

Platinum  – 1.79 – 0.035

Silver    2.50   0.012

Steel   10.8 – 0.016

Law of Intermediate Metal

Suppose E AB = thermo-emf between metals A and B

E AC =       thermo-emf between metals A and C

and  E BC =    thermo-emf between metals B and C.

Also, suppose the temperatures of the cold
junctions are the same in the three cases and the
temperatures of the hot junctions are also the same in
the three cases.

   Then,  E AB = E AC − E BC. … (33.5)

This law is known as the law of intermediate metal.

We have,

           E AB = aABθ + 
1
2

 bABθ 2

            E BC = aBCθ + 
1
2

 bBCθ 2

E AC = aACθ + 
1
2

 bACθ 2.

Equation (33.5) gives
      aAB = aAC − aBC  and  bAB = bAC − bBC.

Table (33.1) may, therefore, be used to find the
values of a and b for any pair of metals listed.

Example 33.3

   Using table (33.1), find a and b coefficients for a
copper–iron thermocouple.

Solution :

   aCu, Fe = aCu, Pb − aFe, Pb

= 2.76 µV°C −1 − 16.6 µV°C −1 = − 13.8 µV°C −1.
  bCu, Fe = bCu, Pb − bFe, Pb

   = 0.012 µV°C −2 + 0.030 µV°C −2 = 0.042 µV°C −2.

Law of Intermediate Temperatures

Let E θ1, θ2 denote the thermo-emf of a given
thermocouple when the temperatures of the junctions
are maintained at θ1 and θ2. Then,

           E θ1, θ2 = E θ1, θ3 + E θ3, θ2. … (33.6)

This is known as the law of intermediate
temperature.

The two laws given by equations (33.5) and (33.6)
show that we can include any metal wire or a
galvanometer, etc. in the thermocouple circuit without
changing the emf in the circuit.

33.4 PELTIER EFFECT

Suppose the two junctions of a thermocouple are
initially at the same temperature and an electric
current is passed through the circuit by using an
external battery. It is observed that heat is produced
at one junction and is absorbed at the other. Thus, one
junction is warmed up and the other is cooled down
due to the currents through the junctions. It is reverse
of the  Seebeck effect and is called the Peltier effect.
If the direction of the current is reversed, the cooling
and warming are also reversed. This means, the
junction which was originally warmed up, now cools
down and vice-versa. The heat absorbed or liberated
at the junction is proportional to the charge passed
through the junction. If an amount ∆H of heat is
produced or absorbed when a charge ∆Q is passed
through the junction, we define Peltier emf as

        ΠAB = 
∆H
∆Q

 = 
Peltier heat

charge transferred
 ⋅

Figure 33.7
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The Peltier emf ΠAB across a junction of two metals
A and B is taken as positive if heat is absorbed by the
junction when there is an electric current from A to B
through the junction. When two different metals are
joined at a point, this much emf is developed across
the junction.

The heat developed in Peltier effect should not be
confused with the Joule heat when a current is passed
through a resistor. Joule heat always warms up the
resistor whatever be the direction of the current. But
one has both Peltier heating and Peltier cooling of the
junction depending on the direction of the current.

Another difference is that the Peltier heat in a
given time is proportional to the current through the
junction whereas the Joule heat is proportional to the
square of the current,

      HPeltier ∝ i,          HJoule ∝ i 2.

Also, the Peltier heating or cooling is observed only
at a junction, whereas the Joule heating is throughout
the resistor.

33.5 THOMSON EFFECT 

If a metallic wire has a nonuniform temperature
and a current is passed through it, heat may be
absorbed or produced in different sections of the wire.
This heat is over and above the Joule heat i

 2
Rt and

is called the Thomson heat. The effect itself is called
the Thomson effect.

Thomson heat, produced or absorbed in a small
section of a given wire, is proportional to the charge
passed through the section and the temperature
difference between the ends of the section.

If a charge ∆Q is passed through a small section
of the wire having a temperature difference ∆T
between the ends, the Thomson heat is

         ∆H = σ(∆Q) (∆T)
where σ is a constant for a given metal at a given
temperature. The quantity

    σ∆T = 
∆H
∆Q

 = 
Thomson  heat

charge  transferred

is called the Thomson emf.
In fact, this much amount of emf is produced when

the ends of the section of the wire are maintained at
different temperatures.

The constant σ is called the Thomson coefficient.
It is taken to be positive if heat is absorbed when a
current is passed from the low-temperature end to the
high-temperature end. Copper, silver, zinc, antimony,
cadmium, etc., have positive σ. Iron, cobalt, nickel,
bismuth, platinum, etc., have negative σ. In these
metals heat is absorbed when current is passed from
hotter end to the colder end. In lead, σ is almost zero.

33.6 EXPLANATION OF SEEBECK, PELTIER
    AND THOMSON EFFECTS

The density of free electrons is different in
different metals. When two different metals are joined
to form a junction, the electrons tend to diffuse from
the side with higher concentration to the side with
lower concentration. This produces an emf across the
junction. This emf is the Peltier emf. If a current is
forced through the junction, positive or negative work
is done on the charge carriers depending on the
direction of the current. Accordingly, thermal energy
is either produced or absorbed.

If the temperature of a metal piece is not uniform
everywhere, density of free electrons varies inside the
metal. The electrons tend to diffuse from the higher-
concentration regions to the lower-concentration
regions. This gives rise to an emf between the hot and
the cold parts of the metal. This emf is the Thomson
emf. If a current is forced through a wire having
nonuniform temperature, positive or negative work is
done on the charge carriers depending on the direction
of the current. Accordingly, thermal energy is either
produced or absorbed.

The density of free electrons in a metal depends
on the temperature. Hence, the Peltier emf developed
across a junction depends on the temperature of the
junction. In a thermocouple, there are two junctions.
If these junctions are maintained at the same
temperature, the Peltier emf′s developed across the
two junctions balance each other and there is no net
Peltier emf in the loop. If the junctions are at different
temperatures, the emf′s developed across the junctions
are different and there is a net Peltier emf in the loop.
Also, when the junctions of a thermocouple are kept
at different temperatures, each of the two metal pieces
has nonuniform temperature. Thus, a Thomson emf is
developed across its ends. The emf′s are different for
the two metals and hence there is a net Thomson emf
in the loop because of this effect. The actual emf
developed in a thermocouple loop is the algebraic sum
of the net Peltier emf and the net Thomson emf
developed in the loop.

Referring to figure (33.8), we can write the thermo-
emf E AB in the loop as
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   E AB = (ΠAB)T − (ΠAB)T0
 + (T − T0) (σA − σB). … (33.6)

Thus, Seebeck emf is a combination of two Peltier
emf’s and two Thomson emf’s.

33.7 ELECTROLYSIS

Several liquids are found to be good conductors of
electricity. Solutions of inorganic salts in water, dilute
acids and bases are examples of conducting liquids.
Such a liquid is called an electrolyte and the vessel
with the electrolyte is called an electrolytic cell. The
mechanism of electric conduction in electrolytes is
quite different from that in metals. Let us understand
the process with a specific example.

Let us take a solution of silver nitrate (AgNO3) in
an electrolytic cell and immerse two silver rods in it
(figure 33.9). Electric current is passed through the
solution by connecting the rods to an external battery.
The current enters the solution through the rod A,
called the anode and it leaves the solution through the
rod C, called the cathode. These rods are collectively
called electrodes. We find that as time passes, silver
gets deposited on the cathode C and an equal amount
of silver is removed from the anode A. 

A fraction of the molecules of the dissolved AgNO3

are separated in  two parts, Ag + and NO3
 −, each  of

which has electric charge. These are called ions. An
ion with positive charge is called cation and an ion
with negative charge is called anion. Here Ag + is the
cation and NO3

 − is the anion. These ions move freely
in the solution. When a battery is connected to the
electrodes, electric field is produced in the solution
from the anode towards the cathode. Thus, the cations
move towards the cathode and the anions move
towards the anode. The ions give up their charges at
the electrodes and the substance making up the ions
is liberated. The liberated substance may get deposited
on the electrodes or may take part in some secondary
chemical reaction. In case of AgNO3, the Ag + ions
(cation) move to the cathode, the charge is given up
there and the silver atoms are deposited on the
cathode. In fact an Ag + ion receives an electron from
the cathode to become neutral Ag atom,

         Ag + + e = Ag.

The NO3
 − ion (anion) moves to  the anode and gives

its extra electron to it. The NO3
 − ion is converted to

NO3,

          NO3
 − = NO3 + e.

The NO3 so formed reacts with a silver atom of the
anode to form AgNO3 which gets dissolved in the
solution. This way, silver is continuously removed from
the anode and deposited on the cathode with the
concentration of the electrolyte remaining unchanged.
The movement of cations (positive charge) towards the
cathode and anions (negative charge) towards the
anode make the current in the electrolyte.

The electron given up by an anion to the anode is
passed through the battery back to the cathode which
has supplied one electron to the cation. This way, the
potential difference between the electrodes is
maintained. Also, the number of electrons passed
through the battery is equal to the number of electrons
absorbed or released at each electrode. In other words,
the charge passed through the circuit is equal to the
charge released at each electrode.

When a current passes through an electrolyte,
chemical changes occur in the electrolyte and
substances are liberated at the electrodes. This process
is called electrolysis.

33.8 FARADAY’S LAWS OF ELECTROLYSIS

After systematically studying electrolysis, Faraday
discovered two laws:

(a) The mass of a substance liberated at an
electrode is proportional to the charge passing through
the electrolyte.

(b) The mass of a substance liberated at an
electrode by a given amount of charge is proportional
to the chemical equivalent of the substance.

If an electric current i is passed through an
electrolyte for a time t, the amount of charge passed
is Q = it. According to the first law, the amount of the
substance liberated at an electrode is
              m ∝ Q … (i)

   or, m ∝ it

   or, m = Zit … (33.7)

where Z is a constant for the substance being liberated.
The constant Z is called the electrochemical equivalent
(ECE) of the substance. The SI unit of ECE is kilogram
coulomb −1 written as kg C −1. 

The chemical equivalent of a substance is equal to
its relative atomic mass divided by its valency.
Relative atomic mass of a substance is the ratio of the
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mass of its atom to the 1⁄12 of the mass of a 12C atom.
The relative atomic mass of silver is 108 and its
valency is 1. Thus, the chemical equivalent of silver is
108. The relative atomic mass and valency of copper
are 63.5 and 2 respectively. The chemical equivalent
is, therefore, 31.75. For oxygen, the chemical
equivalent is 16/2 = 8.

If E denotes the chemical equivalent of a substance
being liberated at an electrode, from the second law,

         m ∝ E.

Combining with (i) it gives
m ∝ EQ.

   or, m = 
1
K

 EQ … (33.8)

where K is a universal constant having the value
9.6485 × 10 7 C kg −1.

Example 33.4

   Calculate the electric current required to deposit 0.972 g
of chromium in three hours. ECE of chromium is
0.00018 g C −1. 

Solution : We have
          m = Zit

or, 0.972 g = (0.00018 g C −1) i (3 × 3600 s)

or, i = 
0.972

0.00018 × 3 × 3600
 A = 0.50 A.

Verification of Faraday’s Laws

1st law

An electrolytic cell is connected to a battery, a
rheostat, a key and an ammeter in series as in figure
(33.9). The cathode is cleaned, dried, weighed and then
inserted in the electrolytic cell. A constant current i1

is passed for a measured time t. The current is
measured by the ammeter. Slight adjustment of the
rheostat may be necessary to keep the current
constant. The cathode is taken out, washed without
rubbing in gently-flowing water and is dried. It is
weighed again and the mass m1 of the deposit is
obtained. The cathode is reinserted in the cell and the
rheostat position is changed. This allows a different
current i2 when the circuit is completed. This current
is passed for the same time t and the mass m2 of the
deposit is obtained. It is found that

           
m1

m2
 = 

i1

i2
 ⋅

   Thus,         m ∝ i. … (i)

Similarly, two experiments are done with the same
current but for different times t1 and t2. If the masses

of the deposits are m1′ and m2′ respectively, it is found
that

            
m1′
m2′

 = 
t1

t2

   or,          m ∝ t. … (ii)

From (i) and (ii),
           m ∝ it

or,         m ∝ Q.
So, the first law is verified.

2nd law

To verify the second law, one can take two
electrolytic cells containing different electroytes. To be
specific, one may contain CuSO4 solution with copper
electrodes and the other AgNO3 solution with silver
electrodes. The electrodes are connected in series with
an external circuit as shown in figure (33.10). This
arrangement ensures that the currents in the two cells
are the same.

The cathodes are cleaned, dried, weighed and then
inserted in the respective cells. The current is passed
for some time and then the cathodes are taken out.
They are washed without rubbing in gently-flowing
water, dried and weighed. Thus, the masses of the
deposits are obtained. If m1 and m2 are the masses of
copper and silver deposited, it is found that

              
m1

m2
 = 

E1

E2

where E1 and E2 are the chemical equivalents of copper
and silver respectively. So, the second law is verified.

Faraday’s Laws and Ionic Theory

Faraday’s laws of electrolysis can be easily
understood in terms of the ionic character for the
conduction in an electrolyte. Suppose a substance of
valency v is liberated at an electrode. Its ion will carry
a positive or a negative charge of magnitude ve. To
neutralise this ion, the battery has to supply or take
up a charge ve. If the total charge passing through the
battery is Q, the number of ions neutralised is

            N = 
Q
ve

 ⋅
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Suppose, the relative atomic mass of the substance
is A. Now 1⁄12 of the mass of a 12C atom is one atomic
mass unit (amu) and has the value 1.6605 × 10 – 27 kg.
Let us denote this quantity as mu. The mass of an
atom of the substance is then

           ma = A mu.

This can also be taken as the mass of an ion because
the difference in ionic mass and atomic mass is
negligible. The mass of the N ions neutralised at the
electrode is
          m = N A mu

= 
Q
ve

 A mu.

But A
v
 is the chemical equivalent E, so that

m = 
1

e/mu
 EQ.

Thus, m ∝ Q and m ∝ E which are Faraday’s laws.
The constant

     
e

mu
 = K = 

1.6022 × 10 − 19 C

1.6605 × 10 − 27 kg

= 9.6485 × 10 7 C kg −1

as mentioned earlier.

The Unit “faraday” and Faraday Constant

The charge of 1 mole of electrons is called 1
faraday. So faraday is a unit of charge and its relation
with coulomb is

1 faraday = (1.6022 × 10 − 19 C) × (6.022 × 10 23)
= 96485 C.

The quantity charge per mole of electrons is called
Faraday constant and is denoted by the symbol F.
Thus,
        F = 96485 C mol −1

= 1 faraday mol −1.
Suppose, 1 faraday of charge is passed through an

electrolyte. The amount of electrons taken up or
supplied at an electrode is 1 mole. Since each ion takes
up or gives up v electrons, the amount of ions liberated

is 1
v
 moles. The mass of 1 mole of the substance is A

gram (A = relative atomic mass), so that  the mass of

these ions is A
v
 gram = E gram. The amount E gram of

a substance is called 1 gram-equivalent of this
substance. So, 1 faraday of charge liberates one gram-
equivalent of any substance in electrolysis.

33.9 VOLTAMETER OR COULOMBMETER

An electrolytic cell can be used to measure electric
currents or amounts of charge. The current to be

measured is passed through the electrolytic cell for a
known time t. If the mass deposited in time t is m and
the electrochemical equivalent of the material is Z,

           m = Zit

or, i = 
m
Zt

 ⋅

The charge passed is it = m/Z.
When an electrolytic cell is used to measure

electric current it is called a voltameter or a
coulombmeter. Quite often, the word voltameter is used
to mean just the electrolytic cell whatever be its use.

A copper voltameter may be used for routine
laboratory measurements. The electrolyte is CuSO4

solution in water in the ratio of about 1 : 4 by weight.
A copper plate placed in the middle serves as the
cathode and two connected copper plates on the two
sides of the cathode are used as the anode. In this
arrangement, shown schematically in figure (33.11),
both sides of the cathode plate receive the deposit.

A silver voltameter (figure 33.12) is used when
high accuracy is needed. The electrolyte is silver
nitrate solution in water in the ratio of 1 : 5 to 1 : 6.
The solution is taken in a platinum cup. The cup itself
acts as the cathode. The anode is made of a silver rod
placed in the middle. A porcelain cup which is porous
to the electrolyte surrounds the anode. This prevents
the impurities in the anode to reach the cathode.

Because of the high accuracy attainable, silver
voltameters are used in laboratories for
standardization purposes.
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33.10 PRIMARY AND SECONDARY CELLS  

When a metal electrode is dipped in an electrolyte,
negative or positive ions tend to go from the electrolyte
to the electrode. Thus, an emf is produced between the
electrolyte and the electrode. If two electrodes of
different metals are dipped in an electrolyte, the emf’s
produced at the two electrodes are different and there
is a net emf between the electrodes. This forms a
voltaic cell, also called simply a cell. The electrode at
higher potential is called the positive electrode and that
at lower potential is called the negative electrode.
Terminals connected to these electrodes are called
positive and negative terminals respectively. This is
the basic theory of a voltaic cell in which electrolysis
is used to produce an emf between two terminals.

A cell is called primary if it is used only for
discharge. The current leaves the cell at the positive
terminal, goes through the external circuit and enters
the cell at the negative terminal. A secondary cell on
the other hand can be discharged as well as charged;
the current can go both ways in the cell.

33.11 PRIMARY CELLS

Daniell Cell

In the simplest form, a Daniell cell consists of a
zinc electrode in a dilute H2SO4 solution and a copper
electrode in CuSO4 solution. The two solutions are
separated by a porous cup which allows any gas to
pass through, but generally prevents the liquids to
mix. The zinc surface is amalgamated to avoid the local
effects of impurities.

The H2SO4 solution consists of H + ions and SO4
 − −

ions. The SO4
 − − ions move to the zinc electrode to form

ZnSO4. Negative charge is given up to the zinc

electrode in the process. The H + ions move out through
the porous cup. These H + ions combine with the
SO4

 − − ions in the CuSO4 solution to form H2SO4. The

Cu++ ions in the outer vessel move towards the copper
electrode. Copper is deposited on the copper electrode
and positive charge is given up to this electrode in the
process. This arrangement prevents hydrogen from

collecting near the anode. Any hydrogen collected near
the anode may stop the function of the cell. This
problem is called the polarization of the cell.

Because of the chemical actions described, the
positive charge is accumulated on the copper electrode
and negative charge on the zinc electrode. Thus an emf
is produced. The zinc electrode works as the negative
electrode and the copper electrode works as the
positive electrode.

Daniel cell is used when a continuous current is
needed. The emf of a Daniell cell is around 1.09 V and
its internal resistance is around 1 Ω.

Leclanche Cell

A Leclanche cell has a carbon and a zinc electrode
in a solution of NH4Cl. The carbon electrode is packed
in a porous cup containing MnO2. The zinc electrode
forms the negative terminal and the carbon forms the
positive terminal. When a current passes through the
cell, the Cl − ions combine with zinc and the NH4

 + ions

move towards the carbon electrode. The NH4
 + separates

into ammonia (NH3) and hydrogen (H 4). The H + ion
enters the porous cup. The positive charge is given to
the carbon electrode. The hydrogen reacts with MnO2

present there to form Mn2O3 and water. Thus, MnO2

prevents hydrogen from collecting on the anode which
could otherwise stop the cell’s function.

The depolarizing action (absorbing hydrogen in
some chemical reaction) is quite slow in Leclanche cell.
Thus, if the cell is used continuously, hydrogen starts
collecting at the carbon electrode and the cell is not
able to supply enough current. Thus, the cell is used
when intermittent currents are needed. Its emf is
about 1.5 V.

Dry Cell

This is a special kind of Leclanche cell in which
both NH4Cl and MnO2 are prepared in the form of a
paste. The paste is contained in a zinc container which
itself works as the negative electrode. The whole
system is sealed so that the paste does not dry up. The
internal resistance of a dry cell is very small, of the
order of 0.1 Ω.
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33.12 SECONDARY CELL : LEAD ACCUMULATOR

In a secondary cell, one can pass current in both
directions. When current leaves the cell at the positive
terminal and enters the cell at the negative  terminal,
the cell is discharged. This is the normal working of
the cell. Chemical energy is converted into electrical
energy in this case. If the cell is connected to some
other source of larger emf, current may enter the cell
at the positive terminal and leave it at the negative
terminal. The electric energy is then converted into
chemical energy and the cell gets charged. The most
commonly used secondary cell is a lead accumulator.

Lead Accumulator

In principle, a lead accumulator consists of
electrodes made of PbO2 and of Pb immersed in dilute
sulphuric acid (H2SO4). The specific gravity of the
solution should be between 1.20 and 1.28.  PbO2 acts
as the positive electrode and Pb as the negative
electrode.  While  discharging,  the SO4

 − −  ions  move
towards the Pb electrode, give up the negative charge
and form PbSO4 there (figure 33.16a). The H + ions
move to the PbO2 electrode, give up the positive charge
and reduce PbO2 to PbO,

       PbO2 + 2 H = PbO + H2O.

The PbO so formed reacts with the H2SO4 to form
PbSO4 and water.

      PbO + H2SO4 = PbSO4 + H2O

Thus, PbSO4 is formed at both the electrodes. As
the sulphuric acid is used up in discharging, the
specific gravity of the acid decreases. When the specific
gravity falls to 1.15, the cell is considered to be fully

discharged and any further current drawn from it may
permanently damage the electrodes.

The charging process is reverse of discharging. A
current is forced from the positive to the negative
electrode inside the cell. The H + ions move towards
the negative electrode and react with the PbSO4

present there (which was formed during discharging).

        PbSO4 + 2 H = Pb + H2SO4.

At the positive electrode, the reaction is

   PbSO4 + SO4 + 2 H2O = PbO2 + 2 H2SO4.

Thus, the PbSO4 deposited at the two electrodes is
dissolved, Pb is deposited at the negative electrode and
PbO2 at the positive electrode. This restores the
capacity of the cell to provide current. The emf of a
lead accumulator is about 2.05 V when fully charged.
In the discharged condition, the emf may fall to 1.8 V.

A practical lead accumulator contains several
plates of lead connected together to form the negative
electrode and several plates of lead peroxide connected
together to form the positive electrode. This increases
the capacity of the accumulator. These plates are
separated from each other by insulating separators.

For commercial use, several such cells are
connected in series and assembled together in one case.
A six volt battery is obtained by connecting three such
cells and a twelve volt battery is obtained by
connecting six such cells.

The capacity of an accumulator is measured in
ampere–hour. Thus, a 100 ampere–hour accumulator
can supply 20 A current for 5 hours or 10 A current
for 10 hours.

Worked Out Examples

 1. A current of 30 A is registered when the terminals of a
dry cell of emf 1.5 volts are connected through an
ammeter. Neglecting the meter resistance, find the
amount of heat produced in the battery in 10 seconds.

Solution : The current in the circuit will be

              i = 
E
r

or,    30 A = 
1.5 V

r
  giving  r = 0.05 Ω.

The amount of heat produced in the battery

      = i 2rt = (30 A) 2 × (0.5 Ω) × 10 s = 450 J.
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 2. A room heater is rated 500 W, 220 V. (a) Find the
resistance of its coil. (b) If the supply voltage drops to
200 V, what will be the power consumed ? (c) If an
electric bulb rated 100 W, 220 V is connected in series
with this heater, what will be the power consumed by the
heater and by the bulb when the supply is at 220 V ?

Solution :

(a) The power consumed by a coil of resistance R when
connected across a supply V is

       P = 
V 2

R
 ⋅

The resistance of the heater coil is, therefore,

R = 
(220 V) 2

500 W
 = 96.8 Ω.

(b) If the supply voltage drops to 200 V, the power
consumed will be

P = 
V 2

R
 = 

(200 V) 2

96.8 Ω
 = 413 W.

(c) The resistance of the 100 W, 220 V bulb is

R = 
(220 V) 2

100 W
 = 484 Ω.

If this is connected in series with the heater of 96.8 Ω,
the current i will be

i = 
220 V

484 Ω + 96.8 Ω
 = 0.379 A.

Thus, the power consumed by the heater

= i 2 × 96.8 Ω = 0.144 × 96.8 W = 13.9 W

and that by the bulb

= i 2 × 484 Ω = 69.7 W.

 3. A battery of emf E  and internal resistance r is used in
a circuit with a variable external resistance R. Find the
value of R for which the power consumed in R is
maximum.

Solution : The current in the resistance R is 

          i = 
E

r + R
 ⋅

The power consumed in R is 

P = i 2R = 
E 2 R

(r + R) 2 ⋅

It is maximum when dP
dR

 = 0. We have

dP
dR

 = E 2 




(r + R) 2 − 2R(r + R)
(r + R) 4




 .

It is zero when 

(r + R) 2 = 2R(r + R)

or, R = r.

 4. The junctions of a Ni–Cu thermocouple are maintained
at 0°C and 100°C. Calculate the Seebeck emf produced

in the loop. aNi, Cu = 16.3 × 10 – 6 V°C −1 and bNi, Cu = 

– 0.042 × 10 – 6 V°C –2.

Solution :

    E Ni, Cu = aNi, Cuθ + 
1
2

 bNi, Cuθ 2

  = (16.3 × 10 − 6 × 100)V + 
1
2

 (− 0.042 × 10 − 6 × 10 4)V

= 1.42 × 10 − 3 V.

 5. Find the neutral and inversion temperatures for Ni–Cu
thermocouple with the cold junction at 0°C. Use data
from previous example.

Solution : The neutral temperature is

      θn = − 
a
b

       = 
16.3 × 10 − 6

0.042 × 10 − 6 °C = 388°C.

The inversion temperature is double the neutral
temperature, i.e., 776°C.

 6. An electric current of 0.4 A is passed through a silver
voltameter for half an hour. Find the amount of silver
deposited on the cathode. ECE of silver = 1.12 × 10 – 6

kg C −1.

Solution : Using the formula m = Zit, the mass of silver
deposited

    = (1.12 × 10 − 6 kg C −1) (0.4 A) (30 × 60 s)

    = 8.06 × 10 − 4 kg = 0.806 g.

 7. A silver and a copper voltameter are connected in series
with a 12.0 V battery of negligible resistance. It is found
that 0.806 g of silver is deposited in half an hour. Find
(a) the mass of the copper deposited and (b) the energy
supplied by the battery. ECE of silver = 1.12 × 10– 6 kg C −1

and that of copper = 6.6 × 10 – 7 kg C −1.

Solution :

(a) For silver voltameter, the formula m = Zit gives

    0.806 g = (1.12 × 10 − 6 kg C −1) i(30 × 60 s)

or, i = 0.4 A.

As the two voltameters are connected in series, the same
current passes through the copper voltameter. The mass
of copper deposited is

m = Zit

= (6.6 × 10 − 7 kg  −1C) (0.4 A) (30 × 60 s)

= 4.75 × 10 − 4 kg = 0.475 g.

This could also be obtained by using 
m1

m2

 = 
Z1

Z2

 for series

circuit.

(b) Energy supplied by the battery = Vit
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      = (12 V) (0.4 A) (30 × 60 s) = 8.64 kJ.

 8. A current of 1 A is passed through a dilute solution of
sulphuric acid for some time to liberate 1 g of oxygen.
How much hydrogen is liberated during this period ?
How long was the current passed ? Faraday constant
= 96500 C mol −1.

Solution : The relative atomic mass of oxygen = 16 and its

valency = 2 so that the chemical equivalent E = 16
2

 = 8.

Chemical equivalent of hydrogen = 1.

     
moxygen

mhydrogen
 = 

Eoxygen

Ehydrogen
 = 

8
1

or,     mhydrogen = 
moxygen

8
 = 

1 g
8

 = 0.125 g.

We have, 1 g of oxygen = 1
8
 gram-equivalent.

The charge needed to liberate 1
8
 gram-equivalent

= 1
8
 faraday

= 
96500

8
 C ≅ 1.12 × 10 4 C.

As the current is 1 A, the time taken is

          t = 
Q
i

 = 
1.2 × 10 4 C

1 A

= 1.2 × 10 4 s
= 3 hours  20  minutes.

QUESTIONS FOR SHORT ANSWER

 1. If a constant potential difference is applied across a bulb,
the current slightly decreases as time passes and then
becomes constant. Explain.

 2. Two unequal resistances R1 and R2 are connected across
two identical batteries of emf E  and internal resistance
r (figure 33-Q1). Can the thermal energies developed in
R1 and R2 be equal in a given time. If yes, what will be
the condition ?

 3. When a current passes through a resistor, its
temperature increases. Is it an adiabatic process ?

 4. Apply the first law of thermodynamics to a resistor
carrying a current i. Identify which of the quantities ∆Q,
∆U and ∆W are zero, which are positive and which are
negative.

 5. Do all the thermocouples have a neutral temperature ?

 6. Is inversion temperature always double of the neutral
temperature ? Does the unit of temperature have an
effect in deciding this question ?

 7. Is neutral temperature always the arithmetic mean of
the inversion temperature and the temperature of the
cold junction ? Does the unit of temperature have an
effect in deciding this question ?

 8. Do the electrodes in an electrolytic cell have fixed
polarity like a battery ?

 9. As temperature increases, the viscosity of liquids
decreases considerably. Will this decrease the resistance
of an electrolyte as the temperature increases ?

OBJECTIVE I

 1. Which of the following plots may represent the thermal
energy produced in a resistor in a given time as a
function of the electric current ?

 2. A constant current i is passed through a resistor. Taking
the temperature coefficient of resistance into account,
indicate which of the plots shown in figure (33-Q3) best
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represents the rate of production of thermal energy in
the resistor.

 3. Consider the following statements regarding a
thermocouple.
(A) The neutral temperature does not depend on the
       temperature of the cold junction.
(B) The inversion temperature does not depend on the
       temperature of the cold junction.
(a) Both A and B are correct.
(b) A is correct but B is wrong.
(c) B is correct but A is wrong.
(d) Both A and B are wrong.

 4. The heat developed in a system is proportional to the
current through it.
(a) It cannot be Thomson heat.
(b) It cannot be Peltier heat.
(c) It cannot be Joule heat.
(d) It can be any of the three heats mentioned above.

 5. Consider the following two statements.
(A) Free-electron density is different in different metals.
(B) Free-electron density in a metal depends on
       temperature.
Seebeck effect is caused

(a) due to both A and B
(b) due to A but not due to B
(c) due to B but not due to A
(d) neither due to A nor due to B.

 6. Consider the statements A and B in the previous
question. Peltier effect is caused
(a) due to both A and B
(b) due to A but not due to B
(c) due to B but not due to A
(d) neither due to A nor due to B.

 7. Consider the statements A and B in question 5. Thomson
effect is caused
(a) due to both A and B
(b) due to A but not due to B
(c) due to B but not due to A
(d) neither due to A nor due to B.

 8. Faraday constant
(a) depends on the amount of the electrolyte
(b) depends on the current in the electrolyte
(c) is a universal constant
(d) depends on the amount of charge passed through
       the electrolyte.

OBJECTIVE II

 1. Two resistors having equal resistances are joined in
series and a current is passed through the combination.
Neglect any variation in resistance as the temperature
changes. In a given time interval,
(a) equal amounts of thermal energy must be produced
       in the resistors
(b) unequal amounts of thermal energy may be produced
(c) the temperature must rise equally in the resistors
(d) the temperature may rise equally in the resistors.

 2. A copper strip AB and an iron strip AC are joined at A.
The junction A is maintained at 0°C and the free ends
B and C are maintained at 100°C. There is a potential
difference between
(a) the two ends of the copper strip
(b) the copper end and the iron end at the junction
(c) the two ends of the iron strip
(d) the free ends B and C.

 3. The constants a and b for the pair silver–lead are
2.50 µV°C −1 and 0.012 µV°C –2 respectively. For a
silver–lead thermocouple with colder junction at 0°C,

   (a) there will be no neutral temperature
(b) there will be no inversion temperature
(c) there  will  not  be  any  thermo-emf  even  if  the
   junctions are kept at different temperatures
(d) there will be no current in the thermocouple even if
   the junctions are kept at different temperatures.

 4. An electrolysis experiment is stopped and the battery
terminals are reversed.
(a) The electrolysis will stop.
(b) The rate of liberation of material at the electrodes
   will increase.
(c) The rate of liberation of material will remain the
   same.
(d) Heat will be produced at a greater rate.

 5. The electrochemical equivalent of a material depends on
(a) the nature of the material
(b) the current through the electrolyte containing the
   material
(c) the amount of charge passed through the electrolyte
(d) the amount of this material present in the electrolyte.

EXERCISES

 1. An electric current of 2.0 A passes  through a wire of
resistance 25 Ω. How much heat will be developed in
1 minute ?

 2. A coil of resistance 100 Ω is connected across a battery
of emf 6.0 V. Assume that the heat developed in the coil
is used to raise its temperature. If the heat capacity of

the coil is 4.0 J K −1, how long will it take to raise the
temperature of the coil by 15°C ?

 3. The specification on a heater coil is 250 V, 500 W.
Calculate the resistance of the coil. What will be the
resistance of a coil of 1000 W to operate at the same
voltage ? 
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 4. A heater coil is to be constructed with a nichrome wire
(ρ = 1.0 × 10 – 6 Ωm) which can operate at 500 W when
connected to a 250 V supply. (a) What would be the
resistance of the coil ? (b) If the cross-sectional area of
the wire is 0.5 mm 2, what length of the wire will be
needed ? (c) If the radius of each turn is 4.0 mm, how
many turns will be there in the coil ?

 5. A bulb with rating 250 V, 100 W is connected to a power
supply of 220 V situated 10 m away using a copper wire
of area of cross section 5 mm 2. How much power will
be consumed by the connecting wires ? Resistivity of
copper = 1.7 × 10 – 8 Ωm.

 6. An electric bulb, when connected across a power supply
of 220 V, consumes a power of 60 W. If the supply drops
to 180 V, what will be the power consumed ? If the
supply is suddenly increased to 240 V, what will be the
power consumed ?

 7. A servo voltage stabiliser restricts the voltage output to
220 V ± 1%. If an electric bulb rated at 220 V, 100 W is
connected to it, what will be the minimum and
maximum power consumed by it ?

 8. An electric bulb marked 220 V, 100 W will get fused if
it is made to consume 150 W or more. What voltage
fluctuation will the bulb withstand ?

 9. An immersion heater rated 1000 W, 220 V is used to
heat 0.01 m 3 of water. Assuming that the power is
supplied at 220 V and 60% of the power supplied is used
to heat the water, how long will it take to increase the
temperature of the water from 15°C to 40°C ?

10. An electric kettle used to prepare tea, takes 2 minutes
to boil 4 cups of water (1 cup contains 200 cc of water)
if the room temperature is 25°C. (a) If the cost of power
consumption is Re 1.00 per unit (1 unit = 1000
watt–hour), calculate the cost of boiling 4 cups of water.
(b) What will be the corresponding cost if the room
temperature drops to 5°C ?

11. The coil of an electric bulb takes 40 watts to start
glowing. If more than 40 W is supplied, 60% of the extra
power is converted into light and the remaining into
heat. The bulb consumes 100 W at 220 V. Find the
percentage drop in the light intensity at a point if the
supply voltage changes from 220 V to 200 V.

12. The 2.0 Ω resistor shown in figure (33-E1) is dipped into
a calorimeter containing water. The heat capacity of the
calorimeter together with water is 2000 J K −1. (a) If the
circuit is active for 15 minutes, what would be the rise
in the temperature of the water ? (b) Suppose the 6.0 Ω
resistor gets burnt. What would be the rise in the
temperature of the water in the next 15 minutes ? 

13. The temperatures of the junctions of a bismuth–silver
thermocouple are maintained at 0°C and 0.001°C. Find
the thermo-emf (Seebeck emf) developed. For bismuth–
silver, a = – 46 × 10 – 6 V°C −1 and b = –0.48 × 10 – 6 V°C –2.

14. Find the thermo-emf developed in a copper–silver
thermocouple when the junctions are kept at 0°C and
40°C. Use the data in table (33.1). 

15. Find the neutral temperature and inversion temperature
of copper–iron thermocouple if the reference junction is
kept at 0°C. Use the data in table (33.1).

16. Find the charge required to flow through an electrolyte
to liberate one atom of (a) a monovalent material and
(b) a divalent material.

17. Find the amount of silver liberated at cathode if 0.500 A
of current is passed through AgNO3 electrolyte for
1 hour. Atomic weight of silver is 107.9 g mol −1.

18. An electroplating unit plates 3.0 g of silver on a brass
plate in 3.0 minutes. Find the current used by the unit.
The electrochemical equivalent of silver is
1.12 × 10 – 6 kg C −1.

19. Find the time required to liberate 1.0 litre of hydrogen
at STP in an electrolytic cell by a current of 5.0 A.

20. Two voltameters, one having a solution of silver salt and
the other of a trivalent-metal salt, are connected in
series and a current of 2 A is maintained for 1.50 hours.
It is found that 1.00 g of the trivalent metal is deposited.
(a) What is the atomic weight of the trivalent metal ?
(b) How much silver is deposited during this period ?
Atomic weight of silver is 107.9 g mol −1.

21. A brass plate having surface area 200 cm 2 on one side
is electroplated with 0.10 mm thick silver layers on both
sides using a 15 A current. Find the time taken to do
the job. The specific gravity of silver is 10.5 and its
atomic weight is 107.9 g mol −1.

22. Figure (33-E2) shows an electrolyte of AgCl through
which a current is passed. It is observed that 2.68 g of
silver is deposited in 10 minutes on the cathode. Find
the heat developed in the 20 Ω resistor during this
period. Atomic weight of silver is 107.9 g mol −1.

23. The potential difference across the terminals of a battery
of emf 12 V and internal resistance 2 Ω drops to 10 V
when it is connected to a silver voltameter. Find the
silver deposited at the cathode in half an hour. Atomic
weight of silver is 107.9 g mol −1.

24. A plate of area 10 cm 2 is to be electroplated with copper
(density 9000 kg m –3) to a thickness of 10 micrometres
on both sides, using a cell of 12 V. Calculate the energy
spent by the cell in the process of deposition. If this
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energy is used to heat 100 g of water, calculate the rise
in the temperature of the water. ECE of copper

= 3 × 10 − 7 kg C −1 and specific heat capacity of water
= 4200 J kg −1 K −1.

ANSWERS

OBJECTIVE I

 1. (a)  2. (d)  3. (b)  4. (c)  5. (a)  6. (b)
 7. (c)  8. (c)

OBJECTIVE II

 1. (a), (d)  2. all  3. (a), (b)
 4. (c)  5. (a)

EXERCISES

 1. 6.0 × 10 3 J
 2. 2.8 min
 3. 125 Ω, 62.5 Ω
 4. (a) 125 Ω  (b) 62.5 m  (c) ≈ 2500 turns
 5. 8.4 mW
 6. 40 W, 71 W
 7. 98 W, 102 W

 8. up to 270 V
 9. 29 minutes
10. (a) 7 paise (b) 9 paise
11. 29%
12. (a) 2.9°C (b) 3.6°C

13. − 4.6 × 10 − 8 V

14. 1.04 × 10 − 5 V

15. 330°C, 659°C

16. (a) 1.6 × 10 − 19 C (b) 3.2 × 10 − 19 C

17. 2.01 g
18. 15 A
19. 29 minutes

20. (a) 26.8 g mol −1 (b) 12.1 g
21. 42 minutes
22. 190 kJ
23. 2 g
24. 7.2 kJ, 17 K
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CHAPTER 34

MAGNETIC FIELD

34.1 INTRODUCTION

If a charge q is placed at rest at a point P near a
metallic wire carrying a current i, it experiences
almost no force. We conclude that there is no
appreciable electric field at the point P. This is
expected because in any volume of wire (which
contains several thousand atoms) there are equal
amounts of positive and negative charges. The wire is
electrically neutral and does not produce an electric
field.*

However, if the charge q is projected from the point
P in the direction of the current (figure 34.1), it is
deflected towards the wire (q is assumed positive).
There must be a field at P which exerts a force on the
charge when it is projected, but not when it is kept at
rest. This field is different from the electric field which
always exerts a force on a charged particle whether it
is at rest or in motion. This new field is called magnetic
field and is denoted by the symbol B

→
. The force exerted

by a magnetic field is called magnetic force.

34.2 DEFINITION OF MAGNETIC FIELD B
→

If a charged particle is projected in a magnetic
field, in general, it experiences a magnetic force. By
projecting the particle in different directions from the
same point P with different speeds, we can observe the
following facts about the magnetic force:

(a) There is one line through the point P, such
that, if the velocity of the particle is along this line,
there is no magnetic force. We define the direction of
the magnetic field to be along this line (the direction

is not uniquely defined yet, because there are two
opposite directions along any line).

(b) If the speed of the particle is v and it makes
an angle θ with the line identified in (a), i.e., with the
direction of the magnetic field, the magnitude of the
magnetic force is proportional to  v sinθ .

(c) The direction of the magnetic force is
perpendicular to the direction of the magnetic field as
well as to the direction of the velocity.

(d) The force is proportional to the magnitude of
the charge q and its direction is opposite for positive
and negative charges.

All the above facts may be explained if we define
the magnetic field by the equation

           F
→

 = qv
→
 × B

→
. … (34.1)

By measuring the magnetic force F
→

 acting on a
charge q moving at velocity v

→
, we can obtain B

→
. If

v
→
 ||  B

→
, the force is zero. By taking magnitudes in

equation (34.1), we see that the force is proportional
to  v sinθ . By the rules of vector product, the force

is perpendicular to both B
→

  and  v
→
. Also, the

observation (d) follows from equation (34.1).

Equation (34.1) uniquely determines the direction
of B

→
 from the rules of vector product. The SI unit of

magnetic field is newton/ampere meter. This is written
as tesla and abbreviated as T. Another unit in common
use is gauss (G). The relation between gauss and tesla
is 1 T = 10 4 G.

The unit weber/meter 2 is also used for magnetic
field and is the same as tesla. Tesla is quite a large
unit for many practical applications. We have a
magnetic field of the order of 10 − 5 T near the earth’s
surface. Large superconducting magnets are needed to
produce a field of the order of 10 T in laboratories.

q

v
i

P

Figure 34.1

* In fact, there is a small charge density on the surface of the wire which does produce an electric field near the wire. This field is
very small and we shall neglect it.



In the older days, the term magnetic induction was

used for this field B
→

.

Example 34.1

   A proton is projected with a speed of 3 × 10 6 m s −1

horizontally from east to west. A uniform magnetic field

B
→

 of strength 2.0 × 10 – 3 T exists in the vertically upward
direction. (a) Find the force on the proton just after it is
projected. (b) What is the acceleration produced ?

Solution :

(a) The situation is shown in figure (34.2). The force is

perpendicular to B
→

 hence it is in the horizontal plane
through the proton. In this plane, it is perpendicular to

the velocity v
→
. Thus, it is along the north-south line. The

rule for vector product shows that v
→
 × B

→
 is towards north.

As the charge on the proton is positive, the force

F
→

 = qv
→
 × B

→
 is also towards north. The magnitude of the

force is

     F = qvB sinθ

 = (1.6 × 10 – 19 C) (3.0 × 10 6 m s −1) (2.0 × 10 – 3 T)

= 9.6 × 10 – 16 N.

(b) The acceleration of the proton is

a = 
F
m

 = 
9.6 × 10 – 16 N

1.67 × 10 – 27 kg

= 5.8 × 10 11 m s −2.

34.3 RELATION BETWEEN ELECTRIC
    AND MAGNETIC FIELDS

Figure (34.3) shows a long wire carrying a current i
and a charge q having a velocity v parallel to the current
as seen by an observer S. There is no electric field, but
there is a magnetic field which exerts a force on the charge
and the charge is attracted towards the wire.

Now consider another observer S1 who is moving
at a uniform velocity v parallel to the wire. In this
frame the charge is at rest and hence, the magnetic

field (if any) cannot exert any force on the charge.
However, the observer S1 also sees that the charge is
attracted by the wire. In fact, the acceleration of the
charge is the same for both S and S1 as they are
unaccelerated with respect to each other. Hence, there
must be an electric field in the frame of S1. What was
a pure magnetic field in the frame of S turns out to
be a combination of electric field and magnetic field in
the frame of S1. We conclude that the electric field and
the magnetic field are not basically independent. They
are two aspects of the same entity which we call
electromagnetic field. Whether the electromagnetic
field will show up as an electric field or a magnetic
field or a combination, depends on the frame from
which we are looking at the field. If we are confined
to a particular frame, we can treat the electric field
and the magnetic field as separate entities.

34.4 MOTION OF A CHARGED PARTICLE
    IN A UNIFORM MAGNETIC FIELD

As the magnetic force on a particle is perpendicular
to the velocity, it does not do any work on the particle.
Hence, the kinetic energy or the speed of the particle
does not change due to the magnetic force.

In figure (34.4), the magnetic field B is
perpendicular to the paper and going into it. (This
direction is, by convention, shown as ⊗. The direction
coming out of the paper is, by convention, shown as
     . The circle around the cross or around the dot is
quite often omitted.) A charge q is projected with a
speed v in the plane of the paper. The velocity is
perpendicular to the magnetic field. The force is F =
qvB in the direction perpendicular to both v and B.
This force will deflect the particle without changing
the speed and the particle will move along a circle
perpendicular to the field. The magnetic force provides
the centripetal force. If r be the radius of the circle,

          qvB = m 
v 2

r

   or,       r = 
mv
qB

 ⋅ … (34.2)

The time taken to complete the circle (time period) is

            T = 
2πr
v

 = 
2πm
qB

 ⋅ … (34.3)
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We see that the time period is independent of the
speed v. If the particle moves faster, the radius is
larger, it has to move a longer distance to complete
the circle so that the time taken is the same.

The frequency of revolution is

            ν = 
1
T

 = 
qB

2πm
 ⋅ … (34.4)

This frequency is called the cyclotron frequency.

Example 34.2

   A particle having a charge of 100 µC and a mass of
10 mg is projected in a uniform magnetic field of 25 mT
with a speed of 10 m s −1. If the velocity is perpendicular
to the magnetic field, how long will it take for the particle
to come back to its original position for the first time
after being projected.

Solution : The particle moves along a circle and returns
to its original position after completing the circle, that
is after one time period. The time period is

    T = 
2πm
qB

    = 
2π × (10 × 10 − 6 kg)

(100 × 10 − 6 C) × (25 × 10 − 3 T)
 = 25 s.

If the velocity of the charge is not perpendicular to
the magnetic field, we can break the velocity in two
components— v||, parallel to the field and v⊥,
perpendicular to the field. The component v|| remains

unchanged as the force qv
→
 × B

→
 is perpendicular to it. In

the plane perpendicular to the field, the particle traces

a circle of radius r = 
mv⊥

qB
 as given by equation (34.2). The

resultant path is a helix (figure 34.5).

34.5 MAGNETIC FORCE ON A
    CURRENT-CARRYING WIRE

Suppose a conducting wire, carrying a current i, is

placed in a magnetic field B
→

. Consider a small element
dl of the wire (figure 34.6). The free electrons drift with
a speed vd opposite to the direction of the current. The
relation between the current i and the drift speed vd is

             i = jA = nevdA. … (i)

Here A is the area of cross-section of the wire and
n is the number of free electrons per unit volume. Each
electron experiences an average magnetic force

           f
→
 = − ev

→
d × B

→
.

The number of free electrons in the small element
considered is nAdl. Thus, the magnetic force on the
wire of length dl is

     dF
→

 = (nAdl) (− ev
→

d × B
→

).
If we denote the length dl along the direction of

the current by dl
→
, the above equation becomes

dF
→

 = nAevd dl
→
 × B

→
.

   Using (i),
dF

→
 = i dl

→
 × B

→
. … (34.5)

The quantity i dl
→
 is called a current element.

If a straight wire of length l carrying a current i

is placed in a uniform magnetic field B
→

, the force on
it is
           F

→
 = i l

→
 × B

→
. … (34.6)

Example 34.3

   Figure (34.7) shows a triangular loop PQR carrying a
current i. The triangle is equilateral with edge-length l.
A uniform magnetic field B exists in a direction parallel
to PQ. Find the forces acting on the three wires PQ, QR
and RP separately.

Solution : The force on the wire PQ is

          F
→

1 = i PQ 
→

× B
→

 = 0

as the field B
→

 is parallel to PQ 
→

.

The force on QR is

            F
→

2 = i QR 
→

× B
→

or, F2 = ilB sin120°

            = 
√3
2

 ilB.

From the rule of vector product, this force is
perpendicular to the plane of the diagram and is going
into it.
The force on RP is

F
→

3 = i RP 
→

× B
→

or, F3 = i lB sin 120° = 
√3
2

 ilB.

	

Figure 34.5
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From the rule of vector product, this force is
perpendicular to the plane of the diagram and is coming
out of it.

34.6 TORQUE ON A CURRENT LOOP

Figure (34.8a) shows a rectangular loop PQRS
carrying a current i and placed in a uniform magnetic
field B. The magnetic forces F1, F2, F3 and F4 on the
wires PQ, QR, RS and SP are obtained by using the
equation F


  i l


  B


. These forces act from the middle

points T, U, V, W of the respective sides. Clearly, F1

 F3  ilB and F2  F4  ibB in figure (34.8a). The
resultant force is, therefore, zero. Also, F1 and F3 have
the same line of action so they together produce no
torque. Similarly, F2 and F4 together produce no
torque. Hence, the resultant torque on the loop is zero.

Now suppose the loop is rotated through an angle
 about the line WU (figure 34.8b). The wire PQ shifts
parallel to itself so that the force F


1  i l


  B


 on it

remains unchanged in magnitude and direction. Its
point of application T shifts to T . Similarly, the force

on RS remains F


3 but the point of application shifts
to V . The line TV gets rotated by an angle  to take
the position T V . This line makes an angle with the
force F1 and F3. The torque of F1 about O has magnitude

   OT 


 F


1 

  



b
2




 

 F1  sin  
b
2

 ilB sin .

This torque acts along the line UW. The torque of
F3 about O is also b

2
 (ilB) sin along the same direction.

As the wire QR rotates about WU, the plane
containing the wire and the magnetic field does not
change. The force on the wire is perpendicular to this
plane and hence its direction remains unchanged. Also,
the point of application U remains the same. Similar
is the case for the wire SP. The forces on QR and SP
are, therefore, equal and opposite and act along the
same line. They together produce no torque.

The net torque acting on the loop is, therefore,

     
b
2

 ilB sin   
b
2

 ilB sin   bilB sin 

 i AB sin .

Let us define the area-vector A


 of the loop in the
following way. The magnitude of A


 is equal to the area

enclosed by the loop and the direction of A


 is
perpendicular to the plane of the loop and is towards
the side from which the current looks anticlockwise.
Thus, in figure (34.8a), the area-vector A


 points

towards the viewer. It is drawn from the centre O of
the loop. Another way to get the direction of A


 is to

use the right-hand thumb rule. If you curl your fingers
of the right hand along the current, the stretched
thumb gives the direction of A


.

The definition of area-vector is valid for a closed
loop of any shape, not necessarily rectangular.

In figure (34.8a), the angle between the area-vector
A


 and the magnetic field B


 is zero. As the loop rotates,
the area-vector also rotates by an angle and hence
the angle between A


 and B


 becomes . Taking the

direction of the torque (along UW) into consideration,

           


  iA


  B


  


  B


 (34.7)

where 


  iA


 is called the magnetic dipole moment or
simply magnetic moment of the current loop.

We have already discussed an electric dipole. A
pair of charges –q, +q separated by a distance l forms
an electric dipole of dipole moment p  ql. The
direction is from –q to +q. If such a dipole is placed
in a uniform electric field, a torque




  p


  E


acts on the dipole. Equation (34.7) is similar to this
equation in structure and hence 


 is called magnetic

dipole moment.
If there are n turns in the loop, each turn

experiences a torque. The net torque is

        


  niA


  B


.

We still write it as 


  


  B


 with the magnetic
dipole moment defined as

               


  niA


.  (34.8)

Equations (34.7) and (34.8) are obtained by
considering a rectangular loop. However, these
equations are valid for plane loops of any shape.

Example 34.4

   A current of 10.0 nA is established in a circular loop of
radius 5.0 cm. Find the magnetic dipole moment of the
current loop.
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Solution : The magnetic dipole moment is

           µ
→

 = iA
→

.
Thus, µ = iπr 2 = (10 × 10 − 9 A) (3.14) × (5 × 10 − 2 m) 2

= 7.85 × 10 − 11 A m 2.

Worked Out Examples

 1. A charge of 2.0 µC moves with a speed of 2.0 × 10 6 m

s −1 along the positive x-axis. A magnetic field B
→

 of

strength (0.20 j
→
 + 0.40 k

→
)T exists in space. Find the

magnetic force acting on the charge.

Solution : The force on the charge

  = qv
→
 × B

→

= (2.0 × 10 − 6 C) (2.0 × 10 6 m s −1 i
→
) × (0.20 j

→
 + 0.40 k

→
 ) T

= 4.0(0.20 i
→
 × j

→
 + 0.40 i

→
 × k

→
) N

  = (0.8 k
→
 − 1.6 j

→
) N.

 2. A wire is bent in the form of an equilateral triangle PQR
of side 10 cm and carries a current of 5.0 A. It is placed
in a magnetic field B of magnitude 2.0 T directed
perpendicularly to the plane of the loop. Find the forces
on the three sides of the triangle.

Solution :

Suppose the field and the current have directions as
shown in figure (34-W1). The force on PQ is

        F
→

1= i l
→
 × B

→

or, F1 = 5.0 A × 10 cm × 2.0 T = 1.0 N.

The rule of vector product shows that the force F1 is
perpendicular to PQ and is directed towards the inside
of the triangle.

The forces F
→

2  and  F
→

3 on QR and RP can also be obtained
similarly. Both the forces are 1.0 N directed
perpendicularly to the respective sides and towards the
inside of the triangle.

The three forces F
→

1, F
→

2,  and  F
→

3 will have zero resultant,
so that there is no net magnetic force on the triangle.
This result can be generalised. Any closed current loop,
placed in a homogeneous magnetic field, does not
experience a net magnetic force.

 3. Figure (34-W2) shows two long metal rails placed
horizontally and parallel to each other at a separation l.
A uniform magnetic field B exists in the vertically
downward direction. A wire of mass m can slide on the

rails. The rails are connected to a constant current source
which drives a current i in the circuit. The friction
coefficient between the rails and the wire is µ. (a) What
should be the minimum value of µ which can prevent the
wire from sliding on the rails ? (b) Describe the motion
of the wire if the value of µ is half the value found in
the previous part.

Solution : 

(a) The force on the wire due to the magnetic field is

           F
→

 = i l
→
 × B

→

or, F = ilB.

It acts towards right in the given figure. If the wire does
not slide on the rails, the force of friction by the rails
should be equal to F. If µ0 be the minimum coefficient
of friction which can prevent sliding, this force is also
equal to µ0 mg. Thus,

            µ0 mg = ilB

or, µ0 = 
ilB
mg

 ⋅

(b) If the friction coefficient is µ = 
µ0

2
 = 

ilB

2 mg
 , the wire

will slide towards right. The frictional force by the rails
is

          f = µmg = 
ilB
2

  towards  left.

The resultant force is ilB − ilB
2

 = ilB
2

 towards right. The

acceleration will be a = ilB
2 m

 ⋅ The wire will slide towards

right with this acceleration.

 4. A proton, a deuteron and an alpha particle moving with
equal kinetic energies enter perpendicularly into a
magnetic field. If rp, rd  and  ra are the respective radii of

the circular paths, find the ratios rp/rd  and  rp/ra.

Solution : We have r = 
mv
qB

 = 
√2 mK

qB

where K = 1
2
 mv 2 = kinetic energy.
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Thus,   rp = 
√2 mpK

qpB
 ,        rd = 

√2 mdK

qdB

and ra = 
√2 maK

qaB
 ⋅

We get 
rp

rd
 = 

qd

qp
 √mp

md
 = 

qp

qp
 √mp

2 mp
 = 

1
√2

and 
rp

ra
 = 

qa

qp
 √mp

ma
 = 

2 qp

qp
 √mp

4 mp
 = 1.

 5. Singly charged magnesium (A = 24) ions are accelerated
to kinetic energy 2 keV and are projected perpendicularly
into a magnetic field B of magnitude 0.6 T. (a) Find the
radius of the circle formed by the ions. (b) If there are
also singly charged ions of the isotope magnesium-26,
what would be the radius for these particles ?

Solution : The radius is given by

    r = 
mv
qB

 = 
√2 mK

qB
For 24Mg ions, m = 24 × mp approximately and

q = 1.6 × 10 − 19 C.
Putting the values,

  r = 
√2 × 24 × 1.67 × 10 − 27 kg × 2000 × 1.6 × 10 − 19 J

1.6 × 10 − 19 C × 0.6 T

 = 0.053 m = 5.3 cm.

For 26Mg, the radius r′ will be given by

       r′ = 
√2 m′K

qB

or, r′ = r √m′
m

 = 5.3 cm √26
24

 = 5.5 cm.

 6. A particle having a charge 20 µC and mass 20 µg moves
along a circle of radius 5.0 cm under the action of a
magnetic field B = 1.0 T. When the particle is at a point
P, a uniform electric field is switched on and it is found
that the particle continues on the tangent through P with
a uniform velocity. Find the electric field.

Solution :

When the particle moves along a circle in the magnetic
field B, the magnetic force is radially inward. If an
electric field of proper magnitude is switched on which
is directed radially outwards, the particle may
experience no force. It will then move along a straight
line with uniform velocity. This will be the case when

   qE = qvB  or,  E = vB .

The radius of the circle in a magnetic field is given by

r = 
mv
qB

or, v = 
rqB
m

= 
(5.0 × 10 − 2 m) (20 × 10 − 6 C) (1.0 T)

20 × 10 − 9 kg
 = 50 m s −1.

The required electric field is

E = vB = (50 m s −1) (1.0 T)
= 50 V m −1.

This field will be in a direction which is radially outward
at P.

 7. A particle of mass m = 1.6 × 10 – 27 kg and charge
q = 1.6 × 10 – 19 C moves at a speed of 1.0 × 10 7 m s −1. It
enters a region of uniform magnetic field at a point E,
as shown in figure (34-W4). The field has a strength of
1.0 T. (a) The magnetic field is directed into the plane of
the paper. The particle leaves the region of the field at
the point F. Find the distance EF and the angle θ. (b) If
the field is coming out of the paper, find the time spent
by the particle in the region of the magnetic field after
entering it at E.

Solution : (a) As the particle enters the magnetic field, it
will travel in a circular path. The centre will be on the
line perpendicular to its velocity and the radius r will

be mv
qB

 ⋅ The direction of the force qv
→
 × B

→
 shows that the

centre will be outside the field as shown in figure
(34-W4). As ∠AEO = 90° (as AE is tangent and OE is

radius) and ∠AEC = 45°, we have ∠OEF = 45°. As

OE = OF (they are radii of the circular arc),

∠OFE = ∠OEF = 45°. Also, OF is perpendicular to the

velocity of the particle at F, so that θ = 45°. From
triangle OEF,

       EF = 2.OE cos ∠OEF

= 2 . 
mv
qB

 ⋅ 1
√2

= 
√2 × (1.6 × 10 − 27 kg) × (10 7 m s −1)

(1.6 × 10 − 19 C) × 1.0 T

= √2 × 10 − 1 m = 14 cm.
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(b)

If the magnetic field is coming out of the paper, the
direction of the force qv

→
 × B

→
 shows that the centre O will

be inside the field region as shown in figure (34-W5).
Again ∠AEO = 90°, giving 

        ∠OEF = ∠OFE = 45°.
Thus, the angle EOF = 90°. The particle describes three
fourths of the complete circle inside the field. As the
speed v is uniform, the time spent in the magnetic field
will be

   
3
4

 ×
2πr
v

 = 
3πmv
2vqB

 = 
3πm
2qB

      = 
3 × 3.14 × 1.6 × 10 − 27 kg

2 ×1.6 × 10 − 19 C × 1.0 T
 = 4.7 × 10 − 8 s.

 8. A beam of protons with a velocity of 4 × 10 5 m s −1 enters
a uniform magnetic field of 0.3 T. The velocity makes an
angle of 60° with the magnetic field. Find the radius of
the helical path taken by the proton beam and the pitch
of the helix.

Solution : The components of the proton’s velocity along
and perpendicular to the magnetic field are

      v|| = (4 × 10 5 m s −1) cos60° = 2 × 10 5 m s −1.

and v⊥ = (4 × 10 5 m s −1) sin60° = 2√3 × 10 5 m s −1.

As the force qv
→
 × B

→
 is perpendicular to the magnetic

field, the component v|| will remain constant. In the

plane perpendicular to the field, the proton will describe
a circle whose radius is obtained from the equation

   qv⊥B = 
mv⊥

 2

r

or, r = 
mv⊥

qB
 = 

(1.67 × 10 − 27 kg) × (2√3 × 10 5 m s −1)
(1.6 × 10 − 19 C) × (0.3 T)

≈ 0.012 m = 1.2 cm.

The time taken in one complete revolution in the plane
perpendicular to B is

T = 
2πr
v⊥

 = 
2 × 3.14 × 0.012 m

2√3 × 10 5 m s −1  ⋅

The distance moved along the field during this period,
i.e., the pitch

       = 
(2 × 10 5 m s −1) × 2 × 3.14 × 0.012 m

2√3 × 10 5 m s −1

= 0.044 m = 4.4 cm.

The qualitative nature of the path of the protons is
shown in figure (34-W6).

 9. A rectangular coil of size 3.0 cm × 4.0 cm and having
100 turns, is pivoted about the z-axis as shown in figure
(34-W7). The coil carries an electric current of 2.0 A and
a magnetic field of 1.0 T is present along the y-axis. Find
the torque acting on the coil if the side in the x–y plane
makes an angle θ = 37° with the x-axis.

Solution : The magnetic moment of the loop is µ
→

 = niA
→

where n is the number of turns, i is the current and A
→

is the area-vector. The direction of A
→

 is determined by
the sense of the current and in this case it lies in the
fourth quadrant making an angle θ = 37° with the
negative y-axis.

Torque Γ
→

 = µ
→

 × B
→

 = niA
→

 × B
→

.

Thus, Γ = 100 × (2 A) × (12 × 10 − 4 m 2) × 1 T × sin37°

= 0.14 Nm.

The torque is along the positive z-axis.

10. An electron moves with a constant speed v along a circle
of radius r. (a) Find the equivalent current through a
point on its path. (b) Find the magnetic moment of the
circulating electron. (c) Find the ratio of the magnetic
moment to the angular momentum of the electron.

Solution : (a) Consider a point P on the path of the
electron. In one revolution of the electron, a charge e
crosses the point P. As the frequency of revolution is
v/(2πr), the charge crossing P in unit time, i.e., the
electric current is

         i = 
ev

2πr
 ⋅

(b) The area A enclosed by this circular current is πr 2

so that the magnetic moment of the current is

µ = iA = 




ev
2πr




 (πr 2) = 

evr
2
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in a direction perpendicular to the loop.

(c) The angular momentum of the electron is l = mvr.
Its direction is opposite to that of the magnetic moment.
Thus,

            
µ
l
 = 

− evr
2 mvr

 = 
− e
2 m

 ⋅

11. An electron is released from the origin at a place where
a uniform electric field E and a uniform magnetic field
B exist along the negative y-axis and the negative z-axis
respectively. Find the displacement of the electron along
the y-axis when its velocity becomes perpendicular to the
electric field for the first time.

Solution : Let us take axes as shown in figure (34-W8).
According to the right-handed system, the z-axis is
upward in the figure and hence the magnetic field is
shown downwards. At any time, the velocity of the
electron may be written as

          u
→

 = ux i
→
 + uy j

→
.

The electric and magnetic fields may be written as

          E
→

 = − E j
→

and B
→

 = − B k
→

respectively. The force on the electron is

            F
→

 = − e(E
→

 + u
→

 × B
→

)

 = eE j
→
 + eB(uy i

→
 − ux j

→
).

Thus, Fx = euy B

and Fy = e(E − ux B).

The components of the acceleration are

ax = 
dux

dt
 = 

eB
m

 uy … (i)

   and ay = 
duy

dt
 = 

e
m

 (E − ux B). … (ii)

We have,

          
d 2uy

dt 2  = − 
eB
m

 
dux

dt

= − 
eB
m

 ⋅ eB
m

 uy

= − ω 2uy

   where ω = 
eB
m

 ⋅ … (iii)

This equation is similar to that for a simple harmonic
motion. Thus,

uy = A sin(ωt + δ) … (iv)

and hence,

duy

dt
 = A ω cos(ωt + δ). … (v)

At t = 0, uy = 0  and  
duy

dt
 = 

Fy

m
 = 

eE
m

 ⋅

Putting in (iv) and (v),

         δ = 0  and  A = 
eE
mω

 = 
E
B

 ⋅

Thus, uy = 
E
B

 sin ωt.

The path of the electron will be perpendicular to the
y-axis when uy = 0. This will be the case for the first
time at t where
           sin ωt = 0

or, ωt = π

or, t = 
π
ω

 = 
πm
eB

 ⋅

Also,     uy = 
dy
dt

 = 
E
B

 sin ωt

or, ∫ 
0

y

dy = 
E
B

 ∫ 
0

t

sin ωt dt

or,        y = 
E

Bω
 (1 − cos ωt).

At         t = 
π
ω

 ,

          y = 
E

Bω
 (1 − cos π) = 

2E
Bω

 ⋅

Thus, the displacement along the y-axis is

       
2E
Bω

 = 
2Em
BeB

 = 
2Em
eB 2  ⋅

QUESTIONS FOR SHORT ANSWER

 1. Suppose a charged particle moves with a velocity v near
a wire carrying an electric current. A magnetic force,
therefore, acts on it. If the same particle is seen from a
frame moving with velocity v in the same direction, the

charge will be found at rest. Will the magnetic force
become zero in this frame ? Will the magnetic field
become zero in this frame ?
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 2. Can a charged particle be accelerated by a magnetic
field ? Can its speed be increased ?

 3. Will a current loop placed in a magnetic field always
experience a zero force ?

 4. The free electrons in a conducting wire are in constant
thermal motion. If such a wire, carrying no current, is
placed in a magnetic field, is there a magnetic force on
each free electron? Is there a magnetic force on the wire?

 5. Assume that the magnetic field is uniform in a cubical
region and is zero outside. Can you project a charged
particle from outside into the field so that the particle
describes a complete circle in the field ?

 6. An electron beam projected along the positive x-axis
deflects along the positive y-axis. If this deflection is

caused by a magnetic field, what is the direction of the
field ? Can we conclude that the field is parallel to the
z-axis ?

 7. Is it possible for a current loop to stay without rotating
in a uniform magnetic field ? If yes, what should be the
orientation of the loop ?

 8. The net charge in a current-carrying wire is zero. Then,
why does a magnetic field exert a force on it ?

 9. The torque on a current loop is zero if the angle between
the positive normal and the magnetic field is either
θ = 0  or θ = 180°. In which of the two orientations, the
equilibrium is stable ?

10. Verify that the units weber and volt second are the
same.

OBJECTIVE I

 1. A positively charged particle projected towards east is
deflected towards north by a magnetic field. The field
may be
(a) towards west          (b) towards south
(c) upward              (d) downward.

 2. A charged particle is whirled in a horizontal circle on a
frictionless table by attaching it to a string fixed at one
point. If a magnetic field is switched on in the vertical
direction, the tension in the string
(a) will increase        (b) will decrease
(c) will remain the same   (d) may increase or decrease.

 3. Which of the following particles will experience
maximum magnetic force (magnitude) when projected
with the same velocity perpendicular to a magnetic
field ?
(a) Electron   (b) Proton    (c) He +     (d) Li ++

 4. Which of the following particles will describe the
smallest circle when projected with the same velocity
perpendicular to a magnetic field ?
(a) Electron    (b) Proton    (c) He +     (d) Li +

 5. Which of the following particles will have minimum
frequency of revolution when projected with the same
velocity perpendicular to a magnetic field ?
(a) Electron    (b) Proton    (c)  He +    (d) Li +

 6. A circular loop of area 1 cm 2, carrying a current of 10 A,
is placed in a magnetic field of 0.1 T perpendicular to
the plane of the loop. The torque on the loop due to the
magnetic field is
(a) zero   (b) 10 – 4 N m   (c) 10 – 2 N m   (d) 1 N m

 7. A beam consisting of protons and electrons moving at
the same speed goes through a thin region in which
there is a magnetic field perpendicular to the beam. The

protons and the electrons
(a) will go undeviated
(b) will be deviated by the same angle and will not
      separate
(c) will be deviated by different angles and hence
      separate
(d) will be deviated by the same angle but will
      separate.

 8. A charged particle moves in a uniform magnetic field.
The velocity of the particle at some instant makes an
acute angle with the magnetic field. The path of the
particle will be
(a) a straight line         (b) a circle
(c) a helix with uniform pitch
(d) a helix with nonuniform pitch.

 9. A particle moves in a region having a uniform magnetic
field and a parallel, uniform electric field. At some
instant, the velocity of the particle is perpendicular to
the field direction. The path of the particle will be
(a) a straight line         (b) a circle
(c) a helix with uniform pitch
(d) a helix with nonuniform pitch.

10. An electric current i enters and leaves a uniform circular
wire of radius a through diametrically opposite points.
A charged particle q moving along the axis of the circular
wire passes through its centre at speed v. The magnetic
force acting on the particle when it passes through the
centre has a magnitude

(a) qv 
µ0 i
2a

    (b) qv 
µ0 i
2πa

   (c) qv 
µ0 i
a

   (d) zero.

OBJECTIVE II

 1. If a charged particle at rest experiences no
electromagnetic force,
(a) the electric field must be zero

(b) the magnetic field must be zero
(c) the electric field may or may not be zero
(d) the magnetic field may or may not be zero.
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 2. If a charged particle kept at rest experiences an
electromagnetic force,
(a) the electric field must not be zero
(b) the magnetic field must not be zero
(c) the electric field may or may not be zero
(d) the magnetic field may or may not be zero.

 3. If a charged particle projected in a gravity-free room
deflects,
(a) there must be an electric field
(b) there must be a magnetic field
(c) both fields cannot be zero
(d) both fields can be nonzero.

 4. A charged particle moves in a gravity-free space without
change in velocity. Which of the following is/are
possible ?
(a) E  0, B  0         (b) E  0, B  0
(c) E  0, B  0         (d) E  0, B  0

 5. A charged particle moves along a circle under the action
of possible constant electric and magnetic fields. Which
of the following are possible ?
(a) E  0, B  0        (b) E  0, B  0
(c) E  0, B  0         (d) E  0, B  0

 6. A charged particle goes undeflected in a region
containing electric and magnetic field. It is possible that

(a) E


 || B


,  v

 || E


     (b) E


 is not parallel to B



(c) v


 || B


  but  E


 is not parallel to B


(d) E


 || B


  but  v

 is not parallel to E


.

 7. If a charged particle goes unaccelerated in a region
containing electric and magnetic fields,

(a) E


 must be perpendicular to B


(b) v

 must be perpendicular to E



(c) v

 must be perpendicular to B



(d) E must be equal to vB.

 8. Two ions have equal masses but one is singly-ionized
and the other is doubly-ionized. They are projected  from
the same  place in a uniform magnetic field with the
same velocity perpendicular to the field.
(a) Both ions will go along circles of equal radii.
(b) The circle described by the singly-ionized charge will
       have a radius double that of the other circle.
(c) The two circles do not touch each other.
(d) The two circles touch each other.

 9. An electron is moving along the positive x-axis. You want
to apply a magnetic field for a short time so that the
electron may reverse its direction and move parallel to
the negative x-axis. This can be done by applying the
magnetic field along
(a) y-axis  (b) z-axis  (c) y-axis only  (d) z-axis only.

10. Let E


 and B


 denote electric and magnetic fields in a

frame S and E

 and B


 in another frame S moving with

respect to S at a velocity v

. Two of the following

equations are wrong. Identify them.

(a) By  By  
vEz

c 2
           (b) Ey  Ey  

vBz

c 2

(c) By  By  vEz            (d) Ey  Ey  vBz

EXERCISES

 1. An alpha particle is projected vertically upward with a
speed of 3.0  10 4 km s 1 in a region where a magnetic
field of magnitude 1.0 T exists in the direction south to
north. Find the magnetic force that acts on the
-particle.

 2. An electron is projected horizontally with a kinetic
energy of 10 keV. A magnetic field of strength
1.0  10 – 7 T exists in the vertically upward direction.
(a) Will the electron deflect towards right or towards left
of its motion ? (b) Calculate the sideways deflection of
the electron in travelling through 1 m. Make appropriate
approximations.

 3. A magnetic field of 4.0  10 – 3 k

 T exerts a force of

4.0 i

  3.0 j


  10 – 10 N on a particle having a charge of

1.0  10 – 9 C and going in the x–y plane. Find the velocity
of the particle.

 4. An experimenter’s diary reads as follows: “a charged
particle is projected in a magnetic field of

7.0 i

  3.0 j


  10 – 3 T. The acceleration of the particle is

found to be (  i

  7.0 j


  10 – 6 m s 2

 ”. The number to the

left of i

 in the last expression was not readable. What

can this number be ?

 5. A 10 g bullet having a charge of 4.00 C is fired at a speed
of 270 m s 1 in a horizontal direction. A vertical magnetic
field of 500 T exists in the space. Find the deflection of
the bullet due to the magnetic field as it travels through
100 m. Make appropriate approximations.

 6. When a proton is released from rest in a room, it starts
with an initial acceleration a0 towards west. When it is
projected towards north with a speed v0, it moves with
an initial acceleration 3a0 towards west. Find the electric
field and the minimum possible magnetic field in the room.

 7. Consider a 10-cm long portion of a straight wire carrying
a current of 10 A placed in a magnetic field of 0.1 T
making an angle of 53 with the wire. What magnetic
force does the wire experience ?

 8. A current of 2 A enters at the corner d of a square frame
abcd of side 20 cm and leaves at the opposite corner b. A
magnetic field B  0.1 T exists in the space in a direction
perpendicular to the plane of the frame as shown in figure

� �

��

Figure 34-E1
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(34-E1). Find the magnitude and direction of the
magnetic forces on the four sides of the frame.

 9. A magnetic field of strength 1.0 T is produced by a
strong electromagnet in a cylindrical region of radius
4.0 cm as shown in figure (34-E2). A wire, carrying a
current of 2.0 A, is placed perpendicular to and
intersecting the axis of the cylindrical region. Find the
magnitude of the force acting on the wire.

10. A wire of length l carries a current i along the x-axis.
A magnetic field exists which is given as

B
→

 = B0(i
→
 + j

→
 + k

→
) T. Find the magnitude of the magnetic

force acting on the wire.
11. A current of 5.0 A exists in the circuit shown in figure

(34-E3). The wire PQ has a length of 50 cm and the
magnetic field in which it is immersed has a magnitude
of 0.20 T. Find the magnetic force acting on the wire PQ.

12. A circular loop of radius a, carrying a current i, is placed
in a two-dimensional magnetic field. The centre of the
loop coincides with the centre of the field (figure 34-E4).
The strength of the magnetic field at the periphery of
the loop is B. Find the magnetic force on the wire.

13. A hypothetical magnetic field existing in a region is

given by B
→

 = B0 e
→

r , where  e
→

r denotes the unit vector
along the radial direction. A circular loop of radius a,
carrying a current i, is placed with its plane parallel to
the x–y plane and the centre at (0, 0, d). Find the
magnitude of the magnetic force acting on the loop.

14. A rectangular wire-loop of width a is suspended from
the insulated pan of a spring balance as shown in figure
(34-E5). A current i exists in the anticlockwise direction
in the loop. A magnetic field B exists in the lower region.
Find the change in the tension of the spring if the
current in the loop is reversed.

15. A current loop of arbitrary shape lies in a uniform
magnetic field B. Show that the net magnetic force
acting on the loop is zero.

16. Prove that the force acting on a current-carrying wire,
joining two fixed points a and b in a uniform magnetic
field, is independent of the shape of the wire.

17. A semicircular wire of radius 5.0 cm carries a current
of 5.0 A. A magnetic field B of magnitude 0.50 T exists
along the perpendicular to the plane of the wire. Find
the magnitude of the magnetic force acting on the wire.

18. A wire, carrying a current i, is kept in the x–y plane

along the curve y = A sin



2π
λ

 x



 . A magnetic field B exists

in the z-direction. Find the magnitude of the magnetic
force on the portion of the wire between x = 0 and x = λ.

19. A rigid wire consists of a semicircular portion of radius
R and two straight sections (figure 34-E6). The wire is
partially immersed in a perpendicular magnetic field B
as shown in the figure. Find the magnetic force on the
wire if it carries a current i.

20. A straight horizontal wire of mass 10 mg and length
1.0 m carries a current of 2.0 A. What minimum
magnetic field B should be applied in the region so that
the magnetic force on the wire may balance its weight ?

21. Figure (34-E7) shows a rod PQ of length 20.0 cm and
mass 200 g suspended through a fixed point O by two
threads of lengths 20.0 cm each. A magnetic field of
strength 0.500 T exists in the vicinity of the wire PQ as
shown in the figure. The wires connecting PQ with the
battery are loose and exert no force on PQ. (a) Find the
tension in the threads when the switch S is open. (b) A
current of 2.0 A is established when the switch S is
closed. Find the tension in the threads now.
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22. Two metal strips, each of length l, are  clamped parallel
to each other on a horizontal floor with a separation b
between them. A wire of mass m lies on them
perpendicularly as shown in figure (34-E8). A vertically
upward magnetic field of strength B exists in the space.
The metal strips are smooth but the coefficient of friction
between the wire and the floor is . A current i is
established when the switch S is closed at the instant
t  0. Discuss the motion of the wire after the switch is
closed. How far away from the strips will the wire
reach ?

23. A metal wire PQ of mass 10 g lies at rest on two
horizontal metal rails separated by 4.90 cm (figure
34-E9). A vertically downward magnetic field of
magnitude 0.800 T exists in the space. The resistance
of the circuit is slowly decreased and it is found that
when the resistance goes below 20.0 , the wire PQ
starts sliding on the rails. Find the coefficient of friction.

24. A straight wire of length l can slide on two parallel
plastic rails kept in a horizontal plane with a separation
d. The coefficient of friction between the wire and the
rails is . If the wire carries a current i, what minimum
magnetic field should exist in the space in order to slide
the wire on the rails.

25. Figure (34-E10) shows a circular wire-loop of radius a,
carrying a current i, placed in a perpendicular magnetic
field B. (a) Consider a small part dl of the wire. Find
the force on this part of the wire exerted by the magnetic
field. (b) Find the force of compression in the wire.

26. Suppose that the radius of cross section of the wire used
in the previous problem is r. Find the increase in the
radius of the loop if the magnetic field is switched off.
The Young modulus of the material of the wire is Y.

27. The magnetic field existing in a region is given by

              B


  B0 



1  

x
l



 k

.

   A square loop of edge l and carrying a current i, is placed
with its edges parallel to the x–y axes. Find the
magnitude of the net magnetic force experienced by the
loop.

28. A conducting wire of length l, lying normal to a magnetic
field B, moves with a velocity v as shown in figure
(34-E11). (a) Find the average magnetic force on a free
electron of the wire. (b) Due to this magnetic force,
electrons concentrate at one end resulting in an electric
field inside the wire. The redistribution stops when the
electric force on the free electrons balances the magnetic
force. Find the electric field developed inside the wire
when the redistribution stops. (c) What potential
difference is developed between the ends of the wire ?

29. A current i is passed through a silver strip of width d
and area of cross section A. The number of free electrons
per unit volume is n. (a) Find the drift velocity v of the
electrons. (b) If a magnetic field B exists in the region
as shown in figure (34-E12), what is the average
magnetic force on the free electrons ? (c) Due to the
magnetic force, the free electrons get accumulated on
one side of the conductor along its length. This produces
a transverse electric field in the conductor which opposes
the magnetic force on the electrons. Find the magnitude
of the electric field which will stop further accumulation
of electrons. (d) What will be the potential difference
developed across the width of the conductor due to the
electron-accumulation ? The appearance of a transverse
emf, when a current-carrying wire is placed in a
magnetic field, is called Hall effect.

30. A particle having a charge of 2.0  10 – 8 C and a mass of
2.0  10– 10 g is projected with a speed of 2.0  103 m s1

in a region having a uniform magnetic field of 0.10 T.
The velocity is perpendicular to the field. Find the radius
of the circle formed by the particle and also the time period.

31. A proton describes a circle of radius 1 cm in a magnetic
field of strength 0.10 T. What would be the radius of
the circle described by an -particle moving with the
same speed in the same magnetic field ?

32. An electron having a kinetic energy of 100 eV circulates
in a path of radius 10 cm in a magnetic field. Find the
magnetic field and the number of revolutions per second
made by the electron.

33. Protons having kinetic energy K emerge from an
accelerator as a narrow beam. The beam is bent by a
perpendicular magnetic field so that it just misses a

Figure 34-E9

Figure 34-E10
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plane target kept at a distance l in front of the
accelerator. Find the magnetic field.

34. A charged particle is accelerated through a potential
difference of 12 kV and acquires a speed of
1.0  10 6 m s 1. It is then injected perpendicularly into
a magnetic field of strength 0.2 T. Find the radius of
the circle described by it.

35. Doubly ionized helium ions are projected with a speed
of 10 km s 1 in a direction perpendicular to a uniform
magnetic field of magnitude 1.0 T. Find (a) the force
acting on an ion, (b) the radius of the circle in which it
circulates and (c) the time taken by an ion to complete
the circle.

36. A proton is projected with a velocity of 3  10 6 m s 1

perpendicular to a uniform magnetic field of 0.6 T. Find
the acceleration of the proton.

37. (a) An electron moves along a circle of radius 1 m in a
perpendicular magnetic field of strength 0.50 T. What
would be its speed ? Is it reasonable ? (b) If a proton
moves along a circle of the same radius in the same
magnetic field, what would be its speed ?

38. A particle of mass m and positive charge q, moving with
a uniform velocity v, enters a magnetic field B as shown
in figure (34-E13). (a) Find the radius of the circular arc
it describes in the magnetic field. (b) Find the angle
subtended by the arc at the centre. (c) How long does
the particle stay inside the magnetic field ? (d) Solve the
three parts of the above problem if the charge q on the
particle is negative.

 39. A particle of mass m and charge q is projected into a
region having a perpendicular magnetic field B. Find the
angle of deviation (figure 34-E14) of the particle as it
comes out of the magnetic field if the width d of the
region is very slightly smaller than

(a) 
mv
qB

       (b) 
mv
2qB

       (c) 
2mv
qB

  

40. A narrow beam of singly-charged carbon ions, moving at
a constant velocity of 6.0  10 4 m s 1, is sent
perpendicularly in a rectangular region having uniform
magnetic field B  0.5 T (figure 34-E15). It is found that
two beams emerge from the field in the backward
direction, the separations from the incident beam being
3.0 cm and 3.5 cm. Identify the isotopes present in the
ion beam. Take the mass of an ion  A(1.6  10 – 27) kg,
where A is the mass number.

41. Fe + ions are accelerated through a potential difference
of 500 V and are injected normally into a homogeneous
magnetic field B of strength 20.0 mT. Find the radius
of the circular paths followed by the isotopes with mass
numbers 57 and 58. Take the mass of an ion
 A (1.6  10 – 27) kg where A is the mass number.

42. A narrow beam of singly charged potassium ions of
kinetic energy 32 keV is injected into a region of width
1.00 cm having a magnetic field of strength 0.500 T as
shown in figure (34-E16). The ions are collected at a
screen 95.5 cm away from the field region. If the beam
contains isotopes of atomic weights 39 and 41, find the
separation between the points where these isotopes
strike the screen. Take the mass of a potassium ion
A (1.6  10 – 27) kg where A is the mass number.

43. Figure (34-E17) shows a convex lens of focal length
12 cm lying in a uniform magnetic field B of magnitude
1.2 T parallel to its principal axis. A particle having a
charge 2.0  10 – 3 C  and mass 2.0  10 – 5 kg is projected
perpendicular to the plane of the diagram with a speed
of 4.8 m s 1. The particle moves along a circle with its
centre on the principal axis at a distance of 18 cm from
the lens. Show that the image of the particle goes along
a circle and find the radius of that circle.

44. Electrons emitted with negligible speed from an electron
gun are accelerated through a potential difference V
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along the x-axis. These electrons emerge from a narrow
hole into a uniform magnetic field B directed along this
axis. However, some of the electrons emerging from the
hole make slightly divergent angles as shown in figure
(34-E18). Show that these paraxial electrons are
refocussed on the x-axis at a distance

               √8π 2mV

eB 2  ⋅

45. Two particles, each having a mass m are placed at a
separation d in a uniform magnetic field B as shown in
figure (34-E19). They have opposite charges of equal
magnitude q. At time t = 0, the particles are projected
towards each other, each with a speed v. Suppose the
Coulomb force between the charges is switched off. (a)
Find the maximum value vm of the projection speed so
that the two particles do not collide. (b) What would be
the minimum and maximum separation between the
particles if v = vm/2 ? (c) At what instant will a collision
occur between the particles if v = 2vm ? (d) Suppose
v = 2vm and the collision between the particles is
completely inelastic. Describe the motion after the
collision.

46. A uniform magnetic field of magnitude 0.20 T exists in
space from east to west. With what speed should a
particle of mass 0.010 g and having a charge
1.0 × 10 – 5 C be projected from south to north so that
it moves with a uniform velocity ?

47. A particle moves in a circle of diameter 1.0 cm under
the action of a magnetic field of 0.40 T. An electric field
of 200 V m −1 makes the path straight. Find the
charge/mass ratio of the particle.

48. A proton goes undeflected in a crossed electric and
magnetic field (the fields are perpendicular to each
other) at a speed of 2.0 × 10 5 m s −1. The velocity is
perpendicular to both the fields. When the electric field
is switched off, the proton moves along a circle of radius
4.0 cm. Find the magnitudes of the electric and the
magnetic fields. Take the mass of the proton
= 1.6 × 10 – 27 kg.

49. A particle having a charge of 5.0 µC and a mass of
5.0 × 10 – 12 kg is projected with a speed of 1.0 km s −1

in a magnetic field of magnitude 5.0 mT. The angle
between the magnetic field and the velocity is
sin − 1 (0.90). Show that the path of the particle will be
a helix. Find the diameter of the helix and its pitch.

50. A proton projected in a magnetic field of 0.020 T travels
along a helical path of radius 5.0 cm and pitch 20 cm.
Find the components of the velocity of the proton along
and perpendicular to the magnetic field. Take the mass
of the proton = 1.6 × 10 – 27 kg.

51. A particle having mass m and charge q is released from
the origin in a region in which electric field and magnetic
field are given by

         B
→

 = − B0 j
→
  and  E

→
 = E0 k

→
.

Find the speed of the particle as a function of its
z-coordinate.

52. An electron is emitted with negligible speed from the
negative plate of a parallel plate capacitor charged to a
potential difference V. The separation between the
plates is d and a magnetic field B exists in the space as
shown in figure (34-E20). Show that the electron will
fail to strike the upper plate if

            d > 




2meV

eB0
 2





 
1
2

.

53. A rectangular coil of 100 turns has length 5 cm and
width 4 cm. It is placed with its plane parallel to a
uniform magnetic field and a current of 2 A is sent
through the coil. Find the magnitude of the magnetic
field B, if the torque acting on the coil is 0.2 N m −1.

54. A 50-turn circular coil of radius 2.0 cm carrying a
current of 5.0 A is rotated in a magnetic field of strength
0.20 T. (a) What is the maximum torque that acts on
the coil ? (b) In a particular position of the coil, the
torque acting on it is half of this maximum. What is the
angle between the magnetic field and the plane of the
coil ?

55. A rectangular loop of sides 20 cm and 10 cm carries a
current of 5.0 A. A uniform magnetic field of magnitude
0.20 T exists parallel to the longer side of the loop.
(a) What is the force acting on the loop ? (b) What is the
torque acting on the loop ?

56. A circular coil of radius 2.0 cm has 500 turns in it and
carries a current of 1.0 A. Its axis makes an angle of
30° with the uniform magnetic field of magnitude 0.40 T
that exists in the space. Find the torque acting on the
coil.

57. A circular loop carrying a current i has wire of total
length L. A uniform magnetic field B exists parallel to
the plane of the loop. (a) Find the torque on the loop.
(b) If the same length of the wire is used to form a
square loop, what would be the torque ? Which is larger?

58. A square coil of edge l having n turns carries a current
i. It is kept on a smooth horizontal plate. A uniform
magnetic field B exists in a direction parallel to an edge.
The total mass of the coil is M. What should be the
minimum value of B for which the coil will start tipping
over ?

59. Consider a nonconducting ring of radius r and mass m
which has a total charge q distributed uniformly on it.
The ring is rotated about its axis with an angular speed
ω. (a) Find the equivalent electric current in the ring.
(b) Find the magnetic moment µ of the ring. (c) Show
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that µ = 
q

2 m
 l where l is the angular momentum of the

ring about its axis of rotation.
60. Consider a nonconducting plate of radius r and mass m

which has a charge q distributed uniformly over it. The
plate is rotated about its axis with an angular speed ω.
Show that the magnetic moment µ and the angular

momentum l of the plate are related as µ = 
q

2 m
 l.

61. Consider a solid sphere of radius r and mass m which
has a charge q distributed uniformly over its volume.
The sphere is rotated about a diameter with an angular
speed ω. Show that the magnetic moment µ and the
angular momentum l of the sphere are related as

µ = 
q

2 m
 l.

ANSWERS

OBJECTIVE I

 1. (d)  2. (d)  3. (d)  4. (a)   5. (d)  6. (a)
 7. (c)  8. (c)  9. (d) 10. (d)

OBJECTIVE II

 1. (a), (d)  2. (a), (d)  3. (c), (d)
 4. (a), (b), (d)  5. (b)  6. (a), (b)
 7. (a), (b)  8. (b), (d)  9. (a), (b)
10. (b), (c)

EXERCISES

 1. 9.6 × 10 − 12 N towards west

 2. (a) left (b) ≈ 1.5 cm

 3. (− 75 i
→
 + 100 j

→
) m s −1

 4. 3.0

 5. 3.7 × 10 − 6 m

 6. 
ma0

e
 towards west, 

2ma0

ev0
 downward

 7. 0.08 N perpendicular to both the wire and the field

 8. 0.02 N on each wire, on da and cb towards left and on
   dc and ab downward
 9. 0.16 N
10. √2 B0 il
11. 0.50 N towards the inside of the circuit
12. 2πaiB, perpendicular to the plane of the figure going
   into it

13. 
2πa 2iB0

√a 2 + d 2
 

14. 2iBa
17. 0.25 N
18. iλB
19. 2iRB, upward in the figure

20. 4.9 × 10 − 5 T
21. (a) 1.13 N (b) 1.25 N

22. 
ilbB
µmg

23. 0.12

24. 
µmg

il
25. (a) idlB towards the centre  (b) iaB

26. 
ia 2B
πr 2Y

 

27. iB0 l
28. (a) evB    (b) vB   (c) lBv

29. (a) 
i

Ane
   (b) 

iB
An

 upwards in the figure

   (c) 
iB

Ane
    (d) 

iBd
Ane

30. 20 cm, 6.3 × 10 − 4 s

31. 2 cm

32. 3.4 × 10 − 4 T, 9.4 × 10 6

33. 
√2mp K

el
 where mp = mass of a proton

34. 12 cm

35. (a) 3.2 × 10 − 15 N (b) 2.1 × 10 − 4 m (c) 1.31 × 10 − 7 s

36. 1.72 × 10 14 m s −2

37. (a) 8.8 × 10 10 m s −1 (b) 4.8 × 10 7 m s −1

38. (a) 
mv
qB

         (b) π − 2θ

   (c) 
m
qB

 (π − 2θ)    (d) 
mv
qB

 , π + 2θ, 
m
qB

 (π + 2θ)

39. (a) π/2   (b) π/6   (c) π
40. 12C and 14C
41. 119 cm and 120 cm
42. 0.75 mm
43. 8 cm

45. (a) 
qBd
2 m

 (b) 
d
2

 , 3 d
2

 (c) 
πm

6 qB
 (d) the particles stick together

and the combined mass moves with constant speed vm along
the straight line drawn upward in the plane of figure through
the point of collision
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46. 49 m s −1

47. 2.5 × 10 5 C kg −1

48. 1.0 × 10 4 N C −1, 0.05 T

49. 36 cm, 55 cm

50. 6.4 × 10 4 m s −1, 1.0 × 10 5

51. √2qE0 z
m

53. 0.5 T

54. (a) 6.3 × 10 – 2 N m  (b) 60°

55. (a) zero (b) 0.02 N m parallel to the shorter side.

56. 0.13 N m

57. (a) 
iL 2B

4π
   (b) 

iL 2B
16

58. 
Mg
2nil

59. (a) 
qω
2π

   (b) 
qωr 2

2
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      10  7 T mA 1 10 A 
10  2 m sin 45

2 m 2

 1.8  10  9 T.

The direction of B


 is the same as that of dl

  r


. From

the figure, it is vertically downward.

35.2 MAGNETIC FIELD DUE TO CURRENT
    IN A STRAIGHT WIRE

Let MN (figure 35.3) be a portion of a straight wire
carrying a current i. Let P be a point at a distance
OP  d from it. The point O is the foot of the
perpendicular from P to the wire. 

Let us consider an element dl of the wire at a
distance l from the point O. The vector joining the
element dl with the point P is r


. Let  be the angle

between dl

  and  r


. The magnetic field at P due to the

element is

          dB  
0

4
 i 

dl sin
r 2

   (i)

The direction of the field is determined by the
vector dl


  r


. It is perpendicular to the plane of the

diagram and going into it. The direction of the field is
the same for all elements of the wire and hence the
net field due to the wire MN is obtained by integrating
equation (i) under proper limits.

From the figure, l   d cot
or, dl  d cosec 2 d.
Also, r  d cosec.
Putting in (i),

 dB  
0 i
4d

 sin d

   or, B  
0 i

4d
 [ cos]1

2

            
0 i
4d

 cos1  cos2.  (35.4)

Here 1  and  2 are the values of  corresponding
to the lower end and the upper end respectively.

Field on a Perpendicular Bisector

Suppose, the length MN  a and the point P is on
its perpendicular bisector. So,
     OM  ON  a/2  and

      cos1  a/2

a 2

4
  d 2

  
a

a 2  4 d 2

   and cos2   
a

a 2  4 d 2
 

   Equation (35.4) then becomes

B  
0 i
4d

 
2a

a 2  4 d 2

 
0 ia

2da 2  4 d 2
   (35.5)

Field due to a Long, Straight Wire

In this case 1  0  and  2   . From equation
(35.4), the magnetic field is

B  
0 i
2d

   (35.6)

The direction of the magnetic field at a point P due
to a long, straight wire can be found by a slight variation
in the right-hand thumb rule. If we stretch the thumb of
the right hand along the long current and curl our fingers
to pass through the point P, the direction of the fingers
at P gives the direction of the magnetic field there.

Example 35.2

   Figure (35.5) shows two long, straight wires carrying
electric currents in opposite directions. The separation
between the wires is 5.0 cm. Find the magnetic field at
a point P midway between the wires.

Solution : The right-hand thumb rule shows that the
magnetic field at P due to each of the wires is

Figure 35.3

� �

� �

Figure 35.4

Figure 35.5
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perpendicular to the plane of the diagram and is going
into it. The magnitude of the field due to each wire is

         B  
0 i
2d

 
2  10  7 T mA 1 10 A

2.5  10  2 m

 80 T.

The net field due to both the wires is 2  80 T
 160 T.

We can draw magnetic field lines on the pattern
of electric field lines. A tangent to a magnetic field line
gives the direction of the magnetic field existing at
that point. For a long straight wire, the field lines are
circles with their centres on the wire (figure 35.6).

35.3 FORCE BETWEEN PARALLEL CURRENTS

Consider two long wires W1  and  W2 kept parallel
to each other and carrying currents i1  and  i2

respectively in the same direction (figure 35.7). The
separation between the wires is d. Consider a small
element dl of the wire W2. The magnetic field at dl
due to the wire W1 is

              B  
0 i1

2d
   (i)

The field due to the portions of the wire W2, above
and below dl, is zero. Thus, (i) gives the net field at
dl. The direction of this field is perpendicular to the
plane of the diagram and going into it. The magnetic
force at the element dl is

           dF


  i2 dl

  B



or,       dF  i2 dl 
0 i1

2d
 

The vector product dl

  B


 has a direction towards

the wire W1. Thus, the length dl of wire W2 is attracted

towards the wire W1. The force per unit length of the
wire W2 due to the wire W1 is

            
dF
dl

  
0 i1i2

2d
   (35.7)

If we take an element dl in the wire W1 and
calculate the magnetic force per unit length of wire
W1 due to W2, it is again given by (35.7).

If the parallel wires carry currents in opposite
directions, the wires repel each other.

Example 35.3

   Two long, straight wires, each carrying an electric
current of 5.0 A, are kept parallel to each other at a
separation of 2.5 cm. Find the magnitude of the magnetic
force experienced by 10 cm of a wire.

Solution : The field at the site of one wire due to the
other is

   B  
0 i
2d

  
2  10  7 T mA 1 5.0 A

2.5  10  2 m
   4.0  10  5 T.

The force experienced by 10 cm of this wire due to the
other is

F  i lB

 5.0 A 10  10  2 m 4.0  10  5 T

 2.0  10  5 N.

Definition of Ampere

Consider two parallel wires separated by 1 m and
carrying a current of 1 A each. Then i1  i2  1 A and
d  1 m, so that from equation (35.7),

         
dF
dl

  2  10  7 N m 1.

This is used to formally define the unit ‘ampere’
of electric current. If two parallel, long wires, kept 1 m
apart in vacuum, carry equal currents in the same
direction and there is a force of attraction of
2  10  7 newton  per metre of each wire, the current
in each wire is said to be 1 ampere.

35.4 FIELD DUE TO A CIRCULAR CURRENT

Field at the Centre

Consider a circular loop of radius a carrying a
current i. We have to find the magnetic field due to

Figure 35.6

Figure 35.7

Figure 35.8
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this current at the centre of the loop. Consider any
small element dl of the wire (figure 35.8). The
magnetic field at the centre O due to the current
element idl


 is

          dB


  
0

4
 i 

dl

  r



r 3

where r

 is the vector joining the element to the centre

O. The direction of this field is perpendicular to the
plane of the diagram and is going into it. The
magnitude is

dB  
0

4
 
idl
a 2

   (i)

As the fields due to all such elements have the
same direction, the net field is also in this direction.
It can, therefore, be obtained by integrating (i) under
proper limits. Thus,

      B   dB   0 i

4a 2
 dl

         
0 i

4a 2
  dl  

0 i

4a 2
  2a  

0 i
2a

 

The direction of the magnetic field at the centre of
a circular wire can be obtained using the right-hand
thumb rule. If the fingers are curled along the current,
the stretched thumb will point towards the magnetic
field (figure 35.9).

Another way to find the direction is to look into
the loop along its axis. If the current is in anticlockwise
direction, the magnetic field is towards the viewer. If
the current is in clockwise direction, the field is away
from the viewer.

In figure (35.8), the current is clockwise as seen
by you. The magnetic field at the centre is away from
you, i.e., is going into the plane of the diagram.

Example 35.4

   A circular coil of radius 1.5 cm carries a current of 1.5 A.
If the coil has 25 turns, find the magnetic field at the centre.

Solution : The magnetic field at the centre due to each
turn is

                
0 i
2a

 

The net field due to all 25 turns is     

    B  
0 i n

2a
  

2  10  7 T mA 1 15 A  25

1.5  10  2 m

 1.57  10  3 T.

Field at an Axial Point

Consider a circular loop of radius a carrying a
current i. We have to find the magnetic field at a point
P on the axis of the loop at a distance d from its centre
O. In figure (35.10), the loop is perpendicular to the
plane of the figure while its axis is in the plane of the
figure. The current comes out of the plane at M and
goes into it at N. Consider a current element idl 


 of

the wire at M. The vector joining the element to the
point P is r


  MP 


. The magnetic field at P due to this

current element is

         dB


  
0

4
 i 

dl

  r



r 3
 

As dl

 is perpendicular to the plane of the figure,

dl

  r


 must be in the plane. The figure shows the

direction of dB


 according to the rules of vector product.
The magnitude of the field is

      dB  
0 i
4

 
dl
r 2

  
0 i
4

 
dl

a 2  d 2
 

The component along the axis is

        dB cos  
0 ia dl

4a 2  d 2 3/2   (i)

Now, consider the diametrically opposite current
element at N. The field due to this element will have
the same magnitude dB and its direction will be along
the dotted arrow shown in the figure. The two fields due
to the elements at M and at N have a resultant along
the axis of the loop. Dividing the loop in such pairs of
diametrically opposite elements, we conclude that the
resultant magnetic field at P must be along the axis. The
resultant field at P can, therefore, be obtained by
integrating the right-hand side of (i), i.e.,

        B   0 ia

4a 2  d 2 3/2 dl

�

�

�

�

Figure 35.9

Figure 35.10
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0 ia

4a 2  d 2 3/2  2a

 
0 ia 2

2a 2  d 2 3/2
   (35.8)

The right-hand thumb rule can be used to find the
direction of the field.

Field at a point far away from the centre

   If d >> a, equation (35.8) gives

        B  
0 ia 2

2 d 3
  

20 ia 2

4 d 3
   (ii)

Now, a 2 is the area of the loop and ia 2 is its
magnetic dipole moment . Using right-hand thumb rule,

we see that the direction of the area-vector A


 and hence
of the dipole moment is along the field B


. The magnetic

field due to this small loop at an axial point is, therefore,

           B


  
0

4
 
2


d 3
   (35.9)

One can compare this with the expression for the
electric field due to an electric dipole at a point on the
dipole-axis. It is

E


  
1

40
 
2p


d 3
 ,

where p


 is the electric dipole moment.
The magnetic field at a point not on the axis is

mathematically difficult to calculate. We show
qualitatively in figure (35.11) the magnetic field lines due
to a circular current which will give some idea of the field.

35.5 AMPERE’S LAW

Ampere’s law gives another method to calculate
the magnetic field due to a given current distribution.
Consider any closed, plane curve (figure 35.12). Assign
a sense to the curve by putting an arrow on the curve.
Using the right-hand thumb rule, assign one side of
the plane as positive and the other as negative. If you
curl the fingers of the right hand along the arrow on
the curve, the stretched thumb gives the positive side.
The positive side can also be determined by looking
into the loop along its axis. If the arrow on the loop
is anticlockwise, the positive side is towards the

viewer. If the arrow is clockwise, the positive side is
away from the viewer. In figure (35.12), the positive
side is going into the plane of the diagram.

Take a small length-element dl

 on the curve and

let B


 be the resultant magnetic field at the position of
dl

. Calculate the scalar product B


dl

 and integrate by

varying dl

 on the closed curve. This integration is

called line integral or circulation of B


 along the curve
and is represented by the symbol

           O B

dl

. 

Now look at the currents crossing the area
bounded by the curve. A current directed towards the
positive side of the plane area is taken as positive and
a current directed towards the negative side is taken
as negative. Ampere’s law then states:

The circulation O B

dl

 of the resultant magnetic

field along a closed, plane curve is equal to 0 times
the total current crossing the area bounded by the
closed curve provided the electric field inside the loop
remains constant. Thus,

            O B

dl

  0 i.  (35.10)

In figure (35.12), the positive side is going into the
area of the diagram so that i1  and  i2 are positive and
i3 is negative. Thus, the total current crossing the area
is i1  i2  i3. Any current outside the area is not
included in writing the right-hand side of equation
(35.10). The magnetic field B


 on the left-hand side is

the resultant field due to all the currents existing
anywhere.

Ampere’s law may be derived from the Biot–Savart
law and Biot–Savart law may be derived from the
Ampere’s law. Thus, the two are equivalent in
scientific content. However, Ampere’s law is more
useful under certain symmetrical conditions. In such
cases, the mathematics of finding the magnetic field
becomes much simpler if we use the Ampere’s law.

35.6 MAGNETIC FIELD AT A POINT DUE
    TO A LONG, STRAIGHT CURRENT

Figure (35.13a) shows a long, straight current i.
We have to calculate the magnetic field at a point P

Figure 35.11

Figure 35.12
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which is at a distance OP  d from the wire.  Figure
(35.13b) shows the situation in the plane perpendicular
to the wire and passing through P. The current is
perpendicular to the plane of the diagram and is
coming out of it.

Let us draw a circle passing through the point P
and with the centre at O. We put an arrow to show
the positive sense of the circle. The radius of the circle
is OP  d. The magnetic field due to the long, straight
current at any point on the circle is along the tangent
as shown in the figure. Same is the direction of the
length-element dl


 there. By symmetry, all points of the

circle are equivalent and hence the magnitude of the
magnetic field should be the same at all these points.
The circulation of magnetic field along the circle is

          O B

dl

 O  B dl

             B O dl  B 2d.

The current crossing the area bounded by the circle
is i. Thus, from Ampere’s law,

   B 2d  0 i

or, B  
0 i
2d

 

We have already derived this equation from
Biot–Savart law (equation 35.6).

35.7 SOLENOID

A solenoid is a wire wound closely in the form of
a helix. The wire is coated with an insulating material
so that although the adjacent turns physically touch
each other, they are electrically insulated. Generally,
the length of the solenoid is large as compared to the
transverse dimension. For example, if the solenoid has
circular turns, the length is large as compared to its
radius. If it has rectangular turns, the length should
be large as compared to the edges. The magnetic field
due to a current-carrying solenoid can be easily
pictured by examining the field due to a circular
current. The field lines due to a circular current were
drawn in figure (35.11). Figure (35.14a) shows the
magnetic field lines due to a circular loop A carrying

a current and also due to a similar loop B placed
coaxially and carrying equal current. We see that at a
point P, which is quite off the axis, the magnetic fields
due to the two loops are in opposite directions. On the
other hand, at a point Q which is on the axis or close
to the axis, the two fields are in the same direction.
Figure (35.14b) shows the resultant field lines due to
the two loops. A solenoid may be thought of as a stack
of such circular currents placed coaxially one after the
other. Figure (35.14c) represents the field due to a
loosely wound solenoid. The fields at an outside point
due to the neighbouring loops oppose each other,
whereas at an inside point, the fields are in the same
direction. These tendencies to have zero field outside
and a uniform field inside become more and more
effective as the solenoid is more and more tightly
wound. The magnetic field inside a very tightly wound,
long solenoid is uniform everywhere and is zero outside
it (figure 35.14d).

To calculate the magnetic field at a point P inside
the solenoid, let us draw a rectangle PQRS as shown
in figure (35.15). The line PQ is parallel to the solenoid
axis and hence parallel to the magnetic field B


 inside

the solenoid. Thus,

             
P

Q

 B

dl

  Bl.

Figure 35.13
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    4  5.66  10  6 T  22.6  10  6 T.

 5. Figure (35-W4) shows a square loop made from a uniform
wire. Find the magnetic field at the centre of the square
if a battery is connected between the points A and C.

Solution : The current will be equally divided at A. The fields
at the centre due to the currents in the wires AB and DC
will be equal in magnitude and opposite in direction. The
resultant of these two fields will be zero. Similarly, the
resultant of the fields due to the wires AD and BC will be
zero. Hence, the net field at the centre will be zero.

 6. Two long wires, carrying currents i1  and  i2, are placed
perpendicular to each other in such a way that they just
avoid a contact. Find the magnetic force on a small
length dl of the second wire situated at a distance l from
the first wire.

Solution : The situation is shown in figure (35-W5). The
magnetic field at the site of dl, due to the first wire is,

            B  
0 i1

2l
 

This field is perpendicular to the plane of the figure
going into it. The magnetic force on the length dl is,

dF  i2 dl B sin90

 
0 i1i2dl

2l

This force is parallel to the current i1.

 7. Figure (35-W6) shows a part of an electric circuit. ABCD
is a rectangular loop made of uniform wire. The length
AD  BC  1 cm. The sides AB and DC are long as
compared to the other two sides. Find the magnetic force

per unit length acting on the wire DC due to the wire
AB if the ammeter reads 10 A.

Solution : By symmetry, each of the wires AB and DC
carries a current of 5 A. As the separation between them
is 1 cm, the magnetic force per unit length of DC is

       
dF
dl

  
0 i1i2

2d

 
2  10  7 T mA 1 5 A 5 A

1  10  2 m

 5  10  4 TA  5  10  4 N m 1.

 8. Figure (35-W7) shows a current loop having two circular
arcs joined by two radial lines. Find the magnetic field
B at the centre O.

Solution : As the point O is on the line AD, the magnetic
field at O due to AD is zero. Similarly, the field at O
due to BC is also zero. The field at the centre of a

circular current loop is given by B  
0 i
2a

  The field due

to the circular arc BA will be

            B1  





2




 




0 i
2a




 .

The right-hand thumb rule shows that the field is
coming out of the plane of the figure. The field due to
the circular arc DC is

          B2  





2




 




0 i
2b





 

going into the plane of the figure. The resultant field at
O is

         B  B1  B2  
0 ib  a

4ab
coming out of the plane.

 9. Find the magnetic field at the point P in figure (35-W8).
The curved portion is a semicircle and the straight wires
are long.

Solution : The magnetic field at P due to any current
element in the figure is perpendicular to the plane of
the figure and coming out of it. The field due to the
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the whole sheet will also be in this direction. Suppose
this field has magnitude B.

The field on the opposite side of the sheet at the same
distance will also be B but in opposite direction. Applying
Ampere’s law to the rectangle shown in figure (35-W11b),
              2Bl  0 Kl

or, B  
1
2

 0 K.

Note that it is independent of x.

13. Consider the situation described in the previous example.
A particle of mass m having a charge q is placed at a
distance d from the metal sheet and is projected towards
it. Find the maximum velocity of projection for which the
particle does not hit the sheet.

Solution : As the magnetic field is uniform and the
particle is projected in a direction perpendicular to the
field, it will describe a circular path. The particle will
not hit the metal sheet if the radius of this circle is
smaller than d. For the maximum velocity, the radius
is just equal to d. Thus,

            qvB  mv 2

d

or, qv 
0 K

2
  

mv 2

d

or, v  
0 qKd

2m
 

14. Three identical long solenoids P, Q and R are connected
to each other as shown in figure (35-W12). If the magnetic
field at the centre of P is 2.0 T, what would be the field
at the centre of Q ? Assume that the field due to any
solenoid is confined within the volume of that solenoid
only.

Solution : As the solenoids are identical, the currents in
Q and R will be the same and will be half the current
in P. The magnetic field within a solenoid is given by
B  0 ni. Hence the field in Q will be equal to the field
in R and will be half the field in P, i.e., will be 1.0 T.

15. A long, straight wire carries a current i. A particle having
a positive charge q and mass m, kept at a distance x0

from the wire is projected towards it with a speed v. Find
the minimum separation between the wire and the
particle.

Solution :

Let the particle be initially at P (figure 35-W13). Take
the wire as the y-axis and the foot of perpendicular from
P to the wire as the origin. Take the line OP as the
x-axis. We have, OP  x0. The magnetic field B at any
point to the right of the wire is along the negative z-axis.
The magnetic force on the particle is, therefore, in the
x–y plane. As there is no initial velocity along the z-axis,
the motion will be in the x–y plane. Also, its speed
remains unchanged. As the magnetic field is not
uniform, the particle does not go along a circle.

The force at time t is F


  qv

  B



         qi

 vx  j


 vy  




 
0 i
2x

 k




 j

 qvx 

0 i
2x

  i

 qvy 

0 i
2x

 

   Thus     ax  
Fx

m
   

0 qi
2m

 
vy

x
    

vy

x
 (i)

   where   
0 qi
2m

 

   Also, ax  
dvx

dt
  

dvx

dx
 dx
dt

  
vxdvx

dx
   (ii)

   As      vx
 2  vy

 2  v 2,
             2vx dvx  2vy dvy  0 
   giving     vx dvx   vy dvy.   (iii)

From (i), (ii) and (iii),

       
vy dvy

dx
  

vy

x

or, 
dx
x

  
dvy


 

Initially x  x0  and  vy  0. At minimum separation from
the wire, vx  0 so that vy   v.

Thus  
x

0

x

 
dx
x

   
0

– v

 
dvy



or, ln 
x
x0

   
v


or,         x  x0 e – v/  x0 e 
– 

2mv
0qi .
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36. Two circular coils of radii 5.0 cm and 10 cm carry equal
currents of 2.0 A. The coils have 50 and 100 turns
respectively and are placed in such a way that their
planes as well as the centres coincide. Find the
magnitude of the magnetic field B at the common centre
of the coils if the currents in the coils are (a) in the same
sense (b) in the opposite sense.

37. If the outer coil of the previous problem is rotated
through 90° about a diameter, what would be the
magnitude of the magnetic field B at the centre?

38. A circular loop of radius 20 cm carries a current of 10 A.
An electron crosses the plane of the loop with a speed
of 2.0 × 10 6 m s −1. The direction of motion makes an
angle of 30° with the axis of the circle and passes
through its centre. Find the magnitude of the magnetic
force on the electron at the instant it crosses the plane.

39. A circular loop of radius R carries a current I. Another
circular loop of radius r (<< R) carries a current i and is
placed at the centre of the larger loop. The planes of the
two circles are at right angle to each other. Find the
torque acting on the smaller loop.

40. A circular loop of radius r carrying a current i is held
at the centre of another circular loop of radius R(>> r)
carrying a current I. The plane of the smaller loop makes
an angle of 30° with that of the larger loop. If the smaller
loop is held fixed in this position by applying a single
force at a point on its periphery, what would be the
minimum magnitude of this force ?

41. Find the magnetic field B due to a semicircular wire of
radius 10.0 cm carrying a current of 5.0 A at its centre
of curvature.

42. A piece of wire carrying a current of 6.00 A is bent in
the form of a circular arc of radius 10.0 cm, and it
subtends an angle of 120° at the centre. Find the
magnetic field B due to this piece of wire at the centre.

43. A circular loop of radius r carries a current i. How should
a long, straight wire carrying a current 4i be placed in
the plane of the circle so that the magnetic field at the
centre becomes zero ?

44. A circular coil of 200 turns has a radius of 10 cm and
carries a current of 2.0 A. (a) Find the magnitude of the

magnetic field B
→

 at the centre of the coil. (b) At what
distance from the centre along the axis of the coil will
the field B drop to half its value at the centre ?
(3√4 = 1.5874 …)

45. A circular loop of radius 4.0 cm is placed in a horizontal
plane and carries an electric current of 5.0 A in the
clockwise direction as seen from above. Find the
magnetic field (a) at a point 3.0 cm above the centre of
the loop (b) at a point 3.0 cm below the centre of the
loop.

46. A charge of 3.14 × 10 – 6 C is distributed uniformly over
a circular ring of radius 20.0 cm. The ring rotates about
its axis with an angular velocity of 60.0 rad s −1. Find the
ratio of the electric field to the magnetic field at a point
on the axis at a distance of 5.00 cm from the centre.

47. A thin but long, hollow, cylindrical tube of radius r
carries a current i along its length. Find the magnitude

of the magnetic field at a distance r/2 from the surface
(a) inside the tube (b) outside the tube.

48. A long, cylindrical tube of inner and outer radii a and
b carries a current i distributed uniformly over its
cross section. Find the magnitude of the magnetic field
at a point (a) just inside the tube (b) just outside
the tube.

49. A long, cylindrical wire of radius b carries a current i
distributed uniformly over its cross section. Find the
magnitude of the magnetic field at a point inside the
wire at a distance a from the axis.

50. A solid wire of radius 10 cm carries a current of 5.0 A
distributed uniformly over its cross section. Find the
magnetic field B at a point at a distance (a) 2 cm
(b) 10 cm and (c) 20 cm away from the axis. Sketch a
graph of B versus x  for 0 < x < 20 cm.

51. Sometimes we show an idealised magnetic field which
is uniform in a given region and falls to zero abruptly.
One such field is represented in figure (35-E12). Using
Ampere’s law over the path PQRS, show that such a
field is not possible.

52. Two large metal sheets carry surface currents as shown
in figure (35-E13). The current through a strip of width
dl is Kdl where K is a constant. Find the magnetic field
at the points P, Q and R.

53. Consider the situation of the previous problem. A
particle having charge q and mass m is projected from
the point Q in a direction going into the plane of the
diagram. It is found to describe a circle of radius r
between the two plates. Find the speed of the charged
particle.

54. The magnetic field B inside a long solenoid, carrying a
current of 5.00 A, is 3.14 × 10 – 2 T. Find the number of
turns per unit length of the solenoid.

55. A long solenoid is fabricated by closely winding a wire
of radius 0.5 mm over a cylindrical nonmagnetic frame
so that the successive turns nearly touch each other.
What would be the magnetic field B at the centre of the
solenoid if it carries a current of 5 A ?

56. A copper wire having resistance 0.01 ohm in each metre
is used to wind a 400-turn solenoid of radius 1.0 cm and
length 20 cm. Find the emf of a battery which when
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CHAPTER 36

PERMANENT MAGNETS

36.1 MAGNETIC POLES AND BAR MAGNETS

We have seen that a small current loop carrying
a current i, produces a magnetic field

             B


  
0

4
 
2


d 3
 (i)

at an axial point. Here 


  iA


 is the magnetic dipole

moment of the current loop. The vector A


 represents
the area-vector of the current loop. Also, a current loop
placed in a magnetic field B


 experiences a torque

              


  

  B


.  (ii)

We also know that an electric dipole produces an
electric field

             E


  
1

40
 2p



d 3
 (iii)

at an axial point and it experiences a torque

              


  p


  E


 (iv)

when placed in an electric field. Equations (i) and (ii)
for a current loop are similar in structure to the
equations (iii) and (iv) for an electric dipole with 



taking the role of p


 and 
0

4
 taking the role of 1

40

  The

similarity suggests that the behaviour of a current loop
can be described by the following hypothetical model:

(a) There are two types of magnetic charges,
positive magnetic charge and negative magnetic
charge. A magnetic charge m placed in a magnetic field
B


 experiences a force

             F


  mB


.  (36.1)

The force on a positive magnetic charge is along the
field and the force on a negative magnetic charge is
opposite to the field.

(b) A magnetic charge m produces a magnetic field

B  
0

4
 
m
r 2

  (36.2)

at a distance r from it. The field is radially outward

if the magnetic charge is positive and is inward if it
is negative.

(c) A magnetic dipole is formed when a negative
magnetic charge –m and a positive magnetic charge
+m are placed at a small separation d. The magnetic
dipole moment is   md and its direction is from –m
to +m. The line joining –m and +m is called the axis
of the dipole.

(d) A current loop of area A carrying a current i
may be replaced by a magnetic dipole of dipole moment
  md  iA placed along the axis of the loop. The

area-vector A


 points in the direction m to m.

The model is very useful in studying magnetic
effects and is widely used. It is customary to call a
positive magnetic charge a north pole and a negative
magnetic charge a south pole. They are represented by
the letters N and S respectively. The quantity m is
called pole strength. From the equation md  iA or
F  mB, we can easily see that the unit of pole strength
is A–m. We can find the magnetic field due to a
magnetic dipole at any point P using equation (36.2)
for both the poles.

A solenoid very closely resembles a combination of
circular loops placed side by side. If i be the current
through it and A be the area of cross-section, the dipole
moment of each turn is   iA. In our model, each turn
may be replaced by a small dipole placed at the centre
of the loop along its axis. Suppose, each turn is
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replaced by a magnetic dipole with pole strength m
and separation d between the north and south poles.
We have md = iA. Figure (36.2a) and (36.2b) show a
current-carrying solenoid and its equivalent  in terms
of magnetic poles.

Suppose we take the value of d in such a way that
the north pole of one dipole touches the south pole of
the adjacent one. South poles and north poles, then,
neutralise each other except at the ends. Thus, a
current-carrying solenoid can be replaced by just a
single south pole and a single north pole of pole
strength m each, placed at a separation equal to the
length of the solenoid (figure 36.2c).

We can obtain the field outside the solenoid using
the above model. Each pole produces a field given by
equation (36.2). The resultant field is the vector sum
of the fields produced by the south pole and the north
pole. Figure (36.3) shows the magnetic field lines due
to a current-carrying solenoid.

Note that the magnetic field inside the solenoid is
opposite in direction from what one expects from the
pole picture. The magnetic field lines are closed curves.
They do not start or end at a point as is the case with
electric field lines.

Example 36.1

   A solenoid of length 10 cm and radius 1 cm contains
200 turns and carries a current of 10 A. Find the
magnetic field at a point on the axis at a distance of
10 cm from the centre.

Solution : The dipole moment of each turn is

          µ = iA = (10 A) (π cm 2)

= π × 10 − 3 A m 2.

If each current loop is replaced by a dipole having pole
strength m and separation between the poles d, we have

µ = md.

As there are 200 turns,

          200 d = 10 cm

or, d = 5 × 10 − 4 m.

Thus,

       m = 
µ
d

 = 
π × 10 − 3 A m 2

5 × 10 − 4 m
 = 2π A m.

We can replace the solenoid by a south pole and a north
pole of equal pole strength 2π A m, separated by 10 cm.

The equivalent picture is shown in figure (36.4).

The magnetic field at P due to the north pole is 

BN = 
µ0

4π
 
2π A m
(5 cm) 2 = 2.5 × 10 − 4 T.

The magnetic field at P due to the south pole is

BS = 
µ0

4π
 

2π A m
(15 cm) 2 = 0.3 × 10 − 4 T.

The field BN is away from the poles and BS is towards
the poles. The resultant field at P is

B = BN − BS

= 2.2 × 10 − 4 T         
away from the solenoid.

In nature, we find certain objects whose magnetic
behaviour may be described by assuming that there is
a south pole placed at a certain point in the object and
a north pole placed at a different point. Such an object
is called a magnet. A magnet in the shape of a rod or
a bar is called a bar magnet. The poles appear at points
which are slightly inside the two ends. The line joining
the positions of the assumed poles is called the
magnetic axis of the bar magnet. The magnetic field
lines due to a bar magnet are similar to those shown
in figure (36.3). How can a rod produce magnetic field
when no electric current is passed through it ? Let us
now discuss this question.

A simple model tells us that matter is made of atoms
and each atom contains electrons circulating around its
nucleus. These moving electrons constitute electric
currents at the atomic level. The actual description of
these atomic currents is quite complicated but we can
assume that these atomic currents are equivalent to
small, circular current loops. In magnets, these loops are
arranged nearly parallel to each other and have currents
in the same sense.

Figure (36.5) shows the currents in a cross section
of a cylindrical bar magnet. At any point inside the
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magnet, the net current is zero because the currents
from the adjacent loops cancel each other. However,
there is a net current along the surface as there is no
cancellation of currents there. Due to such a surface
current, the cylindrical magnet is equivalent to a
closely-wound, current-carrying solenoid and hence
produces a magnetic field similar to the solenoid. We
can, therefore, treat the bar magnet as having a north
pole and a south pole separated by a length l. Suppose
the surface current is I per unit length of the magnet.
The total current at the surface of the magnet of length
l is Il. If the cross-sectional area is A, the magnetic
dipole moment is

           current  area  IlA.
If the pole strength is m, the magnetic moment may
also be written as   ml.
Thus,         ml  IlA
or, m  IA.  (36.3)

In the above discussion we have not considered the
end effect. At the two ends of the magnet, the currents
behave differently from those inside the magnet.
Because of this effect, the magnetic poles appear
slightly inside the bar. The distance between the
locations of the assumed poles is called the magnetic
length of the magnet. The distance between the ends
is called the geometrical length. It is found that

        
magnetic  length

geometrical  length
  0.84.

The magnetic moment of a bar magnet is
conventionally denoted by M. Also, the magnetic length
of a bar magnet is written as 2l. If m be the pole
strength and 2l the magnetic length of a bar magnet,
its magnetic moment is

             M  2ml.  (36.4)

36.2 TORQUE ON A BAR MAGNET PLACED
    IN A MAGNETIC FIELD

Suppose a bar magnet of magnetic length 2l and
pole strength m is placed in a uniform magnetic field
B


 (figure 36.7). The angle between the magnet and the
magnetic field is . The force on the north pole is
mB along the field and that on the south pole is mB
opposite to the field. The torque of these two forces is

         mB l sin  mB l sin
 2 mB l sin  MB sin

where M is the magnetic moment of the magnet. This
torque tries to rotate the magnet so as to align it with
the field. We can write the torque as

           


  M


  B


.

This equation is the same as that obtained earlier
for a current loop. If an external agent rotates the
magnet slowly, the agent has to exert a torque
MB sin opposite to that exerted by the field. The work
done by the agent in changing the angle from  to
 + d is dW  MB sind. The work done in rotating
the magnet from an angle 0 to  is

    W   
0



 MB sin d  MBcos0  cos.

This work is stored as the potential energy of the
field–magnet system. Thus,

      U  U0  MBcos0  cos.
If we take the potential energy at   90 to be

zero, the potential energy at an angle  is
      U  U  U90

         MB cos   M

B


.  (36.5)

We see from this equation that the SI unit for the
magnetic moment M may also be written as J T 1.

Example 36.2

   A bar magnet having a magnetic moment of
1.0  10 4 J T 1 is free to rotate in a horizontal plane. A
horizontal magnetic field B  4  10 – 5 T exists in the
space. Find the work done in rotating the magnet slowly
from a direction parallel to the field to a direction 60
from the field.

Solution : The work done by the external agent  change
in potential energy
       MB cos2  MB cos1

 MBcos 60  cos 0  
1
2

 MB

 
1
2

  1.0  10 4 J T 1 4  10  5 T  0.2 J.

Figure 36.6
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36.3 MAGNETIC FIELD DUE TO A BAR MAGNET

(a) End-on Position

A position on the magnetic axis of a bar magnet
is called an end-on position. Suppose SN is a bar
magnet of magnetic length 2l and pole strength m. Let
P be a point in end-on position at a distance d from
the centre of the magnet. The magnetic field at P due
to the north pole is

         BN = 
µ0

4π
 

m

(d − l) 2
 

directed away from the magnet. The field due to the
south pole is

       BS = 
µ0

4π
 

m

(d + l) 2
 

directed towards the magnet. The resultant field is
B = BN − BS

= 
µ0m

4π
 


1
(d − l) 2

 − 
1

(d + l) 2




= 
µ0

4π
 

2 Md

(d 2 − l 2) 2
 … (36.6)

where M = 2ml is the magnetic moment of the magnet.
If d >> l, the magnet may be called a magnetic dipole
and the field at an end-on position is

            B = 
µ0

4π
 
2M

d 3
 ⋅ … (36.7)

Example 36.3

   A magnet is 10 cm long and its pole strength is 120 CGS
units (1 CGS unit of pole strength = 0.1 A m). Find the
magnitude of the magnetic field B at a point on its axis
at a distance 20 cm from it.

Solution :

The pole strength is m = 120 CGS units = 12 A m.

Magnetic length is 2l = 10 cm or l = 0.05 m.

Distance from the magnet is d = 20 cm = 0.2 m. The
field B at a point in end-on position is

  B = 
µ0

4π
 

2Md
(d 2 − l 2) 2 

    = 
µ0

4π
 

4mld
(d 2 − l 2) 2 

= 



10 − 7 

T m
A



 
4 × (12 A m) × (0.05 m)  × (0.2 m)

[(0.2 m) 2 − (0.05 m) 2] 2

 = 3.4 × 10 − 5 T.

(b) Broadside-on Position

A position on a perpendicular bisector of the bar
magnet is called broadside-on position. Let P be a point
in the broadside-on position of the bar magnet at a
distance d from its centre. The pole strength of the
magnet is m and its magnetic length SN is 2l. The
field at P due to the north pole may be written as

         B
→

N = 
µ0

4π
 
m NP 

→

NP 3
 ⋅

This gives the magnitude as well as the direction
of the field due to the north pole. The field due to the
south pole is

         B
→

S = 
µ0

4π
 
m PS 

→

PS 3
 ⋅

Now, NP = PS = (d 2 + l 2) 1/2 so that the resultant
field at P is

      B
→

 = B
→

N + B
→

S 

 = 
µ0

4π
 

m

(d 2 + l 2) 3/2 (NP 
→
+ PS 
→
)

= 
µ0

4π
 

m NS
→

(d 2 + l 2) 3/2 ⋅

The magnitude of the field is

     B = 
µ0

4π
 

m 2l

(d 2 + l 2) 3/2 = 
µ0

4π
 

M

(d 2 + l 2) 3/2  … (36.8)

where M = 2ml is the magnetic moment of the magnet.
The direction of the field is parallel to the axis, from
the north pole to the south pole.

If d >> l, the magnet may be called a magnetic
dipole and the magnetic field at a point in broadside-on
position is

           B = 
µ0

4π
 
M

d 3
 ⋅ … (36.9)

36.4 MAGNETIC SCALAR POTENTIAL

Magnetic scalar potential is defined in the same
way as gravitational or electrostatic potential. We

define the change in potential V(r
→

2) − V(r
→

1) by the
equation
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       V(r
→

2) − V(r
→

1) = − ∫ 
r
→

1

r
→

2

 B
→
⋅dr
→
. … (36.10)

Generally, the potential at infinity (a point far
away from all sources of magnetic field) is taken to be

zero. Taking r
→

1 equal to ∞ and r
→

2 = r
→
, equation (36.10)

gives

V(r
→
) = − ∫ 

∞

r
→

 B
→
⋅dr
→
.

The component of the magnetic field in any
direction is given by

            Bl = − 
dV
dl

… (36.11)

where dl is a small distance along the given direction.
For a pole of pole strength m, the field at a

distance r is

         B = 
µ0

4π
 
m

r 2
 

radially away from the pole. So the potential at a
distance r is

       V(r) = − ∫ 
∞

r

 
µ0

4π
 m 

dr

r 2

              = 
µ0

4π
 
m
r

 ⋅ … (36.12)

Magnetic Scalar Potential due to a Magnetic Dipole

Suppose, SN is a magnetic dipole of length 2l and
pole strength m (figure 36.10). The magnetic scalar
potential is needed at a point P at a distance
OP = r(>> l) from the centre of the dipole. The angle
PON = θ.

Let SA be the perpendicular from S to OP and NC
be the perpendicular from N to OP. As r >> l,

       PS ≈ PA = PO + OA = r + l cosθ.

Similarly, PN ≈ PC = PO − OC = r − l cosθ.

The magnetic scalar potential at P due to the north
pole is

VN = 
µ0

4π
 

m
NP

= 
µ0

4π
 

m
r − l cosθ

and that due to the south pole is

          VS = − 
µ0

4π
 

m
SP

= − 
µ0

4π
 

m
r + l cosθ

 ⋅

The net potential at P due to the dipole is
     V = VN + VS

= 
µ0m
4π

 


1
r − l cosθ

 − 
1

r + l cosθ




= 
µ0

4π
 

m(2l cosθ)
(r 2 − l 2 cos 2θ)

≈ 
µ0

4π
 
M cosθ

r 2
 ⋅ … (36.13)

Magnetic Field due to a Dipole

Let SN be a magnetic dipole and P be a point far
away from the dipole (figure 36.11). The distance OP
= r and the angle PON = θ. If we move a small distance
PQ in the direction of OP, the value of r is changed
to r + dr while θ remains unchanged. Similarly, if we
move a small distance PR in the direction
perpendicular to OP,  θ is changed from θ to θ + dθ
while r remains very nearly constant. The distance
moved is rdθ.

The component of magnetic field along OP is

      Br  = − 
dV
PQ

 = − 


dV
dr


 θ = constant

        = − 
∂V
∂r

      = − 
∂
∂r

 




µ0

4π
 
M cosθ

r 2




= 
µ0

4π
 
2M cosθ

r 3
 ⋅ … (i)

The component perpendicular to OP is

      Bθ = − 
dV
PR

 = − 


dV
rdθ



 r = constant

         = − 
1
r

 
∂
∂θ

 




µ0

4π
 
M cosθ

r 2
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0

4
 
M sin

r 3
   (ii)

   The resultant magnetic field at P is

B  Br
 2  B

 2

 
0

4
 
M
r 3

 2 cos 2  sin 2  

 
0

4
 
M
r 3

 1  3 cos 2 .  (36.14)

If it makes an angle  with OP,

         tan   
B

Br
 

   From (i) and (ii),

          tan  
sin

2 cos
  

tan
2

   (36.15)

Example 36.4

   Find the magnetic field due to a dipole of magnetic
moment 1.2 A m 2 at a point 1 m away from it in a
direction making an angle of 60 with the dipole-axis.

Solution : The magnitude of the field is

    B  
0

4
 
M
r 3 1  3 cos 2  

 

10  7 

T m
A




 
1.2 A m 2

1 m 3  1  3 cos 260

 1.6  10  7 T.

The direction of the field makes an angle  with the
radial line where

           tan  
tan

2
  

3
2

 

36.5 TERRESTRIAL MAGNETISM

Earth is a natural source of magnetic field. We
have magnetic field present everywhere near the

earth’s surface. The magnitude and direction of this
field can be obtained approximately by assuming that
the earth has a magnetic dipole of dipole moment
about 8.0  10 22 J T 1 located at its centre (figure
36.12). The axis of this dipole makes an angle of about
11.5 with the earth’s axis of rotation. The dipole-axis
cuts the earth’s surface at two points, one near the
geographical north pole and the other near the
geographical south pole. The first of these points is
called geomagnetic north pole and the other is called
geomagnetic south pole.

If we suspend a bar magnet freely at a point near
the earth’s surface, it will stay along the magnetic field
there. The north pole will point towards the direction
of the magnetic field. At the geomagnetic poles, the
magnetic field is vertical. If we suspend the bar
magnet near the geomagnetic north pole, it will become
vertical with its north pole towards the earth’s surface.
Similarly, if we suspend a bar magnet near the
geomagnetic south pole, it will become vertical with its
south pole pointing towards the earth’s surface.
Geomagnetic poles may, therefore, be defined as “the
points where a freely suspended bar magnet becomes
vertical”.

If we treat the assumed magnetic dipole inside the
earth as a pair of north and south poles (figure 36.12),
the south pole will be towards the geomagnetic north
pole and the north pole will be towards the
geomagnetic south pole. This may be easily
remembered by using the fact that the north pole of
the suspended magnet should be attracted by the south
pole of the assumed dipole.

Earth’s magnetic field changes both in magnitude
and direction as time passes. It is fairly constant over
a span of a few days, but noticeable changes occur in
say, ten years. Studies of magnetic rocks have revealed
that the magnetic field may even reverse its direction.
It appears that in the past 7.6  10 7 years, already
171 such reversals have taken place. The latest
reversal in earth’s magnetic field is believed to have
occurred around 10,000 years ago.

The theory of earth’s magnetic field is not yet well-
understood. At present, it seems that the field results
mainly due to circulating electric currents induced in
the molten liquid and other conducting material inside
the earth.

Elements of the Earth’s Magnetic Field

The earth’s magnetic field at a point on its surface
is usually characterised by three quantities:
(a) declination (b) inclination or dip and (c) horizontal
component of the field. These are known as the
elements of the earth’s magnetic field.

1
1
.5

°

Geomagnetic
north pole

Geographical
north pole

S

N

Geographical
south pole

Geomagnetic
south pole

Figure 36.12
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Declination

A plane passing through the geographical poles
(that is, through the axis of rotation of the earth) and
a given point P on the earth’s surface is called the
geographical meridian at the point P. Similarly, the
plane passing through the geomagnetic poles (that is,
through the dipole-axis of the earth) and the point P
is called the magnetic meridian at the point P. In other
words, the magnetic meridian is a vertical plane
through the point P that contains the geomagnetic
poles. The magnetic field due to the earth at P must
be in this plane (magnetic meridian).

The angle made by the magnetic meridian at a
point with the geographical meridian is called the
declination at that point. The knowledge of declination
fixes the vertical plane in which the earth’s magnetic
field lies.

Navigators often use a magnetic compass needle
to locate direction. A compass needle is a short and
light magnetic needle, free to rotate about a vertical
axis. The needle is enclosed in a small case with a
glass-top. The needle stays in equilibrium when it is
in magnetic meridian. Hence the north direction shown
by the needle makes an angle equal to the declination
with the true north and navigators have to take care
of it.

Inclination or dip

The angle made by the earth’s magnetic field with
the horizontal direction in the magnetic meridian, is
called the inclination or dip at that point.

In the magnetic nothern hemisphere, the vertical
component of the earth’s magnetic field points
downwards. The north pole of a freely suspended
magnet, therefore, dips (goes down).

The knowledge of declination and inclination
completely specifies the direction of the earth’s
magnetic field.

Horizontal component of the earth’s magnetic field

As the name indicates, the horizontal component
is component of the earth’s magnetic field in the
horizontal direction in the magnetic meridian. This
direction is towards the magnetic north.

Figure (36.13) shows the three elements. Starting
from the geographical meridian we draw the magnetic
meridian at an angle θ (declination). In the magnetic
meridian we draw the horizontal direction specifying
magnetic north. The magnetic field is at an angle δ
(dip) from this direction. The horizontal component BH

and the total field B are related as

         BH = B cosδ
   or, B = BH /cosδ.

Thus, from the knowledge of the three elements,
both the magnitude and direction of the earth’s
magnetic field can be obtained.

Example 36.5

   The horizontal component of the earth’s magnetic field
is 3.6 × 10 – 5 T where the dip is 60°. Find the magnitude
of the earth’s magnetic field.

Solution : We have BH = B cosδ

or,   B = 
BH

cosδ
 = 

3.6 × 10 − 5 T
cos 60°

 = 7.2 × 10 − 5 T.

36.6 DETERMINATION OF DIP AT A PLACE

Dip Circle

The dip at a place can be determined by an
apparatus known as dip circle. It consists of a vertical
circular scale S and a magnetic needle (a small pointed
permanent magnet) pivoted at the centre of the scale.
The needle can rotate freely in the vertical plane of
the scale. The pointed ends move over the graduations
on the scale which are marked 0°–0° in the horizontal
and 90°–90° in the vertical direction. The scale S
together with the needle is enclosed in a glass cover
which can be rotated about a vertical axis. The angle
rotated can be read from a horizontal angular scale E,
fixed with the base, and a vernier scale fixed with the
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stand supporting the glass cover. The base can be
made horizontal by levelling screws fixed with it. A
spirit-level fixed to the apparatus helps in levelling.

Determination of Dip

Determination of magnetic meridian

At the beginning of the experiment, the base of the
dip circle is made horizontal with the help of the
levelling screws and the magnetic needle is pivoted in
its place. The glass cover containing the vertical scale
S and the needle is rotated about the vertical axis till
the needle becomes vertical and reads 90–90 on the
vertical scale. In this condition, the plane of the
circular scale S is perpendicular to the magnetic
meridian. The horizontal component BH is
perpendicular to this plane and hence does not take
part in rotating the needle. The needle is aligned with
the vertical component BV and hence reads 9090.
The reading of the vernier is noted and the glass cover
is rotated exactly through 90 from this position. The
plane of the circular scale S is now the same as the
magnetic meridian.

Measurement of dip

When the plane of the vertical scale S is the same
as the magnetic meridian, the earth’s magnetic field
B


 is in this same plane. In this case, the needle rests
in the direction of B


. The readings of the ends of the

needle on the vertical scale now directly give the value
of the dip.

Possible errors and their remedies

Errors may occur because of several imperfections
in the instrument. Some of the possible errors and
their remedies are given below.

(a) The centre of the needle is not at the centre of
the vertical scale. 

If the centre of the needle does not coincide with
the centre of the scale, the readings do not represent
the true dip. The reading of one end of the needle is
less than the true value of the dip and the reading of
the other end is greater by the same amount. Thus,
both ends are read and the average is taken.

(b) 0–0 line is not horizontal.

If the 0–0 line on the scale is not horizontal, the
value of dip will have some error. This error may be
removed as described below.

Bring the vertical scale in the magnetic meridian
and note the readings of the ends of the needle (figure
36.16a). Now, rotate the circle through 180 about the
vertical axis and again note the readings (figure
36.16b). The average of these readings will not have
the error due to 0–0 line.

(c) The magnetic and the geometrical axes of the
needle are different.

In the experiment, we read the angles
corresponding to the ends of the needle. If the
magnetic axis is inclined at an angle with the line
joining the ends, the dip obtained is in error. This error
can be removed by inverting the needle on its bearing
and repeating the previous readings. The average of
these readings is free of this error.

 (d) Centre of mass of the needle does not coincide
with the pivot.

If the centre of mass of the needle is not at the
pivot, its weight mg will have a torque and will affect
the equilibrium position. To remove this error, one has
to read the dip and then take out the needle. The
needle should be demagnetized and then remagnetized
in opposite direction. Thus, the position of the north
and south poles are interchanged. The centre of mass
now appears on the other side of the pivot and hence
the effect of mg is also reversed. The dip is again
determined with this needle and the average is taken.

Thus, one should take 16 readings of dip and an
average of all these gives the true dip.

Apparent Dip

If the dip circle is not kept in the magnetic
meridian, the needle will not show the correct direction
of earth’s magnetic field. The angle made by the needle

Figure 36.15
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with the horizontal is called the apparent dip for this
plane. If the dip circle is at an angle α to the meridian,
the effective horizontal component in this plane is
B′H = BH cosα. The vertical component is still Bv. If δ′
is the apparent dip and δ is the true dip, we have

        tanδ′ = 
Bv

B′H

or,     cotδ′ = 
B′H
Bv

 = 
BH cosα

Bv

   or, cotδ′ = cotδ cosα. … (i)

Now suppose, the dip circle is rotated through an
angle of 90° from this position. It will now make an
angle (90° – α) with the meridian. The effective
horizontal component in this plane is B′′H = BH sinα. If
δ′′ be the apparent dip, we shall have
          cotδ′′ = cotδ sinα. … (ii)

Squaring and adding (i) and (ii),

          cot 2δ′ + cot 2δ′′ = cot 2δ. … (36.16)

Thus, one can get the true dip δ without locating
the magnetic meridian.

Example 36.6

   At 45° to the magnetic meridian, the apparent dip is 30°.
Find the true dip.

Solution : At 45° to the magnetic meridian, the effective
horizontal component of the earth’s magnetic field is

B′H = BH cos 45° = 1
√2

 BH. The apparent dip δ′ is given by

        tanδ′ = 
Bv

B′H
 = 
√2 Bv

BH

 = √2 tanδ

where δ is the true dip. Thus,

          tan 30° = √2 tanδ

or, δ = tan − 1 √1/6.

36.7 NEUTRAL POINT

Suppose at a point, the horizontal component of
the magnetic field due to a magnet is equal and
opposite to the earth’s horizontal magnetic field. The
net horizontal field is zero at such a point. If a compass
needle is placed at such a point, it can stay in any
position. Such a point is called a neutral point.

36.8 TANGENT GALVANOMETER

Tangent galvanometer is an instrument to
measure an electric current. The essential parts are a
vertical circular coil C of conducting wire and a small
compass needle A pivoted at the centre of the coil
(figure 36.18). The coil C together with its frame is
fixed to a horizontal base B provided with levelling
screws. Terminals T1 and T2 connected to the coil are

provided on this base for connecting the galvanometer
to an external circuit. An aluminium pointer P is
rigidly attached with the compass needle and
perpendicular to it. The compass needle together with
the pointer can rotate freely about the vertical axis.
The ends of the pointer move over a graduated,
horizontal circular scale. The graduations are marked
from 0° to 90° in each quadrant. The scale, the pointer
and the compass needle are enclosed in a closed
cylindrical box which is placed with its centre
coinciding with the centre of the coil. The box can also
be rotated about the vertical axis. The upper surface
of the box is made of glass so that the things inside it
are visible. To avoid the errors due to parallax, a plane
mirror is fixed at the lower surface of the box. While
noting the reading of the pointer, the eye should be
properly positioned so that the image of the pointer is
just below the pointer.

When there is no current through the
galvanometer, the compass needle is in magnetic
north–south direction. To measure a current with the
tangent galvanometer, the base is rotated in such a
way that the plane of the coil is parallel to the compass
needle. The plane then coincides with the magnetic
meridian. The box containing the needle is rotated so
that the aluminium pointer reads 0°–0° on the scale.

The current to be measured is passed through the
coil. The current through the coil produces a magnetic
field at the centre and the compass needle deflects under
its action. The pointer deflects through the same angle
and the deflection of both the ends are read from the
horizontal scale. The average of these two is calculated.

Suppose the current through the coil is i. The
radius of the coil is r and the number of turns in it is
n. The magnetic field produced at the centre is

             B = 
µ0 in

2r
 ⋅ … (i)

This field is perpendicular to the plane of the coil.
This direction is horizontal and perpendicular to the
magnetic meridian and hence to the horizontal
component BH of the earth’s magnetic field. The

$�

�

!

%

/�

/ 

Figure 36.18

Permanent Magnets 263



resultant horizontal magnetic field is

            Br = √B 2 + BH
 2

in a direction making an angle θ with BH (figure 36.19)
where

tanθ = B/BH. … (ii)

If m be the pole strength of the needle, the force
on the north pole of the needle is mBr along Br and
on the south pole is mBr, opposite to Br. The needle
will stay in equilibrium when its length is parallel to
Br , because then no torque is produced by the two
forces. Thus, the deflection of the needle from its
original position is θ as given by (ii). Using (i) and (ii),

        BH tanθ = 
µ0 in

2r

or,        i = 
2r BH

µ0 n
 tanθ

   or, i = K tanθ, … (36.17)

where K = 
2r BH

µ0 n
 is a constant for the given

galvanometer at a given place. This constant is called
the reduction factor of the galvanometer. The reduction
factor may be obtained by passing a known current i
through the galvanometer, measuring θ and then using
(36.17).

Equation (i) is strictly valid only at the centre of
the coil. The poles of the needle are slightly away from
the centre. Thus, the length of the needle should be
small as compared to the radius of the coil.

Sensitivity

Good sensitivity means that the change in
deflection is large for a given fractional change in
current.

We have
            i = K tanθ

or, di = K sec 2θ dθ

or, 
di
i

 = 
K sec 2θ dθ

K tanθ
 = 

2 dθ
sin 2θ

or, dθ = 
1
2

 sin 2θ



di
i



.

Thus, for good sensitivity, sin 2θ should be as large

as possible. This is the case when θ = 45°. So, the
tangent galvanometer is most sensitive when the
deflection is around 45°.

Example 36.7

   A tangent galvanometer has 66 turns and the diameter
of its coil is 22 cm. It gives a deflection of 45° for 0.10 A
current. What is the value of the horizontal component
of the earth’s magnetic field ?

Solution : For a tangent galvanometer
        i = K tanθ

= 
2r BH

µ0 n
 tanθ

or,      BH = 
µ0 ni

2r tanθ

= 



4π × 10 − 7 

T m
A



 × 66 × (0.1 A)

(22 × 10 − 2 m) (tan 45°)
 

= 3.8 × 10 − 5 T.

36.9 MOVING-COIL GALVANOMETER

The main parts of a moving-coil galvanometer are
shown in figure (36.20). A rectangular coil of several
turns is wound over a soft-iron core. The wire of the
coil is coated with an insulating material so that each
turn is insulated from the other and from the iron core.
The coil is suspended between the two pole pieces of
a strong permanent magnet. A fine strip W of phosphor
bronze is used to suspend the coil. The upper end of
this strip is attached to a torsion head T. The lower
end of the coil is attached to a spring S also made of
phosphor bronze. A small mirror is fixed on the
suspension strip and is used to measure the deflection
of the coil with the help of a lamp–scale arrangement.
Terminals are connected to the suspension strip W and
the spring S. These terminals are used to pass current
through the galvanometer.

The current to be measured is passed through the

galvanometer. As the coil is in the magnetic field B
→

 of

the permanent magnet, a torque Γ
→

 = niA
→

 × B
→

 acts on

/
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the coil. Here n = number of turns, i = current in the

coil, A
→

 = area-vector of the coil and B
→

 = magnetic field
at the site of the coil. This torque deflects the coil from

its equilibrium position.
The pole pieces are made cylindrical. As a result,

the magnetic field at the arms of the coil remains
parallel to the plane of the coil everywhere even as
the coil rotates. The deflecting torque is then
Γ = niAB . As the upper end of the suspension strip W
is fixed, the strip gets twisted when the coil rotates.
This produces a restoring torque acting on the coil. If
the deflection of the coil is θ and the torsional constant
of the suspension strip is k, the restoring torque is
kθ. The coil will stay at a deflection θ where

           niAB = kθ

   or, i = 
k

nAB
 θ. … (36.18)

Hence, the current is proportional to the deflection.

The constant k
nAB

 is called the galvanometer constant

and may be found by passing a known current,
measuring the deflection θ and putting these values in
equation (36.18).

Sensitivity

The sensitivity of a moving-coil galvanometer is
defined as θ/i. From equation (36.18), the sensitivity

is nAB
k

 ⋅ For large sensitivity, the field B should be

large. The presence of soft-iron core increases the
magnetic field. We shall discuss in a later chapter how
soft iron increases magnetic field.

36.10 SHUNT

A galvanometer is usually a delicate and sensitive
instrument and only a small current is sufficient to
deflect the coil to its maximum allowed value. If a
current larger than this permissible value is passed
through the galvanometer, it may get damaged. A
small resistance Rs called shunt, is connected in
parallel with the galvanometer to save it from such
accidents. The main current i is divided in two parts,

ig through the galvanometer and remaining is = i − ig

through the shunt. If the resistance of the
galvanometer coil is Rg, we have

            ig = 
Rs

Rs + Rg
 i. … (36.19)

As Rs is much smaller than Rg, only a small
fraction goes through the galvanometer.

Example 36.8

   A galvanometer having a coil of resistance 20 Ω needs
20 mA current for full-scale deflection. In order to pass
a maximum current of 2 A through the galvanometer,
what resistance should be added as a shunt ?

Solution : Out of the main current of 2 A, only 20 mA
should go through the coil. The current through the coil
is

          ig = 
Rs

Rs + Rg
 i

or, 20 mA = 
Rs

Rs + (20 Ω)
 2 A

or, 
20 mA

2 A
 = 

Rs

Rs + (20 Ω)

or,      (10 − 2) (Rs + 20 Ω) = Rs

or, Rs = 
20
99

 Ω ≈ 0.2 Ω.

36.11 TANGENT LAW OF PERPENDICULAR FIELDS

When a compass needle is placed in the earth’s
magnetic field, it stays along the horizontal component
BH of the field. The magnetic forces mBH and –mBH on
the poles do not produce any torque in this case. If an
external horizontal magnetic field B is produced which
is perpendicular to BH, the needle deflects from its
position. The situation is the same as that shown in
figure (36.19). The resultant of B and BH is

           Br = √B 2 + BH
 2

making an angle θ with BH so that

           tanθ = 
B
BH

 ⋅ … (i)

The forces on the poles are mBr , −mBr which may
produce a torque and deflect the needle. The needle
can stay in a position parallel to the resultant
horizontal field Br . Thus, the deflection of the needle
in equilibrium is θ. Using (i), the external magnetic
field B may be written in terms of BH and θ as

B = BH tanθ. … (36.20)

This is known as the tangent law of perpendicular
fields.
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36.12 DEFLECTION MAGNETOMETER

A deflection magnetometer (figure 36.23) consists
of a small compass needle A pivoted at the centre of
a graduated circular scale. The graduations are
marked from 0° to 90° in each quadrant. An aluminium
pointer P is rigidly fixed with the needle and
perpendicular to it. The ends of the pointer move on
the circular scale. These are enclosed in a cylindrical
box known as the magnetometer box. The upper cover
of the box is made of glass so that the things inside
are visible. A plane mirror is fixed on the lower surface
so that the pointer may be read without parallax. This
arrangement is the same as that used in a tangent
galvanometer.

The magnetometer box is kept in a wooden frame
having two long arms. Metre scales are fitted on the
two arms. The reading of a scale at any point directly
gives the distance of that point from the centre of the
compass needle.

The basic use of a deflection magnetometer is to
determine M/BH for a permanent bar magnet. Here M
is the magnetic moment of the magnet and BH is the
horizontal component of the earth’s magnetic field.
This quantity M/BH can be measured in two standard
positions of the magnetometer. One is called Tan-A
position of Gauss and the other is called Tan-B position
of Gauss.

Tan-A Position

In this, the arms of the magnetometer are kept
along the magnetic east–west direction. The
aluminium pointer shows this direction when no extra
magnets or magnetic materials are present nearby.
The magnetometer box is rotated in its plane till the
pointer reads 0°–0°. The magnet is now kept on one
of the arms, parallel to its length (figure 36.24). The
needle deflects and the deflection θ in its equilibrium
position is read from the circular scale. The distance
of the centre of the magnet from the centre of the
compass is calculated from the linear scale on the arm.

Let d be this distance and 2l be the magnetic
length of the magnet. In Tan-A position of the
magnetometer, the compass needle is in end-on

position of the bar magnet. The magnetic field due to
the bar magnet at the site of the needle is, therefore,

         B = 
µ0

4π
 

2Md

(d 2 − l 2) 2
 ⋅

This field is along the length of the magnet, that
is, towards east or towards west. It is, therefore,
perpendicular to the earth’s field BH. From the tangent
law, we have,

       B = BH tanθ

or,      
µ0

4π
 

2Md

(d 2 − l 2) 2
 = BH tanθ

   or,      
M
BH

 = 
4π
µ0

 
(d 2 − l 2) 2

2d
 tanθ. … (36.21)

Knowing all the quantities on the right-hand side,
one gets M/BH.

Possible errors and their remedies

Errors may occur due to various reasons.
(a) The pivot of the needle may not be at the centre

of the circular scale (figure 36.25). To remove this error
both ends of the pointer are read and the mean is
taken.

(b) The magnetic centre of the bar magnet may
not coincide with its geometrical centre (figure 36.26).
The measured distance d is more or less than the
actual distance d1 of the centre of the needle from the
magnetic centre of the magnet. To remove the error
due to this, the magnet is rotated through 180° about
the vertical so that the positions of the north pole and
the south pole are interchanged. The deflections are
again noted with both ends of the pointer. These
readings correspond to the distance d2. The average of
the sets of deflections corresponding to the distances
d1 and d2 give the correct value approximately.

(c) The geometrical axis of the bar magnet may
not coincide with the magnetic axis (figure 36.27). To

���

� �

.�*

�* �*

.�*

0 -

�

�

Figure 36.24

.�*

�* �*

.�*

�$

Figure 36.23

Figure 36.25

� �

������

��

����� 

Figure 36.26

266 Concepts of Physics



avoid error due to this, the magnet is put upside down
at the same position and the readings are taken.

(d) The zero of the linear scale may not coincide
with the centre of the circular scale. To remove the
error due to this, the magnet is kept on the other arm
of the magnetometer at the same distance from the
needle and all the readings are repeated.

Thus, one gets sixteen values of θ for the same
distance d. The mean of these sixteen values gives the
correct value of θ.

Tan-B Position

In this position, the arms of the magnetometer are
kept in the magnetic north to south direction. The box
is rotated so that the pointer reads 0°–0°. The bar
magnet is placed on one of the arms symmetrically
and at right angles to it (figure 36.28). The distance d
of the centre of the magnet from the centre of the
compass needle is calculated from the linear scale. The
deflection θ of the needle is noted from the circular
scale. To remove the errors due to the reasons
described above, the deflections are read in various
situations mentioned below. Both ends of the pointer
are read. The magnet is put upside down and readings
are taken. The bar magnet is rotated through 180° to
interchange the positions of north and south poles and
again both ends of the pointer are read. The magnet
is again put upside down and readings are taken for
both ends of the pointer. The magnet is kept on the
other arm at the same distance and the corresponding
readings are taken. The mean of these sixteen values
gives correct θ for this d.

In tan-B position, the compass is in broadside-on
position of the magnet. The magnetic field at the
compass due to the magnet is, therefore,

          B = 
µ0

4π
 

M

(d 2 + l 2) 3/2 ⋅

The field is parallel to the axis of the magnet and
hence it is towards east or towards west. The earth’s
magnetic field is from south to north. Using tangent
law,

             B = BH tanθ

or,  
µ0

4π
 

M

(d 2 + l 2) 3/2 = BH tanθ

   or,     
M
BH

 = 
4π
µ0

 (d 2 + l 2) 3/2 tanθ. … (36.22)

Applications of a Deflection Magnetometer

A variety of quantities may be obtained from the
basic measurement of M/BH using a deflection
magnetometer. Here are some of the examples.

(a) Comparison of the magnetic moments
   M1 and M2 of two magnets

One can find M1/BH and M2/BH separately for the
two magnets and then get the ratio M1/M2. There is
another simple method known as null method to get
M1/M2. The experiment can be done either in Tan-A
position or in Tan-B position. The two magnets are
placed on the two arms of the magnetometer. The
distances of the magnets from the centre of the
magnetometer are so adjusted that the deflection of
the needle is zero. In this case, the magnetic field at
the needle due to the first magnet is equal in
magnitude to the field due to the other magnet. If the
magnetometer is used in Tan-A position,

     
µ0

4π
 

2 M1d1

(d1
 2 − l1

 2) 2
 = 

µ0

4π
 

2 M2 d2

(d2
 2 − l2

 2) 2
 

or, 
M1

M2
 = 

d2(d1
 2 − l1

 2) 2

d1(d2
 2 − l2

 2) 2
 ⋅

If the magnetometer is used in Tan-B position,
µ0

4π
 

M1

(d1
 2 + l1

 2) 3/2 = 
µ0

4π
 

M2

(d2
 2 + l2

 2) 3/2 

or, 
M1

M2
 = 

(d1
 2 + l1

 2) 3/2

(d2
 2 + l2

 2) 3/2 ⋅

Null method is easier and better than finding
M1/BH and M2/BH separately and then calculating
M1/M2. This is because, here the deflection remains
zero and the possible errors in the measurement of θ
do not occur. Also, it is more sensitive, because even
a small deflection from 0°–0° gives the indication that
the adjustment is not perfect.

� �

���

�� ��

���

� �

�

�

Figure 36.28

�

� �

�

Figure 36.27

Permanent Magnets 267



(b) Verification of inverse square law for
   magnetic field due to a magnetic pole

Equations (36.21) and (36.22) for M/BH are deduced
from the basic equation (36.2) giving the magnetic field
due to a magnetic pole. Equation (36.2) shows that the
magnetic field due to a magnetic pole is inversely
proportional to the square of the distance. Thus, if we
verify equation (36.21) or (36.22), inverse square law
is verified.

For Tan-A position, from equation (36.21),

        cotθ = 
4π
µ0

 
BH

M
 
(d 2 − l 2) 2

2d
 ⋅ … (i)

A magnet is placed at a distance d in Tan-A
position of the magnetometer and the corresponding
value of deflection θ is noted. The experiment is
repeated for different values of d and a graph between

cotθ and (d 
2
 − l 

2
) 

2

2d
 is plotted. The graph turns out to be

a straight line passing through the origin (figure
36.29a). This is consistent with equation (i) above and
hence the inverse square law is verified.

One can also do the experiment in Tan-B position.
The deflection θ and the distance d are related through
equation (36.22). We have,

       cotθ = 
4π
µ0

 
BH

M
 (d 2 + l 2) 3/2. … (ii)

The values of deflection θ are noted for different
values of the distance d. A graph is drawn between
cotθ and (d 2 + l 2) 3/2. The graph turns out to be a
straight line passing through the origin (figure 36.29b).
This verifies the inverse square law.

(c) Comparison of the horizontal components of
   the earth’s magnetic field at two places

Suppose the horizontal component of the earth’s
magnetic field is BH1 at the first place and BH2 at the
second. A deflection magnetometer is taken and a bar
magnet is kept at a distance d in Tan-A position. The
deflection θ1 of the needle is noted. The magnetometer
is now taken to the second place and the same magnet
is kept at the same distance d in Tan-A position. The
deflection θ2 is noted. We have from equation (36.21),

          
M

BH1
 = 

4π
µ0

 
(d 2 − l 2) 2

2d
 tanθ1

and      
M

BH2
 = 

4π
µ0

 
(d 2 − l 2) 2

2d
 tanθ2.

   Thus, 
BH1

BH2
 = 

tanθ2

tanθ1
 ⋅

The experiment can also be done in Tan-B position.
Using equation (36.22), we again get the same relation

for 
BH1

BH2
 ⋅

36.13 OSCILLATION MAGNETOMETER

The design of an oscillation magnetometer is
shown in figure (36.30). It consists of a rectangular
wooden box having glass walls at the sides and at the
top. Three of the walls are fixed and the fourth may
be slid in and out. This is used to close or open the
box. A plane mirror is fixed on the inner surface of the
bottom of the box. A line parallel to the length of the
box is drawn on the mirror in the middle. This is
known as the reference line. There are levelling screws
at the bottom on which the box rests. A vertical
cylindrical glass tube T, having a torsion head H at
its top, is fitted to the top plate of the box. A hanger
A is suspended in the box through an unspun silk
thread. The upper end of the thread is attached to the
torsion head.

Measuring MBH for a Bar Magnet

The basic use of an oscillation magnetometer is to
measure MBH for a bar magnet. To start with, the
instrument is made horizontal with the help of a spirit
level and the levelling screws. A compass needle is
placed on the reference line and the box is rotated to
make the reference line parallel to the needle. The
reference line is now in the magnetic meridian. The
needle is removed. A nonmagnetic heavy piece
(generally made of brass) is put on the hanger. Due to
the twist in the thread, the bar rotates and finally
stays in equilibrium when the twist is removed. With
the help of the torsion head, the bar is made parallel
to the reference line in equilibrium.
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The magnet is now gently placed in the hanger
after removing the heavy piece. The north pole should
be towards the north. The magnet is set into angular
oscillation about the thread by giving it a slight
angular deflection. This may be done by bringing
another magnet close to the box and then removing it.
The time period of oscillation is obtained by measuring
the time required for, say 20 oscillations. To measure
the time period accurately, one should look at the
magnet through the top glass cover of the box. The eye
should be positioned in such a way that the image of
the magnet in the bottom mirror should be just below
the magnet. Oscillations are counted as the magnet
crosses the reference line. The box is kept closed at
the time of oscillations, so that air currents do not
disturb the oscillations.

Expression for time period

Figure (36.31) shows the position of the magnet
when it is deflected through an angle θ from the mean
position during its oscillation. The magnetic field in
the horizontal direction is BH from south to north. If
m be the pole strength, the force on the north pole is
mBH towards north and on the south pole it is mBH

towards south. The length of the magnet is 2l.

The torque of each of the two forces about the
vertical axis is mBH l sinθ and it tries to bring the
magnet towards the equilibrium position. The net
torque about the vertical axis is

         Γ = −2 mBH l sinθ

 = −MBH sinθ. … (i)

We neglect the torque due to the small twist
produced in the thread as the magnet rotates. If the
angular amplitude of oscillations is small, sinθ ≈ θ and
equation (i) becomes

 Γ = − MBH θ.

Also, Γ = Iα

where I is the moment of inertia of the magnet about
the vertical axis and α is the angular acceleration.
Thus,

        α = 
Γ
I

 = − 
MBH

I
 θ

   or, α = −ω 2θ

where ω = √MBH

I
⋅ This is an equation of angular

simple harmonic motion. The time period is

         T = 
2π
ω

 = 2π √IMBH
 ⋅ … (36.23)

Calculation of MBH

   From equation (36.23), MBH = 
4π 2I

T 2
 ⋅ … (36.24)

For a magnet of rectangular cross section, the
moment of inertia about the axis of rotation is

          I = 
W(a 2 + b 2)

12
where a is the geometrical length, b is the breadth and
W is the mass of the magnet. Measuring these
quantities and the time period, MBH can be obtained
from equation (36.24).

Example 36.9

   A compass needle oscillates 20 times per minute at a
place where the dip is 45° and 30 times per minute where
the dip is 30°. Compare the total magnetic field due to
the earth at the two places.

Solution : The time period of oscillation is given by

         T = 2π √I
MBH

⋅

The time period at the first place is T1 = 1/20 minute
= 3.0 s and at the second place it is T2 = 1/30 minute
= 2.0 s.

If the total magnetic field at the first place is B1, the
horizontal component of the field is 

       BH1 = B1 cos 45° = B1/√2.

Similarly, if the total magnetic field at the second place
is B2, the horizontal component is

BH2 = B2 cos 30° = B2 √3/2.

We have,

     T1 = 2π √IMBH1

  and  T2 = 2π √IMBH2

⋅

Thus,

T1

T2

 = √BH2

BH1

    or,    
BH2

BH1

 = 
T1

 2

T2
 2 

or,          
B2 √3/2
B1/√2

 = 
T1

 2

T2
 2 

or, 
B2

B1

 = √ 2
3

 
T1

 2

T2
 2 = √ 2

3
 × 

9
4

 = 1.83.

Once we know how to measure MBH, we can easily
compare magnetic moments M1 and M2 by measuring

�

�

� 
�

�

�!

�!

1

1

Figure 36.31

Permanent Magnets 269



M1BH and M2BH. Similarly, we can compare the
horizontal components of the earth’s magnetic field at
two places.

36.14 DETERMINATION OF M AND BH

The magnetic moment of a bar magnet can be
obtained by measuring M/BH using a deflection
magnetometer and MBH using an oscillation
magnetometer. If 

      M/BH = X  and  MBH = Y,

we have

         M = √



M
BH




 (MBH)  = √XY .

One can also determine the horizontal component
BH of earth’s magnetic field at any place. Using any
magnet one can find M/BH and MBH as above.

We have,

    BH = √MBH

M/BH
 = √Y

X
⋅

If M/BH is measured in Tan-A position, 

   X = 
M
BH

 = 
4π
µ0

 
(d 2 − l 2) 2

2d
 tanθ

and Y = MBH = 
4π 2I

T 2
 ⋅

Then   M = √XY  = 
2π(d 2 − l 2)

T
 √4π

µ0
 
I tanθ

2d

and BH = √Y
X

 = 
2π

T(d 2 − l 2)
 √µ0

4π
 

2Id
tanθ

⋅

We can also measure M/BH and MBH in Tan-B
position and get M and BH as above.

36.15 GAUSS’S LAW FOR MAGNETISM

From Coulomb’s law

              E = 
q

4πε0r 2
 ,

we can derive the Gauss’s law for electric field, i.e.,

           ∫O  E
→
⋅dS
→

 = 
qinside

ε0

where ∫O  E
→
⋅dS
→

 is the electric flux and qinside is the “net

charge” enclosed by the closed surface.
Similarly, from the equation

B = 
µ0

4π
 
m

r 
2

we can derive Gauss’s law for magnetism as 

∫O  B
→
⋅dS
→

 = µ0 minside,

where ∫O  B
→
⋅dS
→

 is the magnetic flux and minside is the

“net pole strength” inside the closed surface. However,
there is an additional feature for the magnetic case.
We do not have an isolated magnetic pole in nature.
At least none has been found to exist till date. The
smallest unit of the source of magnetic field is a
magnetic dipole where the “net magnetic pole” is zero.
Hence, the net magnetic pole enclosed by any closed
surface is always zero. Correspondingly, the flux of the
magnetic field through any closed surface is zero.
Gauss’s law for magnetism, therefore, states that

             ∫O  B
→
⋅dS
→

 = 0. … (36.25)

Figure (36.32a) shows the electric field lines
through a closed surface which encloses one charge of
an electric dipole. Figure (36.32b) shows the magnetic
field lines through a closed surface which encloses one
end of a bar magnet. One can see that the electric field
lines only go out of the surface, giving a nonzero flux.
On the other hand, the number of magnetic field lines
going out of the surface is equal to the number going
into it. The magnetic flux is positive at some places
on the surface and is negative at others giving the
total flux equal to zero.

Worked Out Examples

 1. A bar magnet has a pole strength of 3.6 A m and
magnetic length 8 cm. Find the magnetic field at (a) a
point on the axis at a distance of 6 cm from the centre
towards the north pole and (b) a point on the
perpendicular bisector at the same distance.

Solution : 
(a) The point in question is in end-on position, so the
magnetic field is,

            B = 
µ0

4π
 

2Md
(d 2 − l 2) 2 

��� ���
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    10  7 
T m

A
  

2  3.6 A m  0.08 m  0.06 m
[0.06 m 2  0.04 m 2] 2  

 8.6  10  4 T.

The field will be away from the magnet.

(b) In this case the point is in broadside-on position so
that the field is

    B  
0

4
 M
d 2  l 2 3/2 

 10  7 
T m
A

  
3.6 A m  0.08 m

[0.06 m 2  0.04 m 2] 3/2 

 7.7  10  5 T.

The field will be parallel to the magnet.

 2. A magnet is suspended by a vertical string attached to
its middle point. Find the position in which the magnet
can stay in equilibrium. The horizontal component of the
earth’s magnetic field  25T and its vertical component
 40T. Assume that the string makes contact with the
magnet only at a single point.

Solution : The magnetic field of earth is in the north–
south plane (magnetic meridian) making an angle  with
the horizontal such that

           tan  
BV

BH

  
40
25

or,   58.
As the tension and the force of gravity act through the
centre, their torque about the centre is zero. To make
the net torque acting on the magnet zero, it must stay
in the direction of the resultant magnetic field. Hence,
it stays in the magnetic meridian making an angle of
58 with the horizontal.

 3. A magnetic needle having magnetic moment 10 A m 2 and
length 2.0 cm is clamped at its centre in such a way that
it can rotate in the vertical east–west plane. A horizontal
force towards east is applied at the north pole to keep
the needle fixed at an angle of 30 with the vertical. Find
the magnitude of the applied force. The vertical
component of the earth’s magnetic field is 40T.

Solution :

The situation is shown in figure (36-W1). As the needle
is in equilibrium, the torque of all the forces about the
centre should be zero. As the needle can rotate in the
vertical east–west plane, the horizontal component of

earth’s magnetic field is ineffective. This gives,
    mBV l sin 30  mBV l sin 30  Fl cos 30

or,      F  2 mBV tan 30

 2 
M
2l

 BV tan 30

 
10 Am 2 40  10  6 T

1.0  10  2 m 3

 2.3  10  2 N.

 4. The magnetic scalar potential due to a magnetic dipole
at a point on its axis situated at a distance of 20 cm
from its centre is found to be 1.2  10 – 5 T m. Find the
magnetic moment of the dipole.

Solution : The magnetic potential due to a dipole is

                V  
0

4
 
M cos

r 2  

or,    1.2  10  5 T m  

10  7 

T m
A




 

M
0.2 m 2 

or, M  4.8 A m 2.

 5. A bar magnet of magnetic moment 2.0 A m 2 is free to
rotate about a vertical axis through its centre. The
magnet is released from rest from the east–west position.
Find the kinetic energy of the magnet as it takes the
north–south position. The horizontal component of the
earth’s magnetic field is B  25T.

Solution : The magnetic potential energy of the dipole in
a uniform magnetic field is given by U   MB cos. As
the earth’s magnetic field is from south to north, the
initial value of  is /2 and final value of  is 0. Thus,
the decrease in magnetic potential energy during the
rotation is
     Ui  Uf   MB cos /2  MB cos 0

        2.0 A m 2  25 T  50 J.

Thus, the kinetic energy in the north–south position is
50J.

 6. Figure (36-W2a) shows two identical magnetic dipoles a
and b of magnetic moments M each, placed at a
separation d, with their axes perpendicular to each other.
Find the magnetic field at the point P midway between
the dipoles.

Solution : The point P is in end-on position for the dipole
a and in broadside-on position for the dipole b. The

magnetic field at P due to a is Ba  
0

4 
2M

d/2 3
 along the

mB

30°

S

F
N

mB

v

v

Figure 36-W1
Figure 36-W2
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axis of a, and that due to b is Bb  
0

4 
M

d/2 3
 parallel to

the axis of b as shown in figure (36-W2b). The resultant
field at P is, therefore,

         B  Ba
 2  Bb

 2

 
0 M

4d/2 3 1 2  2 2  

 
25 0 M

d 3   

The direction of this field makes an angle  with Ba

such that tan  Bb/Ba  1/2.

 7. A bar magnet of length 8 cm and having a pole strength
of 1.0 A m is placed vertically on a horizontal table with
its south pole on the table. A neutral point is found on
the table at a distance of 6.0 cm north of the magnet.
Calculate the earth’s horizontal magnetic field.

Solution :

The situation is shown in figure (36-W3). The magnetic
field at P due to the south pole is

Bs  
0

4
 m
d 2 

towards south and that due to the north pole is

        Bn  
0

4
 

m
d 2  4l 2

 

along NP. The horizontal component of this field will be
towards north and will have the magnitude

 
0

4
 

m
d 2  4l 2

  d
d 2  4l 2 1/2 

The resultant horizontal field due to the magnet is,
therefore,

         
0

4
 
m
d 2

  
0

4
 

md
d 2  4l 2 3/2 

towards south. As P is a neutral point, this field should
be equal in magnitude to the earth’s magnetic field BH

which is towards north. Thus,

  BH  
0 m
4

 


1
d 2  

d
d 2  4l 2 3/2





 
0 m
4

 


1
36 cm 2  

6 cm
36 cm 2  64 cm 2 3/2





   10  7 T m A 1  1.0 A m  


1
36 cm 2  

6
1000 cm 2





 10  7 T m 2 [0.028  0.006]  10 4 m  2

     22  10  6 T  22 T.

 8. The magnetic field at a point on the magnetic equator is
found to be 3.1  10 – 5 T. Taking the earth’s radius to
be 6400 km, calculate the magnetic moment of the
assumed dipole at the earth’s centre.

Solution :

A point on the magnetic equator is in broadside-on
position of the earth’s assumed dipole (figure 36-W4).
The field is, therefore,

    B  
0

4
 
M
R 3 

or, M  
4
0

 BR 3

 10 7 A m 1 T 1  3.1  10  5 T  6400  10 3 3 m 3

 8.1  10 22 A m 2.

 9. The earth’s magnetic field at geomagnetic poles has a
magnitude 6.2  10 – 5 T. Find the magnitude and the
direction of the field at a point on the earth’s surface
where the radius makes an angle of 135 with the axis
of the earth’s assumed magnetic dipole. What is the
inclination (dip) at this point ?

Solution :

Assuming the earth’s field to be due to a dipole at the
centre, geomagnetic poles are in end-on position (figure
36-W5).

The magnetic field B at geomagnetic poles is

             Bp  
0

4
 
2M
R 3  

The magnetic field due to a dipole at a distance R away
from its centre has a magnitude

   B  
0

4
 M
R 3

1  3 cos 2 1/2  
1
2

 Bp1  3 cos 2 1/2.

This field is in a direction making an angle  with the
radial direction such that tan  (tan)/2, as shown in

Figure 36-W3
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the figure. At the point given, θ = 135° and thus the
field B is

         B = 
Bp

2
 (1 + 3 cos 2 135°) 1/2

= 
1
2

 × 6.2 × 10 − 5 T × 1.58 

= 4.9 × 10 − 5 T.

The angle α of this field with the vertical is given by

      tanα = 
tanθ

2
 = 

tan 135°
2

 = − 0.5

giving α = 153°.
The inclination (dip) is the angle made by the earth’s
magnetic field with the horizontal plane. Here it is
153° − 90° = 63° below the horizontal.

10. A magnetic needle free to rotate in a fixed vertical plane
stays in a direction making an angle of 60° with the
horizontal. If the dip at that place is 37°, find the angle
of the fixed vertical plane with the meridian.

Solution : If the vertical plane makes an angle θ with the
meridian, the horizontal component of the earth’s field
in that plane will be BH cosθ. Thus the apparent dip δ1,
i.e., the angle between the needle in equilibrium and the
horizontal will be given by

        tanδ1 = 
BV

BH cosθ
 = 

tanδ
cosθ

or,       cosθ = 
tanδ
tanδ1

= 
tan 37°
tan 60°

 = 
3

4√3
 = 

√3
4

or, θ = 64°.

11. A dip circle shows an apparent dip of 60° at a place
where the true dip is 45°. If the dip circle is rotated
through 90°, what apparent dip will it show ?

Solution : If δ1 and δ2 be the apparent dips shown by the
dip circle in the two perpendicular positions, the true
dip δ is given by

      cot 2δ = cot 2δ1 + cot 2δ2

or, cot 2 45° = cot 2 60° + cot 2δ2

or, cot 2δ2 = 2/3

or, cot δ2 = 0.816  giving  δ2 = 51°.

12. A magnetic needle of length 10 cm, suspended at its
middle point through a thread, stays at an angle of 45°
with the horizontal. The horizontal component of the
earth’s magnetic field is 18 µT. (a) Find the vertical
component of this field. (b) If the pole strength of the
needle is 1.6 A–m, what vertical force should be applied
to an end so as to keep it in horizontal position?

Solution :

(a)

Without the applied force, the needle will stay in the
direction of the resultant magnetic field of the earth.
Thus, the dip δ at the place is 45°. From figure (36-W6a),

          tan 45° = BV /BH

or, BV = BH = 18 µT.

(b) When the force F is applied (figure 36-W6b), the
needle stays in horizontal position. Taking torque about
the centre of the magnet,

     2mBV × l = F × l

or,         F = 2mBV

= 2 × (1.6 A m) × (18 × 10 − 6 T)

= 5.8 × 10 − 5 N.

13. A tangent galvanometer has a coil of 50 turns and a
radius of 20 cm. The horizontal component of the earth’s
magnetic field is BH = 3 × 10 – 5 T. Find the current which
gives a deflection of 45°.

Solution : We have

     i = K tanθ = 
2rBH

µ0 n
 tanθ

= 
2 × (0.20 m) × (3 × 10 − 5 T)

4π × 10 − 7 T m A −1 × 50
 tan 45° = 0.19 A.

14. A moving-coil galvanometer has 100 turns and each turn
has an area 2.0 cm 2. The magnetic field produced by the
magnet is 0.01 T. The deflection in the coil is 0.05 radian
when a current of 10 mA is passed through it. Find the
torsional constant of the suspension wire.

Solution : We have 

     i = 
K

nAB
 θ

or, K = 
inAB

θ

= 
(10 × 10 − 3 A) × 100 × (2.0 × 10 − 4 m 2) × 0.01 T

0.05 rad

= 4.0 × 10 − 5 N m rad −1.

15. A galvanometer coil has a resistance of 100 Ω. When a
current passes through the galvanometer, 1% of the
current goes through the coil and the rest through the
shunt. Find the resistance of the shunt.

B
B

B

v

45°
H

(a)

mB
S N

H

vmB

mBv
F

mBH

(b)

Figure 36-W6
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Solution : 

The situation is shown in figure (36-W7). As the
potential differences across the 100  coil and across the
shunt Rs are the same,

         0.01 i  100   0.99 i  Rs

or,       Rs  
0.01  100

0.99
   

100
99

  

16. The needle of a deflection magnetometer deflects through
45 from north to south when the instrument is used in
Tan-A position with a magnet of length 10 cm placed at
a distance of 25 cm. (a) Find the magnetic moment of
the magnet if the earth’s horizontal magnetic field is
20T. (b) If the magnetometer is used in Tan-B position
with the same magnet at the same separation from the
needle, what will be the deflection ?

Solution : (a) In Tan-A position, the needle is in end-on
position of the magnet so that the field at the needle
due to the magnet is

               B  
0

4
 

2Md
d 2  l 2 2 

Thus,    
0

4
 

2Md
d 2  l 2 2  BH tan

or, M  
4
0

 
BH tand 2  l 2 2

2d

   107 A m1 T1  
20  10 6 T  1  625  252  10 8 m4

2  25  10 2 m
 

   1.44 A m 2.

(b) In Tan-B position, the needle is in broadside-on
position of the manget, so that

      B  
0

4
 

M
d 2  l 2 3/2  BH tan

or, tan  
10  7 T m A 1  1.44 A m 2

625  25 3/2  10  6 m 3  20  10  6 T
 

 0.43

or,   23.5.

17. Figure (36-W8) shows a short magnet executing small
oscillations in an oscillation magnetometer in earth’s
magnetic field having horizontal component 24T. The
time period of oscillation is 0.10 s. An upward electric
current of 18 A is established in the vertical wire placed
20 cm east of the magnet by closing the switch S. Find
the new time period.

Solution : The magnetic field at the site of the short
magnet due to the vertical current is

      B  
0 i
2d

  2  10  7 T m A 1 18 A
0.20 m

 18 T.

As the wire is east of the magnet, this magnetic field
will be from north to south according to the right-hand
thumb rule. The earth’s magnetic field has horizontal
component 24T from south to north. Thus, the
resultant field will be 6.0T from south to north. If T1

and T2 be the time periods without and with the current,

       T1  I
MBH

  and  T2  IMBH  B

or, 
T2

T1

  BH

BH  B
  24 T

6 T
  2

or, T2  2T1  0.20 s.

18. The frequency of oscillation of the magnet in an oscillation
magnetometer in the earth’s magnetic field is 40 oscillations
per minute. A short bar magnet is placed to the north of
the magnetometer, at a separation of 20 cm from the
oscillating magnet, with its north pole pointing towards
north (figure 36-W9). The frequency of oscillation is found
to increase to 60 oscillations per minute. Calculate the
magnetic moment of this short bar magnet. Horizontal
component of the earth’s magnetic field is 24 T.

Solution : Let the magnetic field due to the short
magnet have magnitude B at the site of the oscillating
magnet. From the figure, this magnetic field will be
towards north and hence the resultant horizontal field
will be BH  B. Let M and M denote the magnetic
moments of the oscillating magnet and the other magnet
respectively. If  and  be the frequencies without and
with the other magnet, we have

             
1
2

 MBH

I
  and

100

G

Rs

Figure 36-W7
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        ν′ = 
1
2π

 √M(BH + B)
I

 

or, 
ν′ 2

ν 2  = 
BH + B

BH

 

or, 



60
40





 2

 = 1 + 
B
BH

or, 
B
BH

 = 1.25

or, B = 1.25 × 24 µT = 30 × 10 − 6 T.

The oscillating magnet is in end-on position of the short
magnet. Thus, the field B can be written as

    B = 
µ0

4π
 
2M′
d 3  

or, M′ = 
2π
µ0

 Bd 3

    = 0.5 × 107 A m−1 T−1 × (30 × 10− 6 T) × (20 × 10− 2 m)3

    = 1.2 A m 2.

19. A bar magnet of mass 100 g, length 7.0 cm, width 1.0 cm
and height 0.50 cm takes π/2 seconds to complete an
oscillation in an oscillation magnetometer placed in a
horizontal magnetic field of 25 µT. (a) Find the magnetic
moment of the magnet. (b) If the magnet is put in the
magnetometer with its 0.50 cm edge horizontal, what
would be the time period ?

Solution : (a) The moment of inertia of the magnet about
the axis of rotation is

     I = 
m′
12

 (L 2 + b 2)

     = 
100 × 10 − 3

12
 [(7 × 10 − 2) 2 + (1 × 10 − 2) 2] kg m 2

= 
25
6

 × 10 − 5 kg m 2.

We have,

       T = 2π √I
MB

… (i)

or, M = 
4π 2I

BT 2  = 
4π 2 × 25 × 10 − 5 kg m 2

6 × (25 × 10 − 6 T) × 
π 2

4
 s 2

 

     ≈ 27 A m 
2
.

(b) In this case the moment of inertia becomes

    I′ = 
m′
12

 (L 2 + b′ 2)  where  b′ = 0.5 cm.

The time period would be

        T ′ = √I′
MB

⋅ … (ii)

Dividing by equation (i),

T ′
T

 = √ I′
I

 

= 
√m′

12
 (L 2 + b′ 2)

√m′
12

 (L 2 + b 2)

 = 
√(7 cm) 2 + (0.5 cm) 2

√(7 cm) 2 + (1.0 cm) 2

= 0.992

or, T ′ = 
0.992 × π

2
 s = 0.496π s.

QUESTIONS FOR SHORT ANSWER

 1. Can we have a single north pole, or a single south pole?

 2. Do two distinct poles actually exist at two nearby points
in a magnetic dipole ?

 3. An iron needle is attracted to the ends of a bar magnet
but not to the middle region of the magnet. Is the
material making up the ends of a bar magnet different
from that of the middle region ?

 4. Compare the direction of the magnetic field inside a
solenoid with that of the field there if the solenoid is
replaced by its equivalent combination of north pole and
south pole.

 5. Sketch the magnetic field lines for a current-carrying
circular loop near its centre. Replace the loop by an
equivalent magnetic dipole and sketch the magnetic field
lines near the centre of the dipole. Identify the
difference.

 6. The force on a north pole, F
→

 = mB
→

, is parallel to the field

B
→

. Does it contradict our earlier knowledge that a
magnetic field can exert forces only perpendicular to
itself ?

 7. Two bar magnets are placed close to each other with their
opposite poles facing each other. In absence of other forces,
the magnets are pulled towards each other and their
kinetic energy increases. Does it contradict our earlier
knowledge that magnetic forces cannot do any work and
hence cannot increase kinetic energy of a system ?

 8. Magnetic scalar potential is defined as

           U(r
→

2) − U(r
→

1) = − ∫ 
r
→
1

r
→
2

 B
→

⋅dl
→
.

Apply this equation to a closed curve enclosing a long
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straight wire. The RHS of the above equation is then

– µ0 i by Ampere’s law. We see that U(r
→

2) ≠ U(r
→

1) even

when r
→

2 = r
→

1. Can we have a magnetic scalar potential in
this case ?

 9. Can the earth’s magnetic field be vertical at a place ?
What will happen to a freely suspended magnet at such
a place ? What is the value of dip here ?

10. Can the dip at a place be (a) zero (b) 90° ?

11. The reduction factor K of a tangent galvanometer is
written on the instrument. The manual says that the
current is obtained by multiplying this factor to tanθ.
The procedure works well at Bhuwaneshwar. Will the
procedure work if the instrument is taken to Nepal ? If
there is some error, can it be corrected by correcting the
manual or the instrument will have to be taken back to
the factory ?

OBJECTIVE I

 1. A circular loop carrying a current is replaced by an
equivalent magnetic dipole. A point on the axis of the
loop is in
(a) end-on position      (b) broadside-on position
(c) both             (d) none.

 2. A circular loop carrying a current is replaced by an
equivalent magnetic dipole. A point on the loop is in
(a) end-on position      (b) broadside-on position
(c) both              (d) none.

 3. When a current in a circular loop is equivalently
replaced by a magnetic dipole,
(a) the pole strength m of each pole is fixed
(b) the distance d between the poles is fixed
(c) the product md is fixed
(d) none of the above.

 4. Let r be the distance of a  point on the axis of a bar
magnet from its centre. The magnetic field at such a
point is proportional to

(a) 
1
r

     (b) 
1
r 2     (c) 

1
r 3      (d) none of these.

 5. Let r be the distance of a point on the axis of a magnetic
dipole from its centre. The magnetic field at such a point
is proportional to

   (a) 
1
r

     (b) 
1
r 2     (c) 

1
r 3      (d) none of these.

 6. Two short magnets of equal dipole moments M are
fastened perpendicuarly at their centres (figure 36-Q1).
The magnitude of the magnetic field at a distance d from
the centre on the bisector of the right angle is

(a) 
µ0

4π
 
M
d 3   (b) 

µ0

4π
 
√2M

d 3    (c) 
µ0

4π
 
2 √2M

d 3    (d) 
µ0

4π
 
2M
d 3  ⋅

 7. Magnetic meridian is
(a) a point           (b) a line along north–south
(c) a horizontal plane    (d) a vertical plane.

 8. A compass needle which is allowed to move in a
horizontal plane is taken to a geomagnetic pole. It
(a) will stay in north–south direction only
(b) will stay in east–west direction only
(c) will become rigid showing no movement
(d) will stay in any position.

 9. A dip circle is taken to geomagnetic equator. The needle
is allowed to move in a vertical plane perpendicular to
the magnetic meridian. The needle will stay
(a) in horizontal direction only
(b) in vertical direction only
(c) in any direction except vertical and horizontal
(d) in any direction it is released.

10. Which of the following four graphs may best represent the
current–deflection relation in a tangent galvanometer ?

11. A tangent galvanometer is connected directly to an ideal
battery. If the number of turns in the coil is doubled,
the deflection will
(a) increase         (b) decrease
(c) remain unchanged  (d) either increase or decrease.

12. If the current is doubled, the deflection is also doubled
in
(a) a tangent galvanometer
(b) a moving-coil galvanometer
(c) both            (d) none.

13. A very long bar magnet is placed with its north pole
coinciding with the centre of a circular loop carrying an
electric current i. The magnetic field due to the magnet
at a point on the periphery of the wire is B. The radius
of the loop is a. The force on the wire is
(a) very nearly 2πaiB perpendicular to the plane of
       the wire
(b) 2πaiB in the plane of the wire
(c) πaiB along the magnet       (d) zero.
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OBJECTIVE II

 1. Pick the correct options.
(a) Magnetic field is produced by electric charges only.
(b) Magnetic poles are only mathematical assumptions
       having no real existence.
(c) A north pole is equivalent to a clockwise current and
       a south pole is equivalent to an anticlockwise current.
(d) A bar magnet is equivalent to a long, straight
       current.

 2. A horizontal circular loop carries a current that looks
clockwise when viewed from above. It is replaced by an
equivalent magnetic dipole consisting of a south pole S
and a north pole N.
(a) The line SN should be along a diameter of the loop.
(b) The line SN should be perpendicular to the plane of
       the loop.
(c) The south pole should be below the loop.
(d) The north pole should be below the loop.

 3. Consider a magnetic dipole kept in the north to south
direction. Let P1, P2, Q1, Q2 be four points at the same

distance from the dipole towards north, south, east and
west of the dipole respectively. The directions of the
magnetic field due to the dipole are the same at
(a) P1 and P2         (b) Q1 and Q2

(c) P1 and Q1         (d) P2 and Q2..

 4. Consider the situation of the previous problem. The
directions of the magnetic field due to the dipole are
opposite at
(a) P1 and P2          (b) Q1 and Q2

(c) P1 and Q1          (d) P2 and Q2.

 5. To measure the magnetic moment of a bar magnet, one
may use
(a) a tangent galvanometer
(b) a deflection galvanometer if the earth’s horizontal
       field is known
(c) an oscillation magnetometer if the earth’s horizontal
       field is known
(d) both deflection and oscillation magnetometer if the
       earth’s horizontal field is not known.

EXERCISES

 1. A long bar magnet has a pole strength of 10 Am. Find
the magnetic field at a point on the axis of the magnet
at a distance of 5 cm from the north pole of the magnet.

 2. Two long bar magnets are placed with their axes
coinciding in such a way that the north pole of the first
magnet is 2.0 cm from the south pole of the second. If
both the magnets have a pole strength of 10 Am, find
the force exerted by one magnet on the other.

 3. A uniform magnetic field of 0.20 × 10 – 3 T exists in the
space. Find the change in the magnetic scalar potential
as one moves through 50 cm along the field.

 4. Figure (36-E1) shows some of the equipotential surfaces
of the magnetic scalar potential. Find the magnetic field
B at a point in the region.

 5. The magnetic field at a point, 10 cm away from a
magnetic dipole, is found to be 2.0 × 10 – 4 T. Find the
magnetic moment of the dipole if the point is (a) in
end-on position of the dipole and (b) in broadside-on
position of the dipole.

 6. Show that the magnetic field at a point due to a
magnetic dipole is perpendicular to the magnetic axis if
the line joining the point with the centre of the dipole
makes an angle of tan – 1(√2) with the magnetic axis.

 7. A bar magnet has a length of 8 cm. The magnetic field
at a point at a distance 3 cm from the centre in the

broadside-on position is found to be 4 × 10 – 6 T. Find
the pole strength of the magnet.

 8. A magnetic dipole of magnetic moment 1.44 A m 2 is
placed horizontally with the north pole pointing towards
north. Find the position of the neutral point if the
horizontal component of the earth’s magnetic field is
18 µT.

 9. A magnetic dipole of magnetic moment 0.72 A m 2 is
placed horizontally with the north pole pointing towards
south. Find the position of the neutral point if the
horizontal component of the earth’s magnetic field is
18 µT.

10. A magnetic dipole of magnetic moment 0.72√2 A m 2 is
placed horizontally with the north pole pointing towards
east. Find the position of the neutral point if the
horizontal component of the earth’s magnetic field is
18 µT.

11. The magnetic moment of the assumed dipole at the
earth’s centre is 8.0 × 10 22 A m 2. Calculate the magnetic
field B at the geomagnetic poles of the earth. Radius of
the earth is 6400 km.

12. If the earth’s magnetic field has a magnitude
3.4 × 10 – 5 T at the magnetic equator of the  earth,
what would be its value at the earth’s geomagnetic
poles ?

13. The magnetic field due to the earth has a horizontal
component of 26 µT at a place where the dip is 60°. Find
the vertical component and the magnitude of the field. 

14. A magnetic needle is free to rotate in a vertical plane
which makes an angle of 60° with the magnetic
meridian. If the needle stays in a direction making an
angle of tan – 1(2/√3) with the horizontal, what would be
the dip at that place ?
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15. The needle of a dip circle shows an apparent dip of 45°
in a particular position and 53° when the circle is rotated
through 90°. Find the true dip.

16. A tangent galvanometer shows a deflection of 45° when
10 mA of current is passed through it. If the horizontal
component of the earth’s magnetic field is
BH = 3.6 × 10 – 5 T and radius of the coil is 10 cm, find
the number of turns in the coil.

17. A moving-coil galvanometer has a 50-turn coil of size
2 cm × 2 cm. It is suspended between the magnetic poles
producing a magnetic field of 0.5 T. Find the torque on
the coil due to the magnetic field when a current of
20 mA passes through it.

18. A short magnet produces a deflection of 37° in a
deflection magnetometer in Tan-A position when placed
at a separation of 10 cm from the needle. Find the ratio
of the magnetic moment of the magnet to the earth’s
horizontal magnetic field.

19. The magnetometer of the previous problem is used with
the same magnet in Tan-B position. Where should the
magnet be placed to produce a 37° deflection of the
needle ? 

20. A deflection magnetometer is placed with its arms in
north–south direction. How and where should a short
magnet having M/BH = 40 A m 2 T −1 be placed so that
the needle can stay in any position ?

21. A bar magnet takes π/10 second to complete one
oscillation in an oscillation magnetometer. The moment

of inertia of the magnet about the axis of rotation is
1.2 × 10 – 4 kg m 2 and the earth’s horizontal magnetic
field is 30 µT. Find the magnetic moment of the magnet.

22. The combination of two bar magnets makes 10
oscillations per second in an oscillation magnetometer
when like poles are tied together and 2 oscillations per
second when unlike poles are tied together. Find the
ratio of the magnetic moments of the magnets. Neglect
any induced magnetism. 

23. A short magnet oscillates in an oscillation magnetometer
with a time period of 0.10 s where the earth’s horizontal
magnetic field is 24 µT. A downward current of 18 A is
established in a vertical wire placed 20 cm east of the
magnet. Find the new time period.

24. A bar magnet makes 40 oscillations per minute in an
oscillation magnetometer. An identical magnet is
demagnetized completely and is placed over the magnet
in the magnetometer. Find the time taken for 40
oscillations by this combination. Neglect any induced
magnetism.

25. A short magnet makes 40 oscillations per minute when
used in an oscillation magnetometer at a place where
the earth’s horizontal magnetic field is 25 µT. Another
short magnet of magnetic moment 1.6 A m 2 is placed 20
cm east of the oscillating magnet. Find the new
frequency of oscillation if the magnet has its north pole
(a) towards north and (b) towards south.

ANSWERS

OBJECTIVE I

 1. (a)  2. (b)  3. (c)  4. (d)  5. (c)  6. (c)
 7. (d)  8. (d)  9. (d) 10. (c) 11. (c) 12. (b)
13. (a)

OBJECTIVE II

 1. (a), (b) 2. (b), (d) 3. (a), (b)
 4. (c), (d) 5. (b), (c), (d)

EXERCISES

 1. 4 × 10 – 4 T

 2. 2.5 × 10 – 2 N

 3. decreases by 0.10 × 10 – 3 T m

 4. 2.0 × 10 – 4 T

 5. (a) 1.0 A m 2 and  (b) 2.0 A m 2

 7. 6 × 10 – 5 A m
 8. at a distance of 20 cm in the plane bisecting the dipole

 9. 20 cm south of the dipole

10. 20 cm from the dipole, tan – 1√2 south of east

11. 60 µT

12. 6.8 × 10 – 5 T

13. 45 µT, 52 µT

14. 30°
15. 39°
16. 570

17. 2 × 10 – 4 N m

18. 3.75 × 10 3 
A m 2

T
19. 7.9 cm from the centre

20. 2.0 cm from the needle, north pole pointing towards
   south

21. 1600 A m 2

22. 13 : 12

23. 0.076 s
24. √2 minutes

25. (a) 18 oscillations/min (b) 54 oscillations/min
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CHAPTER 37

MAGNETIC PROPERTIES OF MATTER

37.1 MAGNETIZATION OF MATERIALS:
    INTENSITY OF MAGNETIZATION

Matter is made of atoms and atoms are made of
nuclei and electrons. The electrons in an atom move
about the nucleus in closed paths and hence constitute
electric current loops. As a current loop has a magnetic
dipole moment, each electron in an atom has a
magnetic moment due to its orbital motion. Besides
this, each electron has a permanent angular
momentum which is present even if it is at rest. This
permanent angular momentum is called the spin
angular momentum of the electron and can be
understood only through quantum mechanics.
Corresponding to its spin, each electron has a
permanent magnetic moment. This magnetic moment
has a fixed magnitude µs = 9.285 × 10 − 24 J T −1. The
magnetic moment due to the motion of the electron is
over and above this. The nucleus may also have a
magnetic moment but it is about several thousand
times smaller than the magnetic moment of an
electron. The resultant magnetic moment of an atom
is the vector sum of all such magnetic moments.

The magnetic moments of the electrons of an atom
have a tendency to cancel in pairs. Thus, the magnetic
moments of the two electrons of a helium atom cancel
each other. In a number of atoms and ions, the
resultant magnetic moment is zero. But in some cases,
the magnetic moment of an atom is not zero. Such an
atom may be represented by a magnetic dipole having
a permanent magnetic moment. We shall first discuss
materials made of such atoms.

Any object of finite size contains a large number
of atoms. In general, the magnetic moments of these
atoms are randomly oriented and there is no net
magnetic moment in any volume of the material that
contains more than several thousand atoms (figure
37.1a). This volume is still quite small at macroscopic
scale. However, when the material is kept in an
external magnetic field, torques act on the atomic
dipoles and these torques try to align them parallel to

the field (figure 37.1b). The alignment is only partial,
because, the thermal motion of the atoms frequently
changes the orientation of the atoms and hence tries
to randomize the magnetic moments. The degree of
alignment increases if the strength of the applied field
is increased and also if the temperature is decreased.
With sufficiently strong fields, the alignment is near
perfect. We then say that the material is magnetically
saturated.

When the atomic dipoles are aligned, partially or
fully, there is a net magnetic moment in the direction
of the field in any small volume of the material. We

define the magnetization vector I
→
 as the magnetic

moment per unit volume. It is also called the intensity
of magnetization or simply magnetization. Thus, 

        I
→
 = 

magnetic  moment
volume

 = M
→

V
 ⋅ … (37.1)

The unit of magnetic moment is ampere metre 2 so
that from equation (37.1) the unit of I is ampere metre−1.

Consider a bar magnet of pole strength m, length
2l and area of cross-section A. The magnetic moment
of the bar magnet is M = 2ml. The intensity of
magnetization is

            I = 
M
V

 = 
2ml
A(2l)

 = 
m
A

 ⋅

Thus, for a bar magnet, the intensity of
magnetization may be defined as the pole strength per
unit face area.

Example 37.1

   A bar magnet made of steel has a magnetic moment of
2.5 A m 2 and a mass of 6.6 × 10 – 3 kg. If the density of
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steel is 7.9 × 10 3 kg m –3, find the intensity of magneti-
zation of the magnet.

Solution : The volume of the bar magnet is 

    V = 
mass

density
 = 

6.6 × 10 − 3 kg

7.9 × 10 3 kg m −3 

      = 8.3 × 10 − 7 m 3.

The intensity of magnetization is

    I = 
M
V

 = 
2.5 A m 2

8.3 × 10 − 7 m 3 ≈ 3.0 × 10 6 A m −1. 

37.2 PARAMAGNETISM, FERROMAGNETISM
    AND DIAMAGNETISM

Figure (37.2a) shows a current loop and the
magnetic field lines associated with it. The dipole

moment µ
→

 = iA
→

 is also shown in the figure. The
magnetic field at the centre of the dipole is in the

direction of µ
→

. This behaviour is opposite to that in the
case of an electric dipole. The electric field at the
centre of an electric dipole is opposite to the dipole
moment (figure 37.2b).

Thus, when a magnetic field aligns the atomic
dipoles in its direction, the magnetized material
produces an extra magnetic field in the material in the
direction of the applied field. The resultant magnetic
field in the material is then greater than the applied
field. The tendency to increase the magnetic field due
to magnetization of material is called paramagnetism
and materials which exhibit paramagnetism are called
paramagnetic materials.

In some materials, the permanent atomic magnetic
moments have strong tendency to align themselves
even without any external field. These materials are
called ferromagnetic materials and permanent magnets
are made from them. The force between neighbouring
atoms, responsible for their alignment, is called
exchange coupling and it can only be explained by
quantum mechanics. In normal unmagnetized state,
the atoms form domains inside the material as

suggested by figure (37.3). The atoms in any domain
have magnetic moments in the same direction giving
a net large magnetic moment to the domain. Different
domains, however, have different directions of
magnetic moment and hence, the material remains
unmagnetized. Different domains have different sizes,
the size may be as large as a millimetre in linear
dimension. Remember, a volume of 1 mm 3 contains
about 10 20 atoms !

          
If a magnetic field is applied, the domains which

are aligned along the direction of the field grow in size
and those opposite to it get reduced. This happens
because walls of the domains move across the sample.
Also, domains may orient themselves in favour of the
applied field. Figure (37.4) shows a qualitative
description of the processes of domain-growing and
domain-alignment.

 
Because of the domain character of ferromagnetic

materials, even if a small magnetic field is applied, it
gives rise to large magnetization. The resultant  field
is much larger than the applied field in such a
material.

Now suppose, the individual atoms of a material
do not have a net magnetic dipole moment. When such
a substance is placed in a magnetic field, dipole
moments are induced in the atoms by the applied field.
From Lenz’s law, the magnetic field due to the induced
magnetic moments opposes the original field. The
resultant field in such materials is, therefore, smaller
than the applied field. This phenomenon is called
diamagnetism and such materials are called
diamagnetic materials.

Magnetic moments are induced in all materials
whenever a magnetic field is applied. Thus, all
materials have the property of diamagnetism.
However, if there is a permanent atomic magnetic
moment, paramagnetism or ferromagnetism is much
stronger than diamagnetism and the material does not
show diamagnetic properties.
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37.3 MAGNETIC INTENSITY H

When a magnetic field is applied to a material, the
material gets magnetized. The actual magnetic field
inside the material is the sum of the applied magnetic
field and the magnetic field due to magnetization. It
is convenient to define a new vector field

             H
→

 = B
→

µ0
 − I

→
… (37.2)

where B
→

 is the resultant magnetic field and I
→
 is the

intensity of magnetization. This quantity H
→

 is called
magnetic intensity or magnetizing field intensity. The
unit of H is the same as that of I, that is,
ampere metre −1. If no material is present (vacuum),
I
→
 = 0 and we have

 H
→

 = B
→

µ0
 ⋅ … (37.3)

Thus, the magnetic intensity due to a current

element i dl
→
 is, from Biot–Savart law,

dH
→

 = 
1
4π

 
i dl

→
 × r

→

r 3
 ⋅ … (37.4)

The magnetic intensity due to a magnetic pole of
pole strength m at a distance r from it is 

 H = 
m

4πr 2
 ⋅ … (37.5)

Whenever the end effects of a magnetized material
can be neglected, the magnetic intensity due to
magnetization is zero. This may be the case with a
ring-shaped material or in the middle portion of a long
rod. The magnetic intensity in a material is then
determined by the external sources only, even if the
material is magnetized.

Example 37.2

   Find the magnetic intensity H at the centre of a long
solenoid having n turns per unit length and carrying a
current i (a) when no material is kept in it and (b) when
a long copper rod is inserted in the solenoid.

Solution : (a) When there is no rod, the magnetic field at
the centre of the solenoid is given by
            B = µ0 ni.

The magnetic intensity is

H = 
B
µ0

 = ni.

(b) As the solenoid and the rod are long and we are
interested in the magnetic intensity at the centre, the
end effects may be neglected. There is no effect of the
rod on the magnetic intensity at the centre. Its value in
both cases are the same. Thus H = ni.

37.4 MAGNETIC SUSCEPTIBILITY

For paramagnetic and diamagnetic substances, the
intensity of magnetization of a material is directly
proportional to the magnetic intensity. Thus,
              I

→
 = χH

→
. … (37.6)

The proportionality constant χ is called the
susceptibility of the material. Table (37.1) gives
susceptibility of some chosen materials. As I and H
have the same dimensions, the susceptibility χ is a
dimensionless constant. As there can be no
magnetization in vacuum, I = 0 and hence χ = 0. The
materials with positive value of χ are paramagnetic
and those with negative value of χ are diamagnetic.

Table 37.1 : Susceptibilities of some materials

Material Temperature in °C χ in 10 – 5

Vacuum Zero

Air     STP 0.04

Oxygen (gas)     STP 0.18

Magnesium     20 1.2

Aluminium     20 2.1

Tungsten     20 6.8

Titanium     20 7.06

Cerium     18 130

Ferric chloride     20 306

Oxygen (liquid)     – 219 490

Carbon dioxide
(1 atm)

    20 – 2.3 × 10 – 4

Nitrogen (1 atm)     20 – 5.0 × 10 – 4

Hydrogen (1 atm)     20 – 9.9 × 10 – 4

Sodium     20 – 0.24

Copper     18 – 0.96

Lead     18 – 1.6

Carbon (diamond)     20 – 2.2

Silver     20 – 2.6

Mercury     18 – 2.8

Gold     20 – 3.6

Carbon (graphite)     20 – 9.9

Bismuth     20 – 16.6

37.5 PERMEABILITY

The magnetic intensity is given by

            H
→

 = B
→

µ0
 − I

→
 

or, B
→

 = µ0(H
→

 + I
→
)

          = µ0(H
→

 + χH
→

)
           = µ0(1 + χ)H.

→

   We can write, B
→

 = µH
→

… (37.7)
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where   01   is a constant called the permeability
of the material. The permeability of vacuum is 0 as
  0 for vacuum. The constant

             r  

0

  1    (37.8)

is called the relative permeability of the material.
The significance of relative permeability may be

understood by the following simple description.
Consider a long solenoid (or a toroid) having n turns
per unit length and carrying a current i. The magnetic
field B0 inside the solenoid is

B0  0 ni

and the magnetic intensity is H  ni.
Now suppose, a material is inserted into the

solenoid. The magnetic field now becomes

         B  H  ni

or, 
B
B0

  

0

  r.

Thus, r is the factor by which the magnetic field
B is increased when a material is brought in the field.

Example 37.3

   Find the per cent increase in the magnetic field B when
the space within a current-carrying toroid is filled with
aluminium. The susceptibility of aluminium is
2.1  10 – 5.

Solution : In absence of aluminium, the magnetic field is
            B0  0 H.

As the space inside the toroid is filled with aluminium,
the field becomes

B  H  01  H.

The increase in the field is

B  B0  0 H.

The per cent increase is

B  B0

B0

  100  
0 H
0H

  100

   100

 2.1  10  3. 

37.6 CURIE’S LAW

As the temperature is increased, the randomi-
zation of individual atomic magnetic moments
increases, decreasing the magnetization I for a given
magnetic intensity H. The resultant magnetic field B
decreases, which means  decreases as T increases.
Curie’s law states that far away from saturation, the
susceptibility of a paramagnetic substance is inversely
proportional to the absolute temperature:

                
c
T

 (37.9)

where c is a constant called the Curie constant. When
a ferromagnetic material is heated, it becomes
paramagnetic at a certain temperature. This
temperature is called Curie point or Curie
temperature. After this, the susceptibility varies with
temperature as

                
c

T  Tc
 (37.10)

where Tc is the Curie point and c is a constant. The
Curie point of iron is 1043 K.

Table 37.2 : Curie temperatures for some
ferromagnetic substances

      Substance       Tc (K)

      Iron       1043

      Cobalt       1394

      Nickel        631

      Gadolinium        317

      Fe2O3        893

37.7 PROPERTIES OF DIA-, PARA- AND
    FERROMAGNETIC SUBSTANCES

Suppose a material is placed in an external
magnetic field. If the material is paramagnetic, a small
magnetization occurs in the direction of the field. If it
is ferromagnetic, a large magnetization occurs in the
direction of the field and if the material is diamagnetic,
a small magnetization occurs opposite to the field. The
lines of magnetic field B


, thus, become more dense in

a paramagnetic or ferromagnetic material but become
less dense in a diamagnetic material.

The magnetic susceptibility is a small but positive
quantity (  10 – 3 to 10 – 5) for paramagnetic
substances; of the order of several thousands (positive)
for ferromagnetic substances and small but negative
for diamagnetic substances.  The relative permeability
r  1   is slightly more than 1 for paramagnetic, of
the order of thousands for ferromagnetic and slightly
less than 1 for diamagnetic substances.

Paramagnetism or diamagnetism may be found in
solids, liquids or gases but ferromagnetism is normally
found only in solids.

A paramagnetic substance is weakly attracted by
a magnet, a ferromagnetic substance is strongly
attracted by a magnet and a diamagnetic substance is
weakly repelled by a magnet. Thus, when a rod is
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suspended in a magnetic field (figure 37.6), the rod
becomes perpendicular to the field if it is diamagnetic
and parallel to the field if it is paramagnetic or
ferromagnetic.

The susceptibility is inversely proportional to the
absolute temperature for paramagnetic substances but
it varies in a complicated way for ferromagnetic
substances. For diamagnetic substances, the variation
of χ with temperature is very small.

One can make permanent magnets from
ferromagnetic substances only. Hysteresis (explained
below) is also shown by ferromagnetic substances only.

37.8 HYSTERESIS

The magnetization in a ferromagnetic material not
only depends on the magnetic intensity H but also on
the previous history of the specimen. Suppose a
ferromagnetic material is formed in the shape of a ring
and is placed inside a toroid having n turns per unit
length. A current i can be passed through the toroid
to produce a magnetic intensity H in it. The magnetic
field produced by the current is

           B0 = µ0ni

   and hence H = 
B0

µ0
 = ni. … (i)

Note that B0 is the field produced by the toroid-
current only. The ring gets magnetized and produces
an extra field due to magnetization. The total field in
the ring is

B = µ0(H + I)

or,  I = 
B
µ0

 − H

   = 
B
µ0

 − ni. … (ii)

One can measure the total field B inside the ring
by using an apparatus known as Rowland’s ring. The
intensity of magnetization I can then be obtained from
equation (ii). Thus, from (i) and (ii) one can obtain H
and I for any current.

Figure (37.7) shows a typical magnetization curve
when the current is changed. In the beginning, the
current is zero and the sample has no magnetization.

Thus,  H = 0 and I = 0. This corresponds to the point
O. As the current is increased, H increases and the
magnetization increases. As the current is increased
to a maximum, H becomes H0 and the magnetization
I becomes nearly saturated. In the whole process, the
magnetization varies along the path OA. Now suppose,
the current is gradually decreased. The magnetization
decreases but the path OA is not retraced. As the
current reduces to zero, H also becomes zero. But,
there is still some magnetization left in the ring. The
domains, that were aligned at the time of increasing
H, are not completely randomized as the magnetic
intensity H is reduced to zero. The remaining value of
I at the point C is called the retentivity of the material.
To reduce I to zero, a current must be passed in the
opposite direction so as to disalign the domains
forcibly. The value of H needed to make I = 0 is called
coercive force. In figure (37.7), the coercive force is
represented by the magnitude of H corresponding to
OD. As the current is increased further in the opposite
direction, the material gets magnetized in the opposite
direction. The magnetization I follows the path DE as
the magnetic intensity becomes – H0. If the current is
now reduced to zero, the magnetization I follows the
path EF. Finally, if the current is increased in the
original direction, the point A is reached via FGA. If
we repeat the current cycle so that H changes from H0

to – H0 to H0, the curve ACDEFGA is retraced.
As H is increased and then decreased to its original

value, the magnetization I, in general, does not return
to its original value. This fact is called hysteresis. The
curve ACDEFGA is called the hysteresis loop. The area
of the hysteresis loop is proportional to the thermal
energy developed per unit volume of the material as
it goes through the hysteresis cycle.

37.9 SOFT IRON AND STEEL

Figure (37.8) shows hysteresis loops for soft iron
and steel. The retentivity and the coercive force are
larger for steel than for soft iron. The area of the
hysteresis loop is also larger for steel than for soft iron.
Soft iron is, therefore, easily magnetized by a
magnetizing field but only a small magnetization is
retained when the field is removed. Also, the loss of
energy, as the material is taken through periodic
variations in magnetizing fields, is small. Materials
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like soft iron are suitable for making electromagnets
and cores inside current-carrying coils to increase the

magnetic field. In transformers, moving-coil
galvanometers, etc., soft-iron core is used in the coils.

On the other hand, steel and similar materials are
suitable for making permanent magnets. Large
magnetizing fields are needed to appreciably
magnetize the material. But once magnetized, the
magnetization is retained to a large extent even when
the magnetizing field is removed (retentivity is large).
The magnetization is not easily destroyed even if the
material is exposed to stray reverse fields (coercive
force is large).

Worked Out Examples

 1. A tightly-wound, long solenoid having 50 turns cm −1,
carries a current of 4.00 A. Find the magnetic intensity
H and the magnetic field B at the centre of the solenoid.
What will be the values of these quantities if an iron core
is inserted in the solenoid and the magnetization I in the
core is 4.00 × 10 6 A m −1 ?

Solution : The magnetic intensity H at the centre of a long
solenoid is
  H = ni

 = 50 × 10 2 m − 1 × 4 A = 2 × 10 4 A m −1.

The magnetic field B = µ0H

= 4π × 10 − 7 Tm A −1 × 2 × 10 4 A m −1

= 8π × 10 − 3 T ≈ 25 mT.

The value of H does not change as the iron core is
inserted and remains 2 × 10 4 A m −1. The magnetic field
B becomes

B = µ0(H + I)

= (4π × 10 − 7 Tm A −1) (2 × 10 4 + 4 × 10 6) A m −1 = 5.05 T.

It should be noted that the magnetic intensity H is very
small as compared to the magnetization I in presence of
the iron core.

 2. A long, cylindrical iron core of cross-sectional area
5.00 cm 2 is inserted into a long solenoid having
2000 turns m −1 and carrying a current 2.00 A. The
magnetic field inside the core is found to be 1.57 T.
Neglecting the end effects, find the magnetization I of the
core and the pole strength developed.

Solution : The magnetic intensity H inside the solenoid is

    H = ni = 2000 m − 1 × 2 A = 4000 A m −1.
Also B = µ0(H + I)

or, I = 
B
µ0

 − H

= 
1.57 T

4π × 10 − 7 Tm A −1 − 4000 A m −1

    = (1.25 × 10 6 − 4000) A m −1 ≈ 1.25 × 10 6 A m −1.

Note again that the magnetization I >> H for iron core.
The pole strength developed at the ends is
 m = IA

 = (1.25 × 10 6 A m −1) × (5 × 10 − 4 m 2) = 625 A m.

 3. An ideal solenoid having 40 turns cm −1 has an
aluminium core and carries a current of 2.0 A. Calculate
the magnetization I developed in the core and the
magnetic field B at the centre. The susceptibility χ of
aluminium = 2.3 × 10 – 5.

Solution : The magnetic intensity H at the centre of the
solenoid is

       H = ni = 4000 turns m −1 × 2.0 A

        = 8000 A m −1.

The magnetization is I = χ H

      = 2.3 × 10 − 5 × 8000 A m −1 = 0.18 A m −1.

The magnetic field is B = µ0(H + I)

= (4π × 10 − 7 Tm A −1) [800 + 0.18] A m −1 ≈ 3.2π × 10 − 4 T.

Note that H >> I in case of a paramagnetic core.

 4. Find (a) the magnetization I, (b) the magnetic intensity
H and (c) the magnetic field B at the centre of a bar
magnet having pole strength 3.6 A m, magnetic length
12 cm and cross-sectional area 0.90 cm 2.

Solution : (a) Magnetization I = 
m
A

 = 
3.6 A m −1

0.90 × 10 − 4 m 2 

 = 4 × 10 4 A m −1.

The direction will be from the south pole to the north
pole at the centre of the magnet.

(b) Magnetic intensity Hn due to the north pole is

    Hn = 
1
4π

 
m
d 2 = 

3.6 A m −1

4π × (6 × 10 − 2 m) 2 = 79.6 A m −1.

The direction will be towards the south pole. The magnetic
intensity  Hs  at  this  point  due  to  the  south  pole  is

also  79.6 A m −1  in   the   same  direction.  The  resultant
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magnetic intensity is
     H = Hn + Hs

= 159.2 A m −1 towards the south pole.

(c) The magnetic field B
→

 at the centre is

B
→

 = µ0(H
→

 + I
→
) 

or,    B = (4π × 10 − 7 Tm A −1) (4 × 10 4 − 159.2) A m −1

= 5.0 × 10 − 2 T.

The field is towards the north pole.

 5. The maximum value of the permeability of µ-metal (77%
Ni, 16% Fe, 5% Cu, 2% Cr) is 0.126 Tm A −1. Find the
maximum relative permeability and susceptibility.

Solution : Relative permeability is

       µr = 
µ
µ0

 = 
0.126 Tm A −1

4π × 10 − 7 Tm A −1

          = 1.00 × 10 5.

Susceptibility χ = µr − 1 ≈ 1.00 × 10 5.

 6. A toroid has a mean radius R equal to 20/π cm, and a
total of 400 turns of wire carrying a current of 2.0 A. An
aluminium ring at temperature 280 K inside the toroid
provides the core. (a) If the magnetization I is
4.8 × 10 − 2 A m −1, find the susceptibility of aluminium at
280 K. (b) If the temperature of the aluminium ring is
raised to 320 K, what will be the magnetization ?

Solution : (a) The number of turns per unit length of the
toroid is

         n = 
400
2πR

 ⋅

The magnetic intensity H in the core is

         H = ni

= 
400 × 2.0 A

2π × 
20
π

 × 10 − 2 m
 = 2000 A m −1.

The susceptibility is

χ = I/H

= 
4.8 × 10 − 2 A m −1

2000 A m −1  = 2.4 × 10 − 5.

(b) The susceptibility χ of a paramagnetic substance
varies with absolute temperature as χ = c/T.

Thus,     χ2 /χ1 = T1 /T2.
The susceptibility of aluminium at temperature 320 K
is, therefore,

χ = 
280
320

 × 2.4 × 10 − 5 = 2.1 × 10 − 5.

Thus, the magnetization at 320 K is

I = χH

= 2.1 × 10 − 5 × 2000 A m −1.

= 4.2 × 10 − 2 A m −1.

QUESTIONS FOR SHORT ANSWER

 1. When a dielectric is placed in an electric field, it gets
polarized. The electric field in a polarized material is
less than the applied field. When a paramagnetic
substance is kept in a magnetic field, the field in the
substance is more than the applied field. Explain the
reason of this opposite behaviour.

 2. The property of diamagnetism is said to be present in
all materials. Then, why are some materials
paramagnetic or ferromagnetic ?

 3. Do permeability and relative permeability have the same
dimensions ?

 4. A rod when suspended in a magnetic field stays in
east–west direction. Can we be sure that the field is in

the east–west direction ? Can it be in the north–south
direction ?

 5. Why cannot we make permanent magnets from
paramagnetic materials ? 

 6. Can we have magnetic hysteresis in paramagnetic or
diamagnetic substances ?

 7. When a ferromagnetic material goes through a
hysteresis loop, its thermal energy is increased. Where
does this energy come from ?

 8. What are the advantages of using soft iron as a core,
instead of steel, in the coils of galvanometers ?

 9. To keep valuable instruments away from the earth’s
magnetic field, they are enclosed in iron boxes. Explain.

OBJECTIVE I

 1. A paramagnetic material is placed in a magnetic field.
Consider the following statements:

(A) If the magnetic field is increased, the magnetization
is increased.
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(B) If the temperature is increased, the magnetization
is increased.
  (a) Both A and B are true.
  (b) A is true but B is false.
  (c) B is true but A is false.
  (d) Both A and B are false.

 2. A paramagnetic material is kept in a magnetic field. The
field is increased till the magnetization becomes
constant. If the temperature is now decreased, the
magnetization
(a) will increase      (b) decrease
(c) remain constant    (d) may increase or decrease.

 3. A ferromagnetic material is placed in an external
magnetic field. The magnetic domains
(a) increase in size    (b) decrease in size
(c) may increase or decrease in size
(d) have no relation with the field.

 4. A long, straight wire carries a current i. The
magnetizing field intensity H is measured at a point P
close to the wire. A long, cylindrical iron rod is brought
close to the wire so that the point P is at the centre of

the rod. The value of H at P will 
(a) increase many times    (b) decrease many times
(c) remain almost constant   (d) become zero.

 5. The magnetic susceptibility is negative for 
(a) paramagnetic materials only
(b) diamagnetic materials only
(c) ferromagnetic materials only
(d) paramagnetic and ferromagnetic materials.

 6. The desirable properties for making permanent magnets
are
(a) high retentivity and high coercive force
(b) high retentivity and low coercive force
(c) low retentivity and high coercive force
(d) low retentivity and low coercive force.

 7. Electromagnets are made of soft iron because soft iron
has
(a) high retentivity and high coercive force
(b) high retentivity and low coercive force
(c) low retentivity and high coercive force
(d) low retentivity and low coercive force.

OBJECTIVE II

 1. Pick the correct options.
(a) All electrons have magnetic moment.
(b) All protons have magnetic moment.
(c) All nuclei have magnetic moment.
(d) All atoms have magnetic moment.

 2. The permanent magnetic moment of the atoms of a
material is not zero. The material
(a) must be paramagnetic  (b) must be diamagnetic
(c) must be ferromagnetic  (d) may be paramagnetic.

 3. The permanent magnetic moment of the atoms of a
material is zero. The material
(a) must be paramagnetic  (b) must be diamagnetic
(c) must be ferromagnetic  (d) may be paramagnetic.

 4. Which of the following pairs has quantities of the same
dimensions ?
(a) Magnetic field B and magnetizing field intensity H

(b) Magnetic field B and intensity of magnetization I
(c) Magnetizing field intensity H and intensity of
       magnetization I
(d) Longitudinal strain and magnetic susceptibility.

 5. When a ferromagnetic material goes through a
hysteresis loop, the magnetic susceptibility
(a) has a fixed value         (b) may be zero
(c) may be infinity           (d) may be negative.

 6. Mark out the correct options.
(a) Diamagnetism occurs in all materials.
(b) Diamagnetism results from the partial alignment of
       permanent magnetic moment.
(c) The magnetizing field intensity H is always zero in
       free space.
(d) The magnetic field of induced magnetic moment is
       opposite to the applied field.

EXERCISES

 1. The magnetic intensity H at the centre of a long solenoid
carrying a current of 2.0 A, is found to be 1500 A m−1.
Find the number of turns per centimetre of the solenoid.

 2. A rod is inserted as the core in the current-carrying
solenoid of the previous problem. (a) What is the
magnetic intensity H at the centre ? (b) If the
magnetization I of the core is found to be 0.12 A m−1,
find the susceptibility of the material of the rod. (c) Is the
material paramagnetic, diamagnetic or ferromagnetic ?

 3. The magnetic field inside a long solenoid having
50 turns cm −1 is increased from 2.5 × 10 – 3 T to 2.5 T
when an iron core of cross-sectional area 4 cm 2 is
inserted into it. Find (a) the current in the solenoid,

(b) the magnetization I of the core and (c) the pole
strength developed in the core.

 4. A bar magnet of length 1 cm and cross-sectional area
1.0 cm 2 produces a magnetic field of 1.5 × 10 – 4 T at a
point in end-on position at a distance 15 cm away from
the centre. (a) Find the magnetic moment M of the
magnet. (b) Find the magnetization I of the magnet.
(c) Find the magnetic field B at the centre of the magnet.

 5. The susceptibility of annealed iron at saturation is 5500.
Find the permeability of annealed iron at saturation.

 6. The magnetic field B and the magnetic intensity H in a
material are found to be 1.6 T and 1000 A m −1
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respectively. Calculate the relative permeability µr and
the susceptibility χ of the material.

 7. The susceptibility of magnesium at 300 K is 1.2 × 10 – 5.
At what temperature will the susceptibility increase to
1.8 × 10 – 5 ?

 8. Assume that each iron atom has a permanent magnetic
moment equal to 2 Bohr magnetons (1 Bohr magneton
equals 9.27 × 10 − 24 A m 2). The density of atoms in iron

is 8.52 × 10 28 atoms m –3. (a) Find the maximum
magnetization I in a long cylinder of iron. (b) Find the
maximum magnetic field B on the axis inside the
cylinder.

 9. The coercive force for a certain permanent magnet is
4.0 × 10 4 A m−1. This magnet is placed inside a long
solenoid of 40 turns/cm and a current is passed in the
solenoid to demagnetize it completely. Find the current.

ANSWERS

OBJECTIVE I

 1. (b)  2. (c)  3. (c)  4. (c)  5. (b)  6. (a)
 7. (d)

OBJECTIVE II

 1. (a), (b)  2. (d)  3. (b)  4. (c), (d)
 5. (b), (c), (d)  6. (a), (d)

EXERCISES

 1. 7.5

 2. (a) 1500 A m−1 (b) 8.0 × 10 − 5 (c) paramagnetic

 3. (a) 0.4 A (b) 2.0 × 10 6 A m −1 (c) 800 A m

 4. (a) 2.5 A m 2 (b) 2.5 × 10 6 A m−1 (c) 1.2 T

 5. 6.9 × 10 − 3

 6. 1.3 × 10 3 each
 7. 200 K

 8. (a) 1.58 × 10 6 A m −1 (b) 2.0 T
 9. 10 A
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CHAPTER 38

ELECTROMAGNETIC INDUCTION

38.1 FARADAY’S LAW OF ELECTROMAGNETIC
    INDUCTION

Figure (38.1a) shows a bar magnet placed along
the axis of a conducting loop containing a
galvanometer. There is no current in the loop and
correspondingly no deflection in the galvanometer. If
we move the magnet towards the loop (figure 38.1b),
there is a deflection in the galvanometer showing that
there is an electric current in the loop. If the magnet
is moved away from the loop (figure 38.1c), again there
is a current but the current is in the opposite direction.
The current exists as long as the magnet is moving.
Faraday studied this behaviour in detail by performing
a number of experiments and discovered the following
law of nature:

Whenever the flux of magnetic field through the
area bounded by a closed conducting loop changes, an
emf is produced in the loop. The emf is given by

            E  = − 
dΦ
dt

 … (38.1)

where Φ = ∫  B→⋅dS
→

 is the flux of the magnetic field

through the area.

We shall call the quantity Φ magnetic flux. The SI
unit of magnetic flux is called weber which is
equivalent to tesla metre 2.

The law described by equation (38.1) is called
Faraday’s law of electromagnetic induction. The flux
may be changed in a number of ways. One can change
the magnitude of the magnetic field B

→
 at the site of

the loop, the area of the loop or the angle between the
area-vector dS

→
 and the magnetic field B

→
. In any case,

as long as the flux keeps changing, the emf is present.
The emf so produced drives an electric current
through the loop. If the resistance of the loop is R, the
current is

           i = 
E
R

 = − 1
R

 
dΦ
dt

 ⋅ … (38.2)

The emf developed by a changing flux is called
induced emf and the current produced by this emf is
called induced current.

Direction of Induced Current

The direction of the induced current in a loop may
be obtained using equation (38.1) or (38.2). The
procedure to decide the direction is as follows:

Put an arrow on the loop to choose the positive
sense of current. This choice is arbitrary. Using right-
hand thumb rule find the positive direction of the
normal to the area bounded by the loop. If the fingers
curl along the loop in the positive sense, the thumb
represents the positive direction of the normal.

Calculate the flux Φ = ∫  B→⋅dS
→

 through the area

bounded by the loop. If the flux increases with time,
dΦ
dt

 is positive and E is negative from equation (38.1).

Correspondingly, the current is negative. It is,
therefore, in the direction opposite to the arrow put on

the loop. If Φ decreases with time, dΦ
dt

 is negative, E
is positive and the current is along the arrow.
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Example 38.1

   Figure (38.2) shows a conducting loop placed near a long,
straight wire carrying a current i as shown. If the current
increases continuously, find the direction of the induced
current in the loop.

Solution : Let us put an arrow on the loop as shown in
the figure. The right-hand thumb rule shows that the
positive normal to the loop is going into the plane of the
diagram. Also, the same rule shows that the magnetic
field at the site of the loop due to the current is also

going into the plane of the diagram. Thus, B


  and  dS


are along the same direction everywhere so that the flux

   BdS


 is positive. If i increases, the magnitude of 
increases. Since  is positive and its magnitude

increases, 
d
dt

 is positive. Thus, E is negative and hence,

the current is negative. The current is, therefore,
induced in the direction opposite to the arrow.

38.2 LENZ’S LAW

Another way to find the direction of the induced
current in a conducting loop is to use Lenz’s law. The
current is induced by the changing magnetic flux. The
induced current itself produces a magnetic field and
hence a magnetic flux. This magnetic flux may have
the same sign as the original flux or it may have the
opposite sign. It strengthens the original flux if it has
the same sign and weakens it otherwise. Lenz’s law
states:

The direction of the induced current is such that it
opposes the change that has induced it.

If a current is induced by an increasing flux, it will
weaken the original flux. If a current is induced by a
decreasing flux, it will strengthen the original flux.

Figure (38.3) shows some situations. In figure
(38.3a), a magnet is brought towards a circular loop.
The north pole faces the loop. As the magnet gets
closer to the loop, the magnetic field increases and

hence, the flux of the magnetic field through the area
of the loop increases. The induced current should
weaken the flux. The original field is away from the
magnet, so the induced field should be towards the
magnet. Using the right-hand thumb rule, we can find
the direction of the current that produces a field
towards the magnet.

In figure (38.3b), the wire RS slides towards left
so that the area of PQRS decreases. As a result, the
magnetic flux through the area PQRS decreases. The
induced current should strengthen the original flux.
The induced current should produce a magnetic field
along the original field which is going into the plane
of the diagram. Using the right-hand thumb rule, we
find that the induced current should be clockwise as
shown in the figure.

38.3 THE ORIGIN OF INDUCED EMF

An electric current is established in a conducting
wire when an electric field exists in it. The flow of
charges tend to destroy the field and some external
mechanism is needed to maintain the electric field in
the wire. It is the work done per unit charge by this
external mechanism that we call emf. When the
magnetic flux through a closed loop changes, an electric
current results. What is the external mechanism that
maintains the electric field in the loop to drive the
current ? In other words, what is the mechanism to
produce an emf ? Let us now investigate this question.

   The flux   BdS


 can be changed by

(a) keeping the magnetic field constant as time
passes and moving whole or part of the loop

(b) keeping the loop at rest and changing the
magnetic field

(c) combination of (a) and (b), that is, by moving the
loop (partly or wholely) as well as by changing the field.

The mechanism by which emf is produced is
different in the two basic processes (a) and (b). We now
study them under the headings motional emf and
induced electric field.

Motional Emf

Figure (38.4) shows a rod PQ of length l moving
in a magnetic field B


 with a constant velocity v


. The

length of the rod is perpendicular to the magnetic field
and the velocity is perpendicular to both the magnetic
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field and the rod. The free electrons of the wire also
move with this velocity v

→
 together with the random

velocity they have in the rod. The magnetic force due
to the random velocity is zero on the average. Thus,
the magnetic field exerts an average force F

→
b = qv

→
 × B

→

on each free electron where q = – 1.6 × 10 – 19 C is the
charge on the electron. This force is towards QP and
hence the free electrons will move towards P. Negative
charge is accumulated at P and positive charge
appears at Q. An electrostatic field E is developed
within the wire from Q to P. This field exerts a force
F
→

e = qE
→

 on each free electron. The charge keeps on
accumulating until a situation comes when Fb = Fe

or,      ⎢qv
→
 × B

→
 ⎢ = ⎢qE

→
 ⎢      or,      vB = E.

After this, there is no resultant force on the free
electrons of the wire PQ. The potential difference
between the ends Q and P is
              V = El = vBl.
Thus, it is the magnetic force on the moving free
electrons that maintains the potential difference
V = vBl and hence produces an emf

E  = vBl. … (38.3)

As this emf is produced due to the motion of a
conductor, it is called motional emf.

If the ends P and Q are connected by an external
resistor (figure 38.5a), an electric field is produced in
this resistor due to the potential difference. A current
is established in the circuit. The electrons flow from P
to Q via the external circuit and this tries to neutralise
the charges accumulated at P and Q. The magnetic
force qvB on the free electrons in the wire QP,
however, drives the electrons back from Q to P to
maintain the potential difference and hence the
current.

Thus, we can replace the moving rod QP by a
battery of emf vBl with the positive terminal at Q and
the negative terminal at P. The resistance r of the rod
QP may be treated as the internal resistance of the
battery. Figure (38.5b) shows the equivalent circuit.
The current is i = vBl

R + r
 in the clockwise direction

(induced current).

We can also find the induced emf and the induced
current in the loop in figure (38.5a) from Faraday’s
law of electromagnetic induction. If x be the length of
the circuit in the magnetic field at time t, the magnetic
flux through the area bounded by the loop is

        Φ = Blx.
The magnitude of the induced emf is

         E  = 
⎪
⎪
⎪
dΦ
dt

⎪
⎪
⎪
 = 

⎪
⎪
⎪
Bl 

dx
dt

⎪
⎪
⎪

= vBl.

The current is i = vBl
R + r

 ⋅ The direction of the current

can be worked out from Lenz’s law.

Example 38.2

   Figure (38.6a) shows a rectangular loop MNOP being
pulled out of a magnetic field with a uniform velocity v
by applying an external force F. The length MN is equal
to l and the total resistance of the loop is R. Find (a) the
current in the loop, (b) the magnetic force on the loop,
(c) the external force F needed to maintain the velocity,
(d) the power delivered by the external force and (e) the
thermal power developed in the loop.

Solution : (a) The emf induced in the loop is due to the
motion of the wire MN. The emf is E  = vBl with the
positive end at N and the negative end at M. The current
is

            i = 
E
R

 = 
vBl
R

in the clockwise direction (figure 38.6b).

(b) The magnetic force on the wire MN is F
→

1 = il
→
 × B

→
. The

magnitude is F1 = ilB = vB 
2l 2

R
 and is opposite to the

velocity. The forces on the parts of the wire NO and PM,
lying in the field, cancel each other. The resultant

magnetic force on the loop is, therefore, F1 = B 
2l 2v
R

opposite to the velocity.

(c) To move the loop at a constant velocity, the resultant
force on it should be zero. Thus, one should pull the loop
with a force

           F = F1 = 
vB 2l 2

R
 ⋅

(d) The power delivered by the external force is
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        P = F v = 
v 2B 2l 2

R
 ⋅

(e) The thermal power developed is

P = i 2R = ⎛⎜
⎝

vBl
R

⎞
⎟
⎠

 2

 R = 
v 2B 2l 2

R
 ⋅

We see that the power delivered by the external force
is equal to the thermal power developed in the loop. This
is consistent with the principle of conservation of energy.

Induced Electric Field

Consider a conducting loop placed at rest in a
magnetic field B

→
. Suppose, the field is constant till

t = 0 and then changes with time. An induced current
starts in the loop at t = 0.

The free electrons were at rest till t = 0 (we are
not interested in the random motion of the electrons).
The magnetic field cannot exert force on electrons at
rest. Thus, the magnetic force cannot start the induced
current. The electrons may be forced to move only by
an electric field and hence we conclude that an electric
field appears at t = 0. This electric field is produced by
the changing magnetic field and not by charged
particles according to the Coulomb’s law or the Gauss’s
law. The electric field produced by the changing
magnetic field is nonelectrostatic and nonconservative
in nature. We cannot define a potential corresponding
to this field. We call it induced electric field. The lines
of induced electric field are closed curves. There are
no starting and terminating points of the field lines.

If E
→

 be the induced electric field, the force on a
charge q placed in the field is qE

→
. The work done per

unit charge as the charge moves through dl
→
 is E

→
⋅dl

→
.

The emf developed in the loop is, therefore,

         E  = ∫O E
→

⋅dl
→
.

Using Faraday’s law of induction,

E  = − 
dΦ
dt

   or, ∫O E
→

⋅dl
→
 = − 

dΦ
dt

 ⋅ … (38.4)

The presence of a conducting loop is not necessary
to have an induced electric field. As long as B

→
 keeps

changing, the induced electric field is present. If a loop
is there, the free electrons start drifting and
consequently an induced current results.

38.4 EDDY CURRENT

Consider a solid plate of metal which enters a
region having a magnetic field (figure 38.7a). Consider
a loop drawn on the plate, a part of which is in the

field. As the plate moves, the magnetic flux through
the area bounded by the loop changes and hence a
current is induced. There may be a number of such
loops on the plate and hence currents are induced on
the surface along a variety of paths. Such currents are
called eddy currents. The basic idea is that we do not
have a definite conducting loop to guide the induced
current. The system itself looks for the loops on the
surface along which eddy currents are induced.
Because of the eddy currents in the metal plate,
thermal energy is produced in it. This energy comes
at the cost of the kinetic energy of the plate and the
plate slows down. This is known as electromagnetic
damping. To reduce electromagnetic damping, one can
cut slots in the plate (figure 38.7b). This reduces the
possible paths of the eddy current considerably.

38.5 SELF-INDUCTION

When a current is established in a closed
conducting loop, it produces a magnetic field. This
magnetic field has its flux through the area bounded
by the loop. If the current changes with time, the flux
through the loop changes and hence an emf is induced
in the loop. This process is called self-induction. The
name is so chosen because the emf is induced in the
loop by changing the current in the same loop.

The magnetic field at any point due to a current
is proportional to the current. The magnetic flux
through the area bounded by a current-carrying loop
is, therefore, proportional to the current. We can write
             Φ = Li … (38.5)

where L is a constant depending on the geometrical
construction of the loop. This constant is called
self-inductance of the loop. The induced emf E , when
the current in the coil changes, is given by

             E  = − 
dΦ
dt

 ⋅

Using equation (38.5),

           E  = − L 
di
dt

 ⋅ … (38.6)
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The SI unit of self-inductance L is weber ampere−1

from equation (38.5) or volt second ampere−1 from (38.6).
It is given a special name henry and is abbreviated as H.

If we have a coil or a solenoid of N turns, the flux

through each turn is ∫ B→⋅dS
→

. If this flux changes, an

emf is induced in each turn. The net emf induced
between the ends of the coil is the sum of all these.
Thus,

            E  = −N 
d
dt

 ∫  B→⋅dS
→

.

One can compare this with equation (38.6) to get the
inductance.

Example 38.3

   An average induced emf of 0.20 V appears in a coil when
the current in it is changed from 5.0 A in one direction
to 5.0 A in the opposite direction in 0.20 s. Find the
self-inductance of the coil.

Solution :

Average 
di
dt

 = 
(− 5.0 A) − (5.0 A)

0.20 s
 = − 50 A/s.

Using E  = − L 
di
dt

 ,

     0.2 V = L(50 A/s)

or, L = 
0.2 V
50 A/s

 = 4.0 mH.

Self-inductance of a Long Solenoid

Consider a long solenoid of radius r having n turns
per unit length. Suppose a current i is passed through
the solenoid. The magnetic field produced inside the
solenoid is B = μ0 ni. The flux through each turn of the
solenoid is

         Φ = ∫  B→⋅dS
→

 = (μ0 ni)πr 2.

The emf induced in each turn is

− 
dΦ
dt

 = − μ0 nπr 2 
di
dt

 ⋅

As there are nl turns in a length l of the solenoid, the
net emf across a length l is

        E  = − (nl) (μ0 nπr 2) di
dt

 ⋅

   Comparing with E  = − L di
dt

 , the self-inductance is

          L = μ0 n 2πr 2l.  … (38.7)

We see that the self-inductance depends only on
geometrical factors.

A coil or a solenoid made from thick wire has
negligible resistance but a considerable self-
inductance. Such an element is called an ideal inductor
and is indicated by the symbol         .

The self-induced emf in a coil opposes the change
in the current that has induced it. This is in accordance
with the Lenz’s law. If the current is increasing, the
induced current will be opposite to the original current.
If the current is decreasing, the induced current will
be along the original current.

Example 38.4

   Consider the circuit shown in figure (38.8). The sliding
contact is being pulled towards right so that the
resistance in the circuit is increasing. Its value at the
instant shown is 12 Ω. Will the current be more than
0.50 A or less than it at this instant ?

Solution : As the sliding contact is being pulled, the current

in the circuit changes. An induced emf E  = − L di
dt

 is

produced across the inductor. The net emf in the circuit is

6 V − L di
dt

 and hence the current is

              i = 
6 V − L di

dt
12 Ω

… (i)

at the instant shown. Now the resistance in the circuit is

increasing, the current is decreasing and so 
di
dt

 is negative.

Thus, the numerator of (i) is more than 6 V and hence i

is greater than 6 V
12 Ω

 = 0.50 A.

38.6 GROWTH AND DECAY OF CURRENT
    IN AN LR CIRCUIT

Growth of Current

Figure (38.9) shows an inductance L, a resistance R
and a source of emf E connected in series through a
switch S. Initially, the switch is open and there is no
current in the circuit. At t = 0, the switch is closed and
the circuit is completed. As the current increases in the

inductor, a self-induced emf ⎛
⎜
⎝
− L di

dt
⎞
⎟
⎠
 is produced. Using

Kirchhoff’s loop law,

         E  − L 
di
dt

 = Ri
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or,          L 
di
dt

 = E  − Ri

   or,         
di

E  − Ri
 = 

dt
L

 ⋅

At t = 0, i = 0 and at time t the current is i. Thus,

          ∫ 
0

i
di

E  − Ri
 = ∫ 

0

t
dt
L

   or,        − 
1
R

 ln 
E  − Ri

E
 = t

L

   or,       
E  − Ri

E
 = e − tR/L

   or,       E  − Ri = E e − tR/L

   or,       i = 
E
R

 (1 − e − tR/L). … (38.8)

The constant L/R has dimensions of time and is
called the time constant of the LR circuit. Writing
L/R = τ  and  E /R = i0, equation (38.8) becomes

i = i0(1 − e − t/τ). … (38.9)

Figure (38.10) shows the plot of the current versus
time. The current gradually rises from t = 0 and
attains the maximum value i0 after a long time. At
t = τ, the current is

i = i0
⎛
⎜
⎝
1 − 

1
e

⎞
⎟
⎠
 = 0.63 i0.

Thus, in one time constant, the current reaches 63%
of the maximum value. The time constant tells us how
fast will the current grow. If the time constant is small,
the growth is steep. Equation (38.9) shows that i = i0

at t = ∞. In principle, it takes infinite time for the
current to attain its maximum value. In practice,
however, a small number of time constants may be
sufficient for the current to reach almost the maximum
value.

Example 38.5

   An inductor (L = 20 mH), a resistor (R = 100 Ω) and a
battery (E  = 10 V) are connected in series. Find (a) the
time constant, (b) the maximum current and (c) the time
elapsed before the current reaches 99% of the maximum
value.

Solution : (a) The time constant is

         τ = 
L
R

 = 
20 mH
100 Ω

 = 0.20 ms.

(b) The maximum current is

         i = E /R = 
10 V

100 Ω
 = 0.10 A.

(c) Using     i = i0(1 − e − t/τ),

       0.99 i0 = i0(1 − e − t/τ)

or, e − t/τ = 0.01

or,      
t
τ
 = − ln(0.01)

or, t = (0.20 ms) ln(100) = 0.92 ms.

Decay of Current

Consider the arrangement shown in figure
(38.11a). The sliding switch S can be slid up and down.
The circuit is complete and a steady current i = i0 is
maintained through the circuit. Suddenly at t = 0, the
switch S is moved to connect the point a. This
completes the circuit through the wire Aa and
disconnects the battery from the circuit (figure 38.11b).
The special arrangement of the switch ensures that
the circuit through the wire Aa is completed before the
battery is disconnected. The equivalent circuit is
redrawn in figure (38.11c).

As the battery is disconnected, the current

decreases in the circuit. This induces an emf ⎛
⎜
⎝
− L di

dt
⎞
⎟
⎠

in the inductor. As this is the only emf in the circuit,

           − L 
di
dt

 = Ri

or,        
di
i

 = − R
L

 dt.

At t = 0, i = i0. If the current at time t be i,

           ∫ 
i0

i

 
di
i

 = ∫ 
0

t

− 
R
L

 dt

   or,        ln 
i
i0

 = − 
R
L

 t

   or, i = i0 e
 − tR/L … (38.10)

   or, i = i0 e
 − t/τ … (38.11)

where τ = L/R is the time constant of the circuit.
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We see that the current does not suddenly fall to
zero. It gradually decreases as time passes. At t = τ,

           i = i0 /e = 0.37 i0.
The current reduces to 37% of the initial value in

one time constant, i.e., 63% of the decay is complete.
If the time constant is small, the decay is steep. Figure
(38.12) shows the plot of the current against time.

Example 38.6

   An inductor (L = 20 mH), a resistor (R = 100 Ω) and a
battery (E  = 10 V) are connected in series. After a long
time the circuit is short-circuited and then the battery is
disconnected. Find the current in the circuit 1 ms after
short-circuiting.

Solution :

The initial current is i = i0 = E/R = 
10 V

100 Ω
 = 0.10 A.

The time constant is τ = L/R = 20 mH
100 Ω

 = 0.20 ms.

The current at t = 1 ms is

          i = i0 e
− t/τ

= (0.10 A) e − (1 ms / 0.20 ms)

= (0.10 A) e − 5 = 6.7 × 10 − 4 A.

38.7 ENERGY STORED IN AN INDUCTOR

When a capacitor is charged, electric field builds
up between its plates and energy is stored in it.
Similarly, when an inductor carries a current, a
magnetic field builds up in it and magnetic energy is
stored in it.

Consider the circuit shown in figure (38.13). As the
connections are made, the current grows in the circuit
and the magnetic field increases in the inductor. Part
of the work done by the battery during the process is
stored in the inductor as magnetic field energy and the
rest appears as thermal energy in the resistor. After
sufficient time, the current and hence the magnetic

field becomes constant and further work done by the
battery appears completely as thermal energy. If i be
the current in the circuit at time t, we have

        E  − L 
di
dt

 = iR

or,      E  i dt = i 2 R dt + L i di

or, ∫ 
0

t

 E  i dt = ∫ 
0

t

 i 2 R dt + ∫ 
0

i

L i di

   or, ∫ 
0

t

 E  i dt = ∫ 
0

t

 i 2 R dt + 
1
2

 L i 2. … (i)

Now (i dt) is the charge flowing through the circuit
during the time t to t + dt. Thus, (E i dt) is the work
done by the battery in this period. The quantity on the
left-hand side of equation (i) is, therefore, the total
work done by the battery in time 0 to t. Similarly, the
first term on the right-hand side of equation (i) is the
total thermal energy (Joule heat) developed in the
resistor in time t. Thus 1

2
 Li 2 is the energy stored in

the inductor as the current in it increases from 0 to i.
As the energy is zero when the current is zero, the
energy stored in an inductor, carrying a current i, is

            U = 
1
2

 L i 2. … (38.12)

Energy Density in Magnetic Field

Consider a long solenoid of radius r, length l and
having n turns per unit length. If it carries a current
i, the magnetic field within it is

        B = μ0 ni.

Neglecting the end effects, the field outside is zero.
The self-inductance of this solenoid is, from equation
(38.7),

L = μ0 n 2πr 2l.

The magnetic energy is, therefore,

U = 1
2
 Li 2 = 

1
2

 μ0 n 2πr 2l i 2

= 
1

2 μ0
 (μ0 ni) 2 V = 

B 2

2μ0
 V

where V = πr2l is the volume enclosed by the solenoid.
As the field is assumed uniform throughout the volume
of the solenoid and zero outside, the energy per unit
volume in the magnetic field, i.e., the energy density, is

            u = 
U
V

 = 
B 2

2μ0
 ⋅ … (38.13)

In deriving this equation, we have assumed that there
is no magnetic material at the site of the field.
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Example 38.7

   Calculate the energy stored in an inductor of inductance
50 mH when a current of 2.0 A is passed through it.

Solution : The energy stored is

    U = 
1
2

 Li 2 = 
1
2

 (50 × 10 − 3 H) (2.0 A) 2 = 0.10 J.

38.8 MUTUAL INDUCTION

Suppose two closed circuits are placed close to each
other and a current i is passed in one. It produces a
magnetic field and this field has a flux Φ through the
area bounded by the other circuit. As the magnetic
field at a point is proportional to the current producing
it, we can write
             Φ = Mi … (38.14)

where M is a constant depending on the geometrical
shapes of the two circuits and their placing. This
constant is called mutual inductance of the given pair
of circuits. If the same current i is passed in the second
circuit and the flux is calculated through the area
bounded by the first circuit, the same proportionality
constant M appears. If there are more than one turns
in a circuit, one has to add the flux through each turn
before applying equation (38.14).

If the current i in one circuit changes with time,
the flux through the area bounded by the second circuit
also changes. Thus, an emf is induced in the second
circuit. This phenomenon is called mutual induction.
From equation (38.14), the induced emf is

         E  = − 
dΦ
dt

= − M 
di
dt

 ⋅ … (38.15)

Example 38.8

   A solenoid S1 is placed inside another solenoid S2 as
shown in figure (38.15). The radii of the inner and the
outer solenoids are r1 and r2 respectively and the numbers

of turns per unit length are n1 and n2 respectively.
Consider a length l of each solenoid. Calculate the
mutual inductance between them.

Solution : Suppose a current i is passed through the inner
solenoid S1. A magnetic field B = μ0 n1i is produced inside
S1 whereas the field outside it is zero. The flux through
each turn of S2 is

       Bπr1
 2 = μ0n1iπr1

 2.

The total flux through all the turns in a length l of S2

is
         Φ = (μ0 n1iπr1 

2)n2l = (μ0 n1n2πr1 
2l) i.

   Thus, M = μ0 n1n2πr1 
2l. … (i)

38.9 INDUCTION COIL

An induction coil is used to produce a large emf
from a source of low emf. The schematic design of an
induction coil known as Ruhmkorff’s induction coil is
shown in figure (38.16). It consists of a primary coil T
wound over a laminated soft-iron core and a secondary
coil S wound coaxially over the primary coil. The
secondary coil is connected to two rods G1 and G2. The
separation between the rods may be adjusted.

The primary circuit contains a battery and a circuit
interrupter. The circuit interrupter may be formed as
follows. One end of the primary coil is connected to a
thin metallic strip A with a soft-iron hammer H at one
end. The hammer is close to the soft-iron core of the
primary. The other end of the primary is connected to
a screw D through the battery. The screw just touches
the metallic strip. This arrangement forms the circuit
interrupter. A capacitor C is connected in parallel to
the circuit interrupter as shown in the figure.

Working

(a) Make and break: When the screw D touches the
strip A, the primary circuit is completed and a current
is established in the primary circuit. Because of the
current in the primary coil, the soft-iron core becomes
magnetized. It attracts the iron hammer H and the

�

	

Figure 38.14

�

��

�

Figure 38.15

#

�

$

�

%

#� �

&

�

'

Figure 38.16

Electromagnetic Induction 295



contact between the screw D and the strip A is broken.
The current stops in the primary circuit, the iron core
is demagnetized and the strip acquires its natural
position. The screw D again touches the strip and the
current is established. This process of successive ‘make
and break’ continues.

(b) Growth and decay of current in the primary:
When the contact between the screw and the strip is
made, the current grows in the primary circuit.
Because of the self-inductance of the primary coil, the
growth will be slow. When the contact is broken, the
current suddenly decreases to zero. The rate of decay
of the current when the circuit is broken is quite high
as compared to the rate of growth of the current when
the circuit is closed.

(c) Induced emf in the secondary: As the current i
in the primary changes, the magnetic flux linked with
the secondary also changes. This induces an emf across
the ends of the secondary coil. This emf appears
between the rods G1 and G2. When the circuit breaks,
⎪
⎪
⎪
 di
dt

 ⎪⎪
⎪
 is very large and hence the emf induced in the

secondary is also very large. With suitable separation
between the rods, one can see sparks jumping from
one rod to the other. One can easily produce emf of
the order of 50000 V starting from a 12 V battery using
the above arrangement. The secondary emf induced at

the time of break is in the opposite direction to that
induced at the time of make. The high emf produced
between the rods can be used to operate equipments
like a discharge tube.

(d) Role of the capacitor: When the circuit is
broken, a large emf is produced due to the
self-induction in the primary which tends to drive a
current in the direction of the original current. A large
potential difference appears between the screw D and
the strip A. This may cause sparks to jump and hence
the current to continue in the same direction. This
reduces the rate of decay of the current thereby
reducing the emf across the secondary. Secondly,
repeated sparks between the screw and the strip
damage the surfaces. The capacitor provides an
alternative path to the current when the circuit is
broken. The current charges the capacitor. Thus,
sparks do not occur across the screw–strip gap and the

current drops more rapidly. This increases ⎪
⎪
⎪
 di
dt

 ⎪⎪
⎪
 and

hence the induced emf across the secondary. Not only
this, the charged capacitor soon gets discharged by
sending a current through the primary in the opposite
direction. Thus, the currrent changes not only from i
to 0 but from i to almost –i. The change in flux is
almost doubled and correspondingly, the induced emf
across the secondary is also increased.

Worked Out Examples

 1. A conducting circular loop is placed in a uniform
magnetic field B = 0.020 T with its plane perpendicular
to the field. Somehow, the radius of the loop starts
shrinking at a constant rate of 1.0 mm s −1. Find the
induced emf in the loop at an instant when the radius
is 2 cm.

Solution : Let the radius be r at time t. The flux of the
magnetic field at this instant is Φ = πr 2B.

Thus,        
dΦ
dt

 = 2πrB dr
dt

 ⋅

The induced emf when r = 2.0 cm is, therefore,

    E  = 2π(2 cm) (0.02 T) (1.0 mm s −1) = 2.5 μV.

 2. A uniform magnetic field B exists in a direction
perpendicular to the plane of a square frame made of
copper wire. The wire has a diameter of 2 mm and a
total length of 40 cm. The magntic field changes with
time at a steady rate dB/dt = 0.02 T s −1. Find the current
induced in the frame. Resistivity of copper
= 1.7 × 10 − 8 Wm.

Solution :

The area A of the loop = 
⎛
⎜
⎝
40 cm

4
⎞
⎟
⎠
 
⎛
⎜
⎝
40 cm

4
⎞
⎟
⎠
 = 0.01 m 2.

If the magnetic field at an instant is B, the flux through
the frame at that instant will be Φ = BA. As the area
remains constant, the magnitude of the emf induced will be

   E  = 
dΦ
dt

 = A 
dB
dt

= (0.01 m 2) (0.02 T/s) = 2 × 10 − 4 V.

The resistance of the loop is R = ρ l
A

= 
(1.7 × 10 − 8 Ωm) (40 cm)

π × 1 mm 2  

= 
(1.7 × 10 − 8 Ωm) (40 × 10 − 2 m)

3.14 × 1 × 10 − 6 m 2
 = 2.16 × 10 − 3 Ω.

Hence, the current induced in the loop will be

i = 
2 × 10 − 4 V

2.16 × 10 − 3 Ω
 = 9.3 × 10 − 2 A.

 3. A conducting circular loop of face area 2.5 × 10 − 3 m 2 is
placed perpendicular to a magnetic field which varies as
B = (0.20 T) sin[(50π s − 1)t]. (a) Find the charge flowing
through any cross-section during the time t = 0 to
t = 40 ms. (b) If the resistance of the loop is 10 Ω, find
the thermal energy developed in the loop in this period.
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Solution : The face area of the loop is A = 2.5 × 10 − 3 m 2

and the magnetic field changes as B = B0 sin ωt where

B0 = 0.20 T and ω = 50π s − 1. The resistance of the loop
is R = 10 Ω.

The flux through the loop at time t is 

          Φ = B0 A sin ωt.
The emf induced is

E  = − 
dΦ
dt

 = − B0 Aω cos ωt.

The current is i = 
E
R

 = − 
Bo Aω

R
 cos ωt = − i0 cos ωt.

The current changes sinusoidally with the time period

T = 
2π
ω

 = 
2π

50π s − 1
 = 40 ms.

(a) The charge flowing through any cross-section in
40 ms is

     Q = ∫ 
0

T

 idt = − i0 ∫ 
0

T

 cos ωt dt

= − 
i0

ω
 [sin ωt]

    0

   T

 = 0.

(b) The thermal energy produced in 40 ms is

  H = ∫ 
0

T

i 2Rdt = i0 
2R ∫ 

0

T

cos 2ωt dt

= 
i0 

2R
2

 ∫ 
0

T

(1 + cos 2ωt) dt

   = 
i0 

2R
2

 
⎡
⎢
⎣
t + 

sin 2ωt
2ω

⎤
⎥
⎦

0

 T

 = 
i0 

2RT
2

 = 
B0 

2A 2ω 2

2R 2
 R

⎛
⎜
⎝

2π
ω

⎞
⎟
⎠
 = 

πB0 
2A 2ω
R

 

= 
π × (0.20 T) 2 × (2.5 × 10 − 3 m 2) 2 × (50π s − 1)

10 Ω

= 1.25 × 10 − 5 J.

 4. A long solenoid of radius 2 cm has 100 turns/cm and is
surrounded by a 100-turn coil of radius 4 cm having a
total resistance of 20 Ω. The coil is connected to a
galvanometer as shown in figure (38-W1). If the current
in the solenoid is changed from 5 A in one direction to
5 A in the opposite direction, find the charge which flows
through the galvanometer.

Solution : If the current in the solenoid is i, the magnetic
field inside the solenoid is B = μ0 ni parallel to its axis.

Outside the solenoid, the field will be zero. The flux of
the magnetic field through the coil will be Φ = Bπr 2N
where r is the radius of the solenoid and N is the number
of turns in the coil. The induced emf will have magnitude

       
dΦ
dt

 = N πr 2 
dB
dt

 = πr 2Nμ0 n 
di
dt

 ⋅

If R denotes the resistance of the coil, the current
through the galvanometer is

I = 
πr 2N

R
 μ0 n 

di
dt

or, I dt = 
πr 2N

R
 μ0 n di.

The total charge passing through the galvanometer is

ΔQ = ∫ I dt = 
πr 2N

R
 μ0 n ∫ di

= 
πr 2 Nμ0 n

R
 Δi

 = 
π(2 cm) 2 × 100 × 4π × 10 − 7 TmA −1 × 100 cm − 1 × 10 A

20 Ω

 ≈ 8 × 10 − 4 C = 800 μC.

 5. The magnetic field B shown in figure (38-W2) is directed
into the plane of the paper. ACDA is a semicircular
conducting loop of radius r with the centre at O. The
loop is now made to rotate clockwise with a constant
angular velocity ω about an axis passing through O and
perpendicular to the plane of the paper. The resistance
of the loop is R. Obtain an expression for the magnitude
of the induced current in the loop. Plot a graph between
the induced current i and ωt, for two periods of rotation.

Solution : When the loop rotates through an angle θ,
which is less than π (figure 38-W3a), the area inside the
field region is

       A = 
θ
π

 
πr 2

2
 = 

θr 2

2
 = 

ωtr 2

2
 ⋅

The flux of the magnetic field at time t is

       Φ = BA = B 
ωtr 2

2
 ⋅ 
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The induced emf = − 
dΦ
dt

 = − 
Bωr 2

2
 ⋅

The magnitude of the induced current will be

           i = 
Bωr 2

2R
 ⋅

As the flux is increasing, the direction of the induced
current will be anticlockwise so that the field due to the
induced current is opposite to the original field.

After half a rotation, the area in the field region will
start decreasing (figure 38-W3b) and will be given by

          A(t) = 
πr 2

2
 − 

ωtr 2

2
 ⋅

Hence, the induced current will have the same
magnitude but opposite sense. The plot for two time
periods is shown in figure (38-W4).

       

 6. Figure (38-W5) shows a square loop having 100 turns,

an area of 2.5 × 10 − 3 m 2 and a resistance of 100 Ω. The
magnetic field has a magnitude B = 0.40 T. Find the
work done in pulling the loop out of the field, slowly and
uniformly in 1.0 s.

         
Solution :

The side of the square is

      l = √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯2.5 × 10 − 3 m 2  = 0.05 m.

As it is uniformly pulled out in 1.0 s, the speed of the
loop is

v = 0.05 m s −1.

The emf induced in the left arm of the loop is
E  = NvBl

= 100 × (0.05 m s −1) × (0.40 T) × (0.05 m)

= 0.1 V.

The current in the loop is

i = 
0.1 V
100 Ω

 = 1.0 × 10 − 3 A.

The force on the left arm due to the magnetic field is

   F = NilB = 100 × (1.0 × 10 − 3 A) × (0.05 m) × (0.40 T)

       = 2.0 × 10 − 3 N.

This force is towards left in the figure. To pull the loop

uniformly, an external force of 2.0 × 10 − 3 N towards
right must be applied. The work done by this force is

     W = (2.0 × 10 − 3 N) × (0.05 m) = 1.0 × 10 − 4 J.

 7. Magadh Express takes 16 hours to cover the distance of
960 km between Patna and Gaziabad. The rails are
separated by 130 cm and the vertical component of the

earth’s magnetic field is 4.0 × 10 − 5 T. (a) Find the
average emf induced across the width of the train. (b) If
the leakage resistance between the rails is 100 Ω, find
the retarding force on the train due to the magnetic field.

Solution : As the train moves in a magnetic field, a
motional emf E  = vBl is produced across its width. Here
B is the component of the magnetic field in a direction
perpendicular to the plane of the motion, i.e., the vertical
component.

The speed of the train is v = 
960 km

16 h
 = 16.67 m s −1.

Thus, E  = (16.67 m s −1) (4.0 × 10 − 5 T) (1.30 m)

= 8.6 × 10 − 4 V.

The leakage current is i = E /R and the retarding force
is

   F = ilB = 
8.6 × 10 − 4 V

100 Ω
 × 1.3 m × 4.0 × 10 − 5 T

= 4.47 × 10 − 10 N.

 8. A square loop of edge a having n turns is rotated with
a uniform angular velocity ω about one of its diagonals
which is kept fixed in a horizontal position (figure
38-W6). A uniform magnetic field B exists in the vertical
direction. Find the emf induced in the coil.

              
Solution : The area of the square frame is A = a2. If the

normal to the frame makes an angle θ = 0 with the
magnetic field at t = 0, this angle will become θ = ωt at
time t. The flux of the magnetic field at this time is

        Φ = nBA cos θ = nBa 2 cos ωt.

The induced emf is

E  = − 
dΦ
dt

 = nBa 2ω sin ωt.

Thus, an alternating emf is induced in the coil.

 9. A conducting circular loop of radius r is rotated about
its diameter at a constant angular velocity ω in a

�

� � �� �� ��

���
�

Figure 38-W4

�

Figure 38-W5

�

Figure 38-W6
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magnetic field B perpendicular to the axis of rotation. In
what position of the loop is the induced emf zero ?

Solution : Suppose, the normal to the loop is parallel to
the magnetic field at t = 0. At time t, the normal will
make an angle θ = ωt with this position. The flux of the
magnetic field through the loop is 

         Φ = Bπr 2 cos ωt

so that the induced emf at time t is

E  = ωBπr 2 sin ωt.

This is zero when ωt = nπ, i.e., when θ = 0, π, 2π, ..., etc.
These are the positions when the plane of the loop is
normal to the magnetic field. It may be noted that at
these positions, the flux has the maximum magnitude. 

10. Figure (38-W7) shows a horizontal magnetic field which
is uniform above the dotted line and is zero below it. A
long, rectangular, conducting loop of width L, mass m
and resistance R is placed partly above and partly below
the dotted line with the lower edge parallel to it. With
what velocity should it be pushed downwards so that it
may continue to fall without any acceleration ?

Solution : Let the uniform velocity of fall be v. The emf is
induced across the upper wire and its magnitude is
E  = vBl. The current induced in the frame is

              i = vBl
R

so that, the magnetic force on the upper arm is

F = ilB = vB 
2
l 

2

R
 ⋅ This force is in the upward direction.

As the frame falls uniformly, this force should balance
its weight. Thus,

              mg = 
vB 2l 2

R

or,   v = 
mgR
B 2l 2 ⋅

11. Figure (38-W8a) shows a wire of length l which can slide
on a U-shaped rail of negligible resistance. The resistance
of the wire is R. The wire is pulled to the right with a

constant speed v. Draw an equivalent circuit diagram
representing the induced emf by a battery. Find the
current in the wire using this diagram.

Solution : The emf is induced due to the moving wire. The
magnitude of this emf is E  = vBl. As the wire moves

towards right, the force qv
→
 × B

→
 on a positive charge acts

in the upward direction in the figure. The positive
terminal of the equivalent battery appears upwards. The
resistance of the wire acts as the internal resistance of
the equivalent battery. The equivalent circuit is drawn
in figure (38-W8b).
The current in the circuit is, from Ohm’s law,

           i = 
E
R

 = vBl
R

 ⋅

It is in the upward direction along the wire.

12. A rod of length l is translating at a velocity v making
an angle θ with its length. A uniform magnetic field B
exists in a direction perpendicular to the plane of motion.
Calculate the emf induced in the rod. Draw a figure
representing the induced emf by an equivalent battery.

Solution :

The situation is shown in figure (38-W9a). The
component of the velocity perpendicular to the length of
the rod is v⊥ = v sinθ. Only this component is effective in
producing the emf in the rod. As the magnetic field is
perpendicular to the plane of motion, the emf induced
across the ends is
           E  = v⊥Bl = vBl sinθ.

In the figure shown, the positive charges of the rod shift

towards left due to the force qv
→
 × B

→
. Thus, the left side

of the rod is electrically positive. Figure (38-W9b) shows
the equivalent battery.

13. The horizontal component of the earth’s magnetic field

at a place is 3.0 × 10 − 4 T and the dip is 53°. A metal rod
of length 25 cm is placed in the north–south direction
and is moved at a constant speed of 10 cm s −1 towards
east. Calculate the emf induced in the rod.

Solution : The induced emf is E  = vBl where l is the length
of the rod, v is its speed in the perpendicular direction
and B is the component of the magnetic field
perpendicular to both l and v. In the present case, B is
the vertical component of the earth’s magnetic field.

The dip at a place is given by

E�����
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     tan δ = 
BV

BH

or,    BV = BH tan δ

       = (3.0 × 10 − 4 T) tan 53° = 4.0 × 10 − 4 T.
The emf induced is E  = vBl

= (0.10 m s −1) × (4.0 × 10 − 4 T) × (0.25 m)

= 1.0 × 10 − 5 V = 10 μV.

14. An angle aob made of a conducting wire moves along its
bisector through a magnetic field B as suggested by figure
(38-W10a). Find the emf induced between the two free
ends if the magnetic field is perpendicular to the plane
of the angle.

Solution : Consider the circuit as being closed externally,
as shown in the figure. If ad = x, the area of the
rectangular part abcd is A = 2xl sin(θ/2). As the angle
moves towards right, the flux of the magnetic field
through this rectangular area decreases at the rate

        
dΦ
dt

 = B 
dA
dt

 = 2Blv sin(θ/2).

This is also the rate of decrease of the flux through the
closed circuit shown in the figure. So the induced emf is

E  = 2Blv sin(θ/2).
As the emf is induced solely because of the movement
of the angle, this is the emf induced between its ends.

Alternative method

The rod oa is equivalent to a battery of emf vBl sin(θ/2).
The positive charges of oa shift towards a due to the

force qv
→
 × B

→
. The positive terminal of the battery appears

towards a. Similarly, the rod ob is equivalent to a
battery of emf vBl sin(θ/2) with the positive terminal
towards o. The equivalent circuit is shown in figure
(38-W10b). Clearly, the emf between the points a and b
is 2 Blv sin(θ/2).

15. Figure (38-W11a) shows a wire ab of length l and
resistance R which can slide on a smooth pair of rails.

Ig is a current generator which supplies a constant
current i in the circuit. If the wire ab slides at a speed
v towards right, find the potential difference between a
and b.

Solution : The moving wire ab is equivalent to a battery
of emf vBl having a resistance R. If it moves towards
right and the magnetic field is going into the plane of

the figure, the force qv
→
 × B

→
 will push the positive charges

towards a. Thus the positive terminal of the equivalent
battery is towards a. An equivalent circuit is shown in
figure (38-W13b). The potential difference between a and
b is
            Va − Vb = vBl − iR.

16. A square loop of side 10 cm and resistance 1 Ω is moved
towards right with a constant velocity v0 as shown in
figure (38-W12). The left arm of the loop is in a uniform
magnetic field of 2 T. The field is perpendicular to the
plane of the drawing and is going into it. The loop is
connected to a network of resistors each of value 3 Ω.
With what speed should the loop be moved so that a
steady current of 1 mA flows in the loop. 

Solution : The equivalent resistance of the network of the
resistors, between P and Q will be 3 Ω. The total
resistance of the circuit is 1 Ω + 3 Ω = 4 Ω.
The emf induced in the loop is

         E  = vBl = v0(2 T) (10 cm).

The current in the loop will be i = 
E
R

or,       1 × 10 − 3 A = 
v0(2 T) (0.1 m)

4 Ω

giving v0 = 
(4 Ω) (1 × 10 − 3 A)

0.2 Tm
 = 2 cm s −1.

17. A metal rod of length l rotates about an end with a
uniform angular velocity ω . A uniform magnetic field

B
→

 exists in the direction of the axis of rotation. Calculate
the emf induced between the ends of the rod. Neglect the
centripetal force acting on the free electrons as they move
in circular paths.

Solution : 
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Consider an element dx of the rod at a distance x from
the axis of rotation. The linear speed of this element is
x. The element moves in a direction perpendicular to
its length as well as perpendicular to the magnetic field.
The emf induced between the ends of this element is

        dE   B x dx.

The emfs of all such elements will add to give the net
emf between the ends of the rod. This emf is, therefore,

E    dE    
0

l

B x dx  
1
2

 Bl 2.

18. Figure (38-W14a) shows a conducting circular loop of
radius a placed in a uniform, perpendicular magnetic
field B. A metal rod OA is pivoted at the centre O of the
loop. The other end A of the rod touches the loop. The
rod OA and the loop are resistanceless but a resistor
having a resistance R is connected between O and a fixed
point C on the loop. The rod OA is made to rotate
anticlockwise at a small but uniform angular speed  by
an external force. Find (a) the current in the resistance
R and (b) the torque of the external force needed to keep
the rod rotating with the constant angular velocity .

Solution : The emf between the ends of the rotating rod is

       E    dE    
0

a

B x dx  
1
2

 B a 2.

The positive charges of the rod will be pushed towards
O by the magnetic field. Thus, the rod may be replaced

by a battery of emf  1
2
 B a 2 with the positive terminal

towards O. The equivalent circuit diagram is shown in
figure (38-W14b). The circular loop joins A to C by a
resistanceless path.

(a) The current in the resistance R is

           i  
E
R

  
B a 2

2R
 

(b) The force on the rod due to the magnetic field is
F  iaB. As the force is uniformly distributed over OA,
it may be assumed to act at the middle point of OA. The
torque is, therefore,

          iaB a
2
  

B 
2 a 4

4R

in clockwise direction. To keep the rod rotating at

uniform angular velocity, an external torque 
B 

2 a 
4

4R
 in

anticlockwise direction is needed.

19. Figure (38-W15) shows a conducting loop abcdefa made
of six segments ab, bc, cd, de, ef and fa, each of length
l. Each segment makes a right angle with the next so
that abc is in the x–z plane, cde in the x–y plane and efa
is in the y–z plane. A uniform magnetic field B exists
along the x-axis. If the magnetic field changes at a rate
dB
dt

 , find the emf induced in the loop.

Solution : As the magnetic field is along the x-axis, the
flux through the loop is equal to the magnetic field
multiplied by the area of projection of the loop on the
y–z plane. This projection on the y–z plane will be aoef
which has an area l 2. Thus, the flux is   Bl 2. The

induced emf is E  dB
dt

 l 2.

20. A wire of mass m and length l can freely slide on a pair
of parallel, smooth, horizontal rails placed in a vertical
magnetic field B (figure 38-W16). The rails are connected
by a capacitor of capacitance C. The electric resistance
of the rails and the wire is zero. If a constant force F
acts on the wire as shown in the figure, find the
acceleration of the wire.

Solution : Suppose the velocity of the wire is v at time t.
The induced emf is E  vBl. As there is no resistance
anywhere, the charge on the capacitor will be
            q  CE  CvBl

at time t. The current in the circuit will be

         i  
dq
dt

  CBl 
dv
dt

  CBla.

Because of this current through the wire, there will be
a magnetic force

F   ilB  CB 2l 2a

towards left. The net force on the wire is F  F .

From Newton’s law,
         F  F   ma

Figure 38-W14

Figure 38-W15

� �

Figure 38-W16
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or,       F − CB 2l 2a = ma

or,         a = 
F

m + CB 2l 2 ⋅

21. An inductor coil stores 32 J of magnetic field energy and
dissipates energy as heat at the rate of 320 W when a
current of 4 A is passed through it. Find the time
constant of the circuit when this coil is joined across an
ideal battery.

Solution : The magnetic field energy stored in an inductor

is           U = 1
2
 Li 2.

Thus,      32 J = 
1
2

 L(4 A) 2

or, L = 4 H.

The power dissipated as heat is given by

        P = i 2R

or,    320 W = (4 A) 2R,  giving R = 20 Ω.

The time constant of the circuit is

       τ = 
L
R

 = 
4 H
20 Ω

 = 0.2 s.

22. A 12 V battery connected to a 6 Ω, 10 H coil through a
switch drives a constant current in the circuit. The switch
is suddenly opened. Assuming that it took 1 ms to open
the switch, calculate the average emf induced across
the coil.

Solution : The steady-state current is 12 V
6 Ω

 = 2 A. The final

current is zero. Thus,

        
di
dt

 = − 
2 A

1 ms
 = − 2 × 10 3 A s −1.

The induced emf is E  = − 
dΦ
dt

 = − L di
dt

     = − (10 H) × (− 2 × 10 3A s −1) = 20000 V.

Such a high emf may cause sparks across the open
switch.

23. A solenoid of inductance  50 mH and resistance 10 Ω is
connected to a battery of 6 V. Find the time elapsed before
the current acquires half of its steady-state value.

Solution : The time constant of the circuit is
         τ = L/R = 50 mH/10 Ω = 5 ms.

The current at time t is given by

    i = i0(1 − e − t/τ).

For         i = i0/2,

     i0 /2 = i0(1 − e − t/τ)

or, e − t/τ = 1
2

or, 
t
τ
 = ln 2

giving t = τ ln 2 = (5 ms) (0.693) = 3.5 ms.

24. An LR circuit having L = 4.0 H, R = 1.0 Ω and E  = 6.0 V
is switched on at t = 0. Find the power dissipated in Joule
heating at t = 4.0 s.

Solution : The time constant of the circuit is 

     τ = L/R = 4.0 H/1.0 Ω = 4.0 s.

The current at t = 4.0 s is, therefore,

i = 
E
R

 (1 − e − t/τ) = (6 A) ⎛⎜
⎝
1 − 

1
e

⎞
⎟
⎠

= (6 A) × (0.63) = 3.8 A.

The power dissipated in Joule heating = i 2 R

= (3.8 A) 2 × 10 Ω ≈ 140 Ω.

25. An LR combination is connected to an ideal battery. If
L = 10 mH, R = 2.0 Ω and E  = 2.0 V, how much time
will it take for the current to reach 0.63 A ?

Solution : The steady-state current in the LR circuit is

      i0 = E /R = 2.0 V/2.0 Ω = 1 A.

Thus, 0.63 A is 63% of the steady-state current. As we
know, it takes one time constant for the current to reach
63% of its steady-state value. Hence the required time

           = L/R = 10 mH/2.0 Ω = 5.0 ms.

26. An inductor–resistance–battery circuit is switched on at
t = 0. If the emf of the battery is E , find the charge which
passes through the battery in one time constant τ.

Solution : The current at time t is given by

      i = i0(1 − e − t/τ)  where  i0 = E /R.

The charge passed through the battery during the period
t to t + dt is i dt. Thus, the total charge passed during
0 to τ is

    Q = ∫ 
0

τ

 i dt = i0 ∫ 
0

τ

 (1 − e − t/τ) dt = i0

⎡
⎢
⎣
t − 

e − t/τ

− 1/τ
⎤
⎥
⎦0

 τ

= i0[τ + τ(e − 1 − 1)] = i0 τ/e.

27. A coil of inductance 1.0 H and resistance 100 Ω is
connected to a battery of emf 12 V. Find the energy stored
in the magnetic field associated with the coil at an
instant 10 ms after the circuit is switched on.

Solution : The energy in the magnetic field associated with
the coil is

          U = 
1
2

 Li 2 = 
1
2

 L
⎡
⎢
⎣
E
R

 (1 − e − t/τ)
⎤
⎥
⎦

 2

. … (i)

The time constant of the circuit is

     τ = 
L
R

 = 
1.0 H
100 Ω

 = 10 ms.
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Putting the numerical values in (i), the energy at
t = 10 ms is

      
1
2

 × (1.0 H) × [0.12 A(1 − 1/e)] 2

= 2.8 mJ.

28. An inductance L and a resistance R are connected in
series with a battery of emf E . Find the maximum rate
at which the energy is stored in the magnetic field.

Solution :

The energy stored in the magnetic field at time t is

        U = 
1
2

 Li 2 = 
1
2

 Li0
 2 (1 − e − t/τ) 2.

The rate at which the energy is stored is

P = 
dU
dt

 = Li0
 2(1 − e − t/τ) (− e − t/τ) ⎛⎜

⎝
− 

1
τ

⎞
⎟
⎠

= 
Li0

 2

τ
(e − t/τ − e − 2t/τ). … (i)

   This rate will be maximum when 
dP
dt

 = 0

   or,         
Li0

 2

τ
 ⎛⎜
⎝
− 

1
τ
 e − t/τ + 

2
τ
 e − 2t/τ⎞

⎟
⎠
 = 0

   or, e − t/τ = 
1
2

 ⋅

Putting in (i),

         Pmax = 
Li0

 2

τ
 ⎛⎜
⎝

1
2

 − 
1
4

⎞
⎟
⎠

= 
LE 2

4R 2(L/R)
 = 

E  2

4R
 ⋅

29. Two conducting circular loops of radii R1 and R2 are
placed in the same plane with their centres coinciding.
Find the mutual inductance between them assuming
R2 << R1.

Solution : Suppose a current i is established in the outer
loop. The magnetic field at the centre will be

             B = 
μ0 i
2R1

 ⋅

As the radius R2 of the inner coil is small compared to
R1, the flux of magnetic field through it will be
approximately

         Φ = 
μ0 i
2R1

 πR2 
2

so that the mutual inductance is

            M = 
Φ
i

 = 
μ0 πR2 

2

2R1

 ⋅

QUESTIONS FOR SHORT ANSWER

 1. A metallic loop is placed in a nonuniform magnetic field.
Will an emf be induced in the loop ?

 2. An inductor is connected to a battery through a switch.
Explain why the emf induced in the inductor is much
larger when the switch is opened as compared to the
emf induced when the switch is closed.

 3. The coil of a moving-coil galvanometer keeps on
oscillating for a long time if it is deflected and released.
If the ends of the coil are connected together, the
oscillation stops at once. Explain.

 4. A short magnet is moved along the axis of a conducting
loop. Show that the loop repels the magnet if the magnet
is approaching the loop and attracts the magnet if it is
going away from the loop.

 5. Two circular loops are placed coaxially but separated by
a distance. A battery is suddenly connected to one of the
loops establishing a current in it. Will there be a current
induced in the other loop ? If yes, when does the current
start and when does it end ? Do the loops attract each
other or do they repel ?

 6. The battery discussed in the previous question is
suddenly disconnected. Is a current induced in the other
loop ? If yes, when does it start and when does it end ?
Do the loops attract each other or repel ?

 7. If the magnetic field outside a copper box is suddenly
changed, what happens to the magnetic field inside the

box ? Such low-resistivity metals are used to form
enclosures which shield objects inside them against
varying magnetic fields.

 8. Metallic (nonferromagnetic) and nonmetallic particles in
a solid waste may be separated as follows. The waste is
allowed to slide down an incline over permanent
magnets. The metallic particles slow down as compared
to the nonmetallic ones and hence are separated. Discuss
the role of eddy currents in the process.

 9. A pivoted aluminium bar falls much more slowly
through a small region containing a magnetic field than
a similar bar of an insulating material. Explain.

10. A metallic bob A oscillates through the space between
the poles of an electromagnet (figure 38-Q1). The
oscillations are more quickly damped when the circuit
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is on, as compared to the case when the circuit is off.
Explain.

11. Two circular loops are placed with their centres
separated by a fixed distance. How would you orient the
loops to have (a) the largest mutual inductance (b) the
smallest mutual inductance ?

12. Consider the self-inductance per unit length of a solenoid
at its centre and that near its ends. Which of the two
is greater ?

13. Consider the energy density in a solenoid at its centre
and that near its ends. Which of the two is greater ?

OBJECTIVE I

 1. A rod of length l rotates with a small but uniform
angular velocity ω about its perpendicular bisector. A
uniform magnetic field B exists parallel to the axis of
rotation. The potential difference between the centre of
the rod and an end is

(a) zero   (b) 
1
8

 ωBl 2   (c) 
1
2

 ωBl 2   (d) Bωl 2.

 2. A rod of length l rotates with a uniform angular velocity
ω about its perpendicular bisector. A uniform magnetic
field B exists parallel to the axis of rotation. The
potential difference between the two ends of the rod is

(a) zero    (b) 1
2
 Blω 2   (c) Blω 2    (d) 2Blω 2.

 3. Consider the situation shown in figure (38-Q2). If the
switch is closed and after some time it is opened again,
the closed loop will show 
(a) an anticlockwise current-pulse
(b) a clockwise current-pulse
(c) an anticlockwise current-pulse and then a clockwise
       current-pulse
(d) a clockwise current-pulse and then an anticlockwise
       current-pulse.

 4. Solve the previous question if the closed loop is
completely enclosed in the circuit containing the switch.

 5. A bar magnet is released from rest along the axis of a
very long, vertical copper tube. After some time the
magnet
(a) will stop in the tube
(b) will move with almost contant speed
(c) will move with an acceleration g
(d) will oscillate. 

 6. Figure (38-Q3) shows a horizontal solenoid connected to
a battery and a switch. A copper ring is placed on a
frictionless track, the axis of the ring being along the
axis of the solenoid. As the switch is closed, the ring will
(a) remain stationary
(b) move towards the solenoid

(c) move away from the solenoid
(d) move towards the solenoid or away from it
       depending on which terminal (positive or negative)
       of the battery is connected to the left end of the solenoid.

 7. Consider the following statements:
(A) An emf can be induced by moving a conductor in a
       magnetic field.
(B) An emf can be induced by changing the magnetic
       field.
(a) Both A and B are true. (b) A is true but B is false.
(c) B is true but A is false.   (d) Both A and B are false.

 8. Consider the situation shown in figure (38-Q4). The wire
AB is slid on the fixed rails with a constant velocity. If
the wire AB is replaced by a semicircular wire, the
magnitude of the induced current will
(a) increase    (b) remain the same    (c) decrease
(d) increase or decrease depending on whether the semi-
       circle bulges towards the resistance or away from it.

 9. Figure (38-Q5a) shows a conducting loop being pulled
out of a magnetic field with a speed v. Which of the four
plots shown in figure (38-Q5b) may represent the power
delivered by the pulling agent as a function of the
speed v ?

10. Two circular loops of equal radii are placed coaxially at
some separation. The first is cut and a battery is
inserted in between to drive a current in it. The current
changes slightly because of the variation in resistance
with temperature. During this period, the two loops 
(a) attract each other       (b) repel each other
(c) do not exert any force on each other
(d) attract or repel each other depending on the sense
       of the current.
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11. A small, conducting circular loop is placed inside a long
solenoid carrying a current. The plane of the loop
contains the axis of the solenoid. If the current in the
solenoid is varied, the current induced in the loop is
(a) clockwise    (b) anticlockwise    (c) zero
(d) clockwise or anticlockwise depending on whether the
       resistance is increased or decreased.

12. A conducting square loop of side l and resistance R
moves in its plane with a uniform velocity v
perpendicular to one of its sides. A uniform and constant
magnetic field B exists along the perpendicular to the

plane of the loop as shown in figure (38-Q6). The current
induced in the loop is
(a) Blv/R clockwise      (b) Blv/R anticlockwise
(c) 2Blv/R anticlockwise   (d) zero.

OBJECTIVE II

 1. A bar magnet is moved along the axis of a copper ring
placed far away from the magnet. Looking from the side
of the magnet, an anticlockwise current is found to be
induced in the ring. Which of the following may be true ?

(a) The south pole faces the ring and the magnet moves
towards it.

(b) The north pole faces the ring and the magnet moves
towards it.

(c) The south pole faces the ring and the magnet moves
away from it.

(d) The north pole faces the ring and the magnet moves
away from it.

 2. A conducting rod is moved with a constant velocity v in
a magnetic field. A potential difference appears across
the two ends
(a) if v

→
  ⎢⎢ l

→
     (b) if v

→
  ⎢⎢ B

→
     (c) if l

→
  ⎢⎢ B

→
 

(d) none of these.
 3. A conducting loop is placed in a uniform magnetic field

with its plane perpendicular to the field. An emf is
induced in the loop if
(a) it is translated 
(b) it is rotated about its axis
(c) it is rotated about a diameter 
(d) it is deformed.

 4. A metal sheet is placed in front of a strong magnetic
pole. A force is needed to
(a) hold the sheet there if the metal is magnetic
(b) hold the sheet there if the metal is nonmagnetic
(c) move the sheet away from the pole with uniform
velocity if the metal is magnetic 
(d) move the sheet away from the pole with uniform
velocity if the metal is nonmagnetic.
Neglect any effect of paramagnetism, diamagnetism and
gravity.

 5. A constant current i is maintained in a solenoid. Which
of the following quantities will increase if an iron rod is
inserted in the solenoid along its axis ?
(a) magnetic field at the centre
(b) magnetic flux linked with the solenoid
(c) self-inductance of the solenoid
(d) rate of Joule heating.

 6. Two solenoids have identical geometrical construction
but one is made of thick wire and the other of thin wire.

Which of the following quantities are different for the
two solenoids ?
(a) self-inductance 
(b) rate of Joule heating if the same current goes
through them
(c) magnetic field energy if the same current goes
through them
(d) time constant if one solenoid is connected to one
battery and the other is connected to another battery.

 7. An LR circuit with a battery is connected at t = 0. Which
of the following quantities is not zero just after the
connection ?
(a) Current in the circuit
(b) Magnetic field energy in the inductor
(c) Power delivered by the battery
(d) Emf induced in the inductor

 8. A rod AB moves with a uniform velocity v in a uniform
magnetic field as shown in figure (38-Q7). 
(a) The rod becomes electrically charged.
(b) The end A becomes positively charged.
(c) The end B becomes positively charged.
(d) The rod becomes hot because of Joule heating.

 9. L, C and R represent the physical quantities inductance,
capacitance and resistance respectively. Which of the
following combinations have dimensions of frequency ?

(a) 
1

RC
     (b) 

R
L

     (c) 
1

√⎯⎯⎯⎯LC
      (d) C/L.

10. The switches in figure (38-Q8a) and (38-8b)  are closed
at t = 0 and reopened after a long time at t = t0.
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    (a) The charge on C just after t  0 is E C.

    (b) The charge on C long after t  0 is E C.

    (c) The current in L just before t  t0 is E /R.

    (d) The current in L long after t  t0 is E /R.

EXERCISES

 1. Calculate the dimensions of (a)   Edl

, (b) vBl and

(c) 
dB

dt
  The symbols have their usual meanings.

 2. The flux of magnetic field through a closed conducting
loop changes with time according to the equation,
  at 2  bt  c. (a) Write the SI units of a, b and c. (b) If
the magnitudes of a, b and c are 0.20, 0.40 and 0.60
respectively, find the induced emf at t  2 s.

 3. (a) The magnetic field in a region varies as shown in
figure (38-E1). Calculate the average induced emf in a
conducting loop of area 2.0  10  3 m 2 placed
perpendicular to the field in each of the 10 ms intervals
shown. (b) In which intervals is the emf not constant ?
Neglect the behaviour near the ends of 10 ms intervals.

 4. A conducting circular loop having a radius of 5.0 cm, is
placed perpendicular to a magnetic field of 0.50 T. It is
removed from the field in 0.50 s. Find the average emf
produced in the loop during this time.

 5. A conducting circular loop of area 1 mm 2 is placed
coplanarly with a long, straight wire at a distance of
20 cm from it. The straight wire carries an electric
current which changes from 10 A to zero in 0.1 s. Find
the average emf induced in the loop in 0.1 s.

 6. A square-shaped copper coil has edges of length 50 cm
and contains 50 turns. It is placed perpendicular to a
1.0 T magnetic field. It is removed from the magnetic
field in 0.25 s and restored in its original place in the
next 0.25 s. Find the magnitude of the average emf
induced in the loop during (a) its removal, (b) its
restoration and (c) its motion.

 7. Suppose the resistance of the coil in the previous
problem is 25 . Assume that the coil moves with
uniform velocity during its removal and restoration.
Find the thermal energy developed in the coil during
(a) its removal, (b) its restoration and (c) its motion.

 8. A conducting loop of area 5.0 cm 2 is placed in a magnetic
field which varies sinusoidally with time as
B  B0 sin t where Bo  0.20 T and  300 s  1. The
normal to the coil makes an angle of 60 with the field.
Find (a) the maximum emf induced in the coil, (b) the
emf induced at   (/900)s and (c) the emf induced at
t  (/600) s.

 9. Figure (38-E2) shows a conducting square loop placed
parallel to the pole-faces of a ring magnet. The pole-faces
have an area of 1 cm 2 each and the field between the
poles is 0.10 T. The wires making the loop are all outside
the magnetic field. If the magnet is removed in 1.0 s,
what is the average emf induced in the loop ?

10. A conducting square loop having edges of length 2.0 cm
is rotated through 180 about a diagonal in 0.20 s. A
magnetic field B exists in the region which is
perpendicular to the loop in its initial position. If the
average induced emf during the rotation is 20 mV, find
the magnitude of the magnetic field.

11. A conducting loop of face-area A and resistance R is
placed perpendicular to a magnetic field B. The loop is
withdrawn completely from the field. Find the charge
which flows through any cross-section of the wire in the
process. Note that it is independent of the shape of the
loop as well as the way it is withdrawn.

12. A long solenoid of radius 2 cm has 100 turns/cm and
carries a current of 5 A. A coil of radius 1 cm having
100 turns and a total resistance of 20   is placed inside
the solenoid coaxially. The coil is connected to a
galvanometer. If the current in the solenoid is reversed
in direction, find the charge flown through the
galvanometer.

13. Figure (38-E3) shows a metallic square frame of edge a
in a vertical plane. A uniform magnetic field B exists in
the space in a direction perpendicular to the plane of
the figure. Two boys pull the opposite corners of the
square to deform it into a rhombus. They start pulling
the corners at t  0 and displace the corners at a uniform
speed u. (a) Find the induced emf in the frame at the
instant when the angles at these corners reduce to 60.
(b) Find the induced current in the frame at this instant
if the total resistance of the frame is R. (c) Find the
total charge which flows through a side of the frame by
the time the square is deformed into a straight line.
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14. The north pole of a magnet is brought down along the
axis of a horizontal circular coil (figure 38-E4). As a
result, the flux through the coil changes from 0.35 weber
to 0.85 weber in an interval of half a second. Find the
average emf induced during this period. Is the induced
current clockwise or anticlockwise as you look into the
coil from the side of the magnet ?

15. A wire-loop confined in a plane is rotated in its own
plane with some angular velocity. A uniform magnetic
field exists in the region. Find the emf induced in the
loop.

16. Figure (38-E5) shows a square loop of side 5 cm being
moved towards right at a constant speed of 1 cm/s. The
front edge enters the 20 cm wide magnetic field at
t = 0. Find the emf induced in the loop at (a) t = 2 s,
(b) t = 10 s, (c) t = 22 s and (d) t = 30 s.

17. Find the total heat produced in the loop of the previous
problem during the interval 0 to 30 s if the resistance
of the loop is 4.5 mΩ.

18. A uniform magnetic field B exists in a cylindrical region
of radius 10 cm as shown in figure (38-E6). A uniform
wire of length 80 cm and resistance 4.0 Ω is bent into a
square frame and is placed with one side along a
diameter of the cylindrical region. If the magnetic field
increases at a constant rate of 0.010 T/s, find the current
induced in the frame.

19. The magnetic field in the cylindrical region shown in
figure (38-E7) increases at a constant rate of 20.0 mT/s.
Each side of the square loop abcd and defa has a length
of 1.00 cm and a resistance of 4.00 Ω. Find the current
(magnitude and sense) in the wire ad if (a) the switch
S1 is closed but S2 is open, (b) S1 is open but S2 is closed,
(c) both S1 and S2 are open and (d) both S1 and S2 are
closed.

20. Figure (38-E8) shows a circular coil of N turns and
radius a, connected to a battery of emf E through a
rheostat. The rheostat has a total length L and
resistance R. The resistance of the coil is r. A small
circular loop of radius a′ and resistance r′ is placed
coaxially with the coil. The centre of the loop is at a
distance x from the centre of the coil. In the beginning,
the sliding contact of the rheostat is at the left end and
then onwards it is moved towards right at a constant
speed v. Find the emf induced in the small circular loop
at the instant (a) the contact begins to slide and (b) it
has slid through half the length of the rheostat.

21. A circular coil of radius 2.00 cm has 50 turns. A uniform
magnetic field B = 0.200 T exists in the space in a
direction parallel to the axis of the loop. The coil is now
rotated about a diameter through an angle of 60.0°. The
operation takes 0.100 s. (a) Find the average emf
induced in the coil. (b) If the coil is a closed one (with
the two ends joined together) and has a resistance of
4.00 Ω, calculate the net charge crossing a cross-section
of the wire of the coil.

22. A closed coil having 100 turns is rotated in a uniform
magnetic field B = 4.0 × 10 − 4 T about a diameter which
is perpendicular to the field. The angular velocity of
rotation is 300 revolutions per minute. The area of the
coil is 25 cm 2 and its resistance is 4.0 Ω. Find (a) the
average emf developed in half a turn from a position
where the coil is perpendicular to the magnetic field,
(b) the average emf in a full turn and (c) the net charge
displaced in part (a).

23. A coil of radius 10 cm and resistance 40 Ω has 1000
turns. It is placed with its plane vertical and its axis
parallel to the magnetic meridian. The coil is connected
to a galvanometer and is rotated about the vertical
diameter through an angle of 180°. Find the charge
which flows through the galvanometer if the horizontal
component of the earth’s magnetic field is
BH = 3.0 × 10 − 5 T.

24. A circular coil of one turn of radius 5.0 cm is rotated
about a diameter with a constant angular speed of 80
revolutions per minute. A uniform magnetic field
B = 0.010 T exists in a direction perpendicular to the
axis of rotation. Find (a) the maximum emf induced, (b)
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the average emf induced in the coil over a long period
and (c) the average of the squares of emf induced over
a long period.

25. Suppose the ends of the coil in the previous problem are
connected to a resistance of 100 . Neglecting the
resistance of the coil, find the heat produced in the
circuit in one minute.

26. Figure (38-E9) shows a circular wheel of radius 10.0 cm
whose upper half, shown dark in the figure, is made of
iron and the lower half of wood. The two junctions are
joined by an iron rod. A uniform magnetic field B of
magnitude 2.00  10  4 T exists in the space above the
central line as suggested by the figure. The wheel is set
into pure rolling on the horizontal surface. If it takes
2.00 seconds for the iron part to come down and the
wooden part to go up, find the average emf induced
during this period.

27. A 20 cm long conducting rod is set into pure translation
with a uniform velocity of 10 cm s1 perpendicular to its
length. A uniform magnetic field of magnitude 0.10 T
exists in a direction perpendicular to the plane of
motion. (a) Find the average magnetic force on the free
electrons of the rod. (b) For what electric field inside the
rod, the electric force on a free electron will balance the
magnetic force ? How is this electric field created ?
(c) Find the motional emf between the ends of the rod.

28. A metallic metre stick moves with a velocity of 2 m s1 in
a direction perpendicular to its length and perpendicular
to a uniform magnetic field of magnitude 0.2 T. Find the
emf induced between the ends of the stick.

29. A 10 m wide spacecraft moves through the interstellar
space at a speed 3  10 7 m s1. A magnetic field

B  3  10  10 T exists in the space in a direction
perpendicular to the plane of motion. Treating the
spacecraft as a conductor, calculate the emf induced
across its width.

30. The two rails of a railway track, insulated from each other
and from the ground, are connected to a millivoltmeter.
What will be the reading of the millivoltmeter when a train
travels on the track at a speed of 180 km h1 ? The vertical
component of earth’s magnetic field is  0.2  10  4 T and
the rails are separated by 1 m.

31. A right-angled triangle abc, made from a metallic wire,
moves at a uniform speed v in its plane as shown in

figure (38-E10). A uniform magnetic field B exists in the
perpendicular direction. Find the emf induced (a) in the
loop abc, (b) in the segment bc, (c) in the segment ac
and (d) in the segment ab. 

32. A copper wire bent in the shape of a  semicircle of radius
r translates in its plane with a constant velocity v. A
uniform magnetic field B exists in the direction
perpendicular to the plane of the wire. Find the emf
induced between the ends of the wire if (a) the velocity
is perpendicular to the diameter joining free ends,
(b) the velocity is parallel to this diameter.

33. A wire of length 10 cm translates in a direction making
an angle of 60 with its length. The plane of motion is
perpendicular to a uniform magnetic field of 1.0 T that
exists in the space. Find the emf induced between the
ends of the rod if the speed of translation is 20 cm s1.

34. A circular copper-ring of radius r translates in its plane
with a constant velocity v. A uniform magnetic field B
exists in the space in a direction perpendicular to the
plane of the ring. Consider different pairs of
diametrically opposite points on the ring. (a) Between
which pair of points is the emf maximum ? What is the
value of this maximum emf ? (b) Between which pair of
points is the emf minimum ? What is the value of this
minimum emf ?

35. Figure (38-E11) shows a wire sliding on two parallel,
conducting rails placed at a separation l. A magnetic
field B exists in a direction perpendicular to the plane
of the rails. What force is necessary to keep the wire
moving at a constant velocity v ?

36. Figure (38-E12) shows a long U-shaped wire of width l
placed in a perpendicular magnetic field B. A wire of
length l is slid on the U-shaped wire with a constant
velocity v towards right. The resistance of all the wires
is r per unit length. At t  0, the sliding wire is close to
the left edge of the U-shaped wire. Draw an equivalent
circuit diagram, showing the induced emf as a battery.
Calculate the current in the circuit.

37. Consider the situation of the previous problem. (a)
Calculate the force needed to keep the sliding wire
moving with a constant velocity v. (b) If the force needed
just after t  0 is F0, find the time at which the force
needed will be F0 /2.
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38. Consider the situation shown in figure (38-E13). The
wire PQ has mass m, resistance r and can slide on the
smooth, horizontal parallel rails separated by a distance
l. The resistance of the rails is negligible. A uniform
magnetic field B exists in the rectangular region and a
resistance R connects the rails outside the field region.
At t = 0, the wire PQ is pushed towards right with a
speed v0. Find (a) the current in the loop at an instant
when the speed of the wire PQ is v, (b) the acceleration
of the wire at this instant, (c) the velocity v as a function
of x and (d) the maximum distance the wire will move.

39. A rectangular frame of wire abcd has dimensions
32 cm × 8.0 cm and a total resistance of 2.0 Ω. It is
pulled out of a magnetic field B = 0.020 T by applying a
force of 3.2 × 10 – 5 N (figure 38-E14). It is found that the
frame moves with constant speed. Find (a) this constant
speed, (b) the emf induced in the loop, (c) the potential
difference between the points a and b and (d) the
potential difference between the points c and d.

40. Figure (38-E15) shows a metallic wire of resistance
0.20 Ω sliding on a horizontal, U-shaped metallic rail.
The separation between the parallel arms is 20 cm. An
electric current of 2.0 μA passes through the wire when
it is slid at a rate of 20 cm s−1. If the horizontal
component of the earth’s magnetic field is 3.0 × 10 − 5 T,
calculate the dip at the place.

41. A wire ab of length l, mass m and resistance R slides
on a smooth, thick pair of metallic rails joined at the
bottom as shown in figure (38-E16). The plane of the
rails makes an angle θ with the horizontal. A vertical
magnetic field B exists in the region. If the wire slides
on the rails at a constant speed v, show that

          B = √⎯⎯⎯⎯mg R sinθ
vl 2cos 2 θ

 ⋅

42. Consider the situation shown in figure (38-E17). The
wires P1Q1 and P2Q2 are made to slide on the rails with
the same speed 5 cm s−1. Find the electric current in the
19 Ω resistor if (a) both the wires move towards right
and (b) if P1Q1 moves towards left but P2Q2 moves
towards right.

43. Suppose the 19 Ω resistor of the previous problem is
disconnected. Find the current through P2Q2 in the two
situations (a) and (b) of that problem.

44. Consider the situation shown in figure (38-E18). The
wire PQ has a negligible resistance and is made to slide
on the three rails with a constant speed of 5 cm s−1. Find
the current in the 10 Ω resistor when the switch S is
thrown to (a) the middle rail (b) the bottom rail.

45. The current generator Ig, shown in figure (38-E19), sends
a constant current i through the circuit. The wire cd is
fixed and ab is made to slide on the smooth, thick rails
with a constant velocity v towards right. Each of these
wires has resistance r. Find the current through the
wire cd.

46. The current generator Ig, shown in figure (38-E20), sends
a constant current i through the circuit. The wire ab has
a length l and mass m and can slide on the smooth,
horizontal rails connected to Ig. The entire system lies
in a vertical magnetic field B. Find the velocity of the
wire as a function of time.

47. The system containing the rails and the wire of the
previous problem is kept vertically in a uniform
horizontal magnetic field B that is perpendicular to the
plane of the rails (figure 38-E21). It is found that the
wire stays in equilibrium. If the wire ab is replaced by
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another wire of double its mass, how long will it take
in falling through a distance equal to its length ?

48. The rectangular wire-frame, shown in figure (38-E22),
has a width d, mass m, resistance R and a large length.
A uniform magnetic field B exists to the left of the frame.
A constant force F starts pushing the frame into the
magnetic field at t = 0. (a) Find the acceleration of the
frame when its speed has increased to v. (b) Show that
after some time the frame will move with a constant
velocity till the whole frame enters into the magnetic
field. Find this velocity v0. (c) Show that the velocity at
time t is given by 

              v = v0(1 − e − Ft/mv0).

49. Figure (38-E23) shows a smooth pair of thick metallic
rails connected across a battery of emf E having a
negligible internal resistance. A wire ab of length l and
resistance r can slide smoothly on the rails. The entire
system lies in a horizontal plane and is immersed in a
uniform vertical magnetic field B. At an instant t, the
wire is given a small velocity v towards right. (a) Find
the current in it at this instant. What is the direction
of the current ? (b) What is the force acting on the wire
at this instant ? (c) Show that after some time the wire
ab will slide with a constant velocity. Find this velocity.

50. A conducting wire ab of length l, resistance r and mass
m starts sliding at t = 0 down a smooth, vertical, thick
pair of connected rails as shown in figure (38-E24). A

uniform magnetic field B exists in the space in a
direction perpendicular to the plane of the rails.
(a) Write the induced emf in the loop at an instant t
when the speed of the wire is v. (b) What would be the
magnitude and direction of the induced current in the
wire ? (c) Find the downward acceleration of the wire at
this instant. (d) After sufficient time, the wire starts
moving with a constant velocity. Find this velocity vm.
(e) Find the velocity of the wire as a function of time.
(f) Find the displacement of the wire as a function of
time. (g) Show that the rate of heat developed in the
wire is equal to the rate at which the gravitational
potential energy is decreased after steady state is
reached.

51. A bicycle is resting on its stand in the east–west direction
and the rear wheel is rotated at an angular speed of 100
revolutions per minute. If the length of each spoke is
30.0 cm and the horizontal component of the earth’s
magnetic field is 2.0 × 10 − 5 T, find the emf induced
between the axis and the outer end of a spoke. Neglect
centripetal force acting on the free electrons of the spoke.

52. A conducting disc of radius r rotates with a small but
constant angular velocity ω about its axis. A uniform
magnetic field B exists parallel to the axis of rotation.
Find the motional emf between the centre and the
periphery of the disc.

53. Figure (38-E25) shows a conducting disc rotating about
its axis in a perpendicular magnetic field B. A resistor
of resistance R is connected between the centre and the
rim. Calculate the current in the resistor. Does it enter
the disc or leave it at the centre ? The radius of the disc
is 5.0 cm, angular speed ω = 10 rad/s, B = 0.40 T and
R = 10 Ω.

54. The magnetic field in a region is given by B
→

 = k
→
 
B0

L
 y

where L is a fixed length. A conducting rod of length L
lies along the Y-axis between the origin and the point

(0, L, 0). If the rod moves with a velocity v = v0 i
→
, find

the emf induced between the ends of the rod.
55. Figure (38-E26) shows a straight, long wire carrying a

current i and a rod of length l coplanar with the wire
and perpendicular to it. The rod moves with a constant
velocity v in a direction parallel to the wire. The distance
of the wire from the centre of the rod is x. Find the
motional emf induced in the rod.
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56. Consider a situation similar to that of the previous
problem except that the ends of the rod slide on a pair
of thick metallic rails laid parallel to the wire. At one
end the rails are connected by resistor of resistance R.
(a) What force is needed to keep the rod sliding at a
constant speed v ? (b) In this situation what is the
current in the resistance R ? (c) Find the rate of heat
developed in the resistor. (d) Find the power delivered
by the external agent exerting the force on the rod.

57. Figure (38-E27) shows a square frame of wire having a
total resistance r placed coplanarly with a long, straight
wire. The wire carries a current i given by i  i0 sin t.
Find (a) the flux of the magnetic field through the square
frame, (b) the emf induced in the frame and (c) the heat

developed in the frame in the time interval 0 to 
20


 

58. A rectangular metallic loop of length l and width b is
placed coplanarly with a long wire carrying a current i
(figure 38-E28). The loop is moved perpendicular to the
wire with a speed v in the plane containing the wire
and the loop. Calculate the emf induced in the loop when
the rear end of the loop is at a distance a from the wire.
Solve by using Faraday’s law for the flux through the
loop and also by replacing different segments with
equivalent batteries.

59. Figure (38-E29) shows a conducting circular loop of
radius a placed in a uniform, perpendicular magnetic
field B. A thick metal rod OA is pivoted at the centre
O. The other end of the rod touches the loop at A. The
centre O and a fixed point C on the loop are connected
by a wire OC of resistance R. A force is applied at the
middle point of the rod OA perpendicularly, so that the
rod rotates clockwise at a uniform angular velocity .
Find the force. 

60. Consider the situation shown in the figure of the
previous problem. Suppose the wire connecting O and C
has zero resistance but the circular loop has a resistance
R uniformly distributed along its length. The rod OA is

made to rotate with a uniform angular speed  as shown
in the figure. Find the current in the rod when
 AOC  90.

61. Consider a variation of the previous problem (figure
38-E29). Suppose the circular loop lies in a vertical
plane. The rod has a mass m. The rod and the loop have
negligible resistances but the wire connecting O and C
has a resistance R. The rod is made to rotate with a
uniform angular velocity  in the clockwise direction by
applying a force at the midpoint of OA in a direction
perpendicular to it. Find the magnitude of this force
when the rod makes an angle  with the vertical.

62. Figure (38-E30) shows a situation similar to the previous
problem. All parameters are the same except that a
battery of emf E and a variable resistance R are
connected between O and C. Neglect the resistance of
the connecting wires. Let  be the angle made by the
rod from the horizontal position (shown in the figure),
measured in the clockwise direction. During the part of
the motion 0    /4 the only forces acting on the rod
are gravity and the forces exerted by the magnetic field
and the pivot. However, during the part of the motion,
the resistance R is varied in such a way that the rod
continues to rotate with a constant angular velocity .
Find the value of R in terms of the given quantities.

63. A wire of mass m and length l can slide freely on a pair
of smooth, vertical rails (figure 38-E31). A magnetic field
B exists in the region in the direction perpendicular to the
plane of the rails. The rails are connected at the top end
by a capacitor of capacitance C. Find the acceleration of
the wire neglecting any electric resistance.

64. A uniform magnetic field B exists in a cylindrical region,
shown dotted in figure (38-E32). The magnetic field

increases at a constant rate 
dB
dt

  Consider a circle of
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radius r coaxial with the cylindrical region. (a) Find the
magnitude of the electric field E at a point on the
circumference of the circle. (b) Consider a point P on the
side of the square circumscribing the circle. Show that
the component of the induced electric field at P along
ba is the same as the magnitude found in part (a).

65. The current in an ideal, long solenoid is varied at a
uniform rate of 0.01 As−1. The solenoid has 2000 turns/m
and its radius is 6.0 cm. (a) Consider a circle of radius
1.0 cm inside the solenoid with its axis coinciding with
the axis of the solenoid. Write the change in the
magnetic flux through this circle in 2.0 seconds. (b) Find
the electric field induced at a point on the circumference
of the circle. (c) Find the electric field induced at a point
outside the solenoid at a distance 8.0 cm from its axis.

66. An average emf of 20 V is induced in an inductor when
the current in it is changed from 2.5 A in one direction
to the same value in the opposite direction in 0.1 s. Find
the self-inductance of the inductor.

67. A magnetic flux of 8 × 10 − 4 weber is linked with each
turn of a 200-turn coil when there is an electric current
of 4 A in it. Calculate the self-inductance of the coil.

68. The current in a solenoid of 240 turns, having a length
of 12 cm and a radius of 2 cm, changes at a rate of
0.8 A s−1. Find the emf induced in it.

69. Find the value of t/τ for which the current in an LR
circuit builds up to (a) 90%, (b) 99% and (c) 99.9% of
the steady-state value.

70. An inductor-coil carries a steady-state current of 2.0 A
when connected across an ideal battery of emf 4.0 V. If
its inductance is 1.0 H, find the time constant of the
circuit.

71. A coil having inductance 2.0 H and resistance 20 Ω is
connected to a battery of emf 4.0 V. Find (a) the current
at the instant 0.20 s after the connection is made and
(b) the magnetic field energy at this instant.

72. A coil of resistance 40 Ω is connected across a 4.0 V
battery. 0.10 s after the battery is connected, the current
in the coil is 63 mA. Find the inductance of the coil.

73. An inductor of inductance 5.0 H, having a negligible
resistance, is connected in series with a 100 Ω resistor
and a battery of emf 2.0 V. Find the potential difference
across the resistor 20 ms after the circuit is switched
on.

74. The time constant of an LR circuit is 40 ms. The circuit
is connected at t = 0 and the steady-state current is
found to be 2.0 A. Find the current at (a) t = 10 ms
(b) t = 20 ms, (c) t = 100 ms and (d) t = 1 s.

75. An LR circuit has L = 1.0 H and R = 20 Ω. It is connected
across an emf of 2.0 V at t = 0. Find di/dt at (a) t = 100
ms, (b) t = 200 ms and (c) t = 1.0 s.

76. What are the values of the self-induced emf in the circuit
of the previous problem at the times indicated therein ?

77. An inductor-coil of inductance 20 mH having resistance
10 Ω is joined to an ideal battery of emf 5.0 V. Find the
rate of change of the induced emf at t = 0, (b) t = 10 ms
and (c) t = 1.0 s.

78. An LR circuit contains an inductor of 500 mH, a resistor
of 25.0 Ω and an emf of 5.00 V in series. Find the
potential difference across the resistor at t = (a) 20.0 ms,
(b) 100 ms and (c) 1.00 s.

79. An inductor-coil of resistance 10 Ω and inductance
120 mH is connected across a battery of emf 6 V and
internal resistance 2 Ω. Find the charge which flows
through the inductor in (a) 10 ms, (b) 20 ms and
(c) 100 ms after the connections are made.

80. An inductor-coil of inductance 17 mH is constructed from
a copper wire of length 100 m and cross-sectional area
1 mm 2. Calculate the time constant of the circuit if this
inductor is joined across an ideal battery. The resistivity
of copper = 1.7 × 10 − 8 Ωm.

81. An LR circuit having a time constant of 50 ms is
connected with an ideal battery of emf E . Find the time
elapsed before (a) the current reaches half its maximum
value, (b) the power dissipated in heat reaches half its
maximum value and (c) the magnetic field energy stored
in the circuit reaches half its maximum value.

82. A coil having an inductance L and a resistance R is
connected to a battery of emf E . Find the time taken for
the magnetic energy stored in the circuit to change from
one fourth of the steady-state value to half of the
steady-state value.

83. A solenoid having inductance 4.0 H and resistance 10 Ω
is connected to a 4.0 V battery at t = 0. Find (a) the time
constant, (b) the time elapsed before the current reaches
0.63 of its steady-state value, (c) the power delivered by
the battery at this instant and (d) the power dissipated
in Joule heating at this instant.

84. The magnetic field at a point inside a 2.0 mH inductor-
coil becomes 0.80 of its maximum value in 20 μs when
the inductor is joined to a battery. Find the resistance
of the circuit.

85. An LR circuit with emf E is connected at t = 0. (a) Find
the charge Q which flows through the battery during 0
to t. (b) Calculate the work done by the battery during
this period. (c) Find the heat developed during this
period. (d) Find the magnetic field energy stored in the
circuit at time t. (e) Verify that the results in the three
parts above are consistent with energy conservation.

86. An inductor of inductance 2.00 H is joined in series with
a resistor of resistance 200 Ω and a battery of emf
2.00 V. At t = 10 ms, find (a) the current in the circuit,
(b) the power delivered by the battery, (c) the power
dissipated in heating the resistor and (d) the rate at
which energy is being stored in magnetic field.

87. Two coils A and B have inductances 1.0 H and 2.0 H
respectively. The resistance of each coil is 10 Ω. Each
coil is connected to an ideal battery of emf 2.0 V at t = 0.
Let iA and iB be the currents in the two circuit at time
t. Find the ratio iA /iB at (a) t = 100 ms, (b) t = 200 ms
and (c) t = 1 s.

88. The current in a discharging LR circuit without the
battery drops from 2.0 A to 1.0 A in 0.10 s. (a) Find the
time constant of the circuit. (b) If the inductance of the
circuit is 4.0 H, what is its resistance ?
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89. A constant current exists in an inductor-coil connected
to a battery. The coil is short-circuited and the battery
is removed. Show that the charge flown through the coil
after the short-circuiting is the same as that which flows
in one time constant before the short-circuiting.

90. Consider the circuit shown in figure (38-E33). (a) Find
the current through the battery a long time after the
switch S is closed. (b) Suppose the switch is again
opened at t = 0. What is the time constant of the
discharging circuit ? (c) Find the current through the
inductor after one time constant.

91. A current of 1.0 A is established in a tightly wound
solenoid of radius 2 cm having 1000 turns/metre. Find
the magnetic energy stored in each metre of the solenoid.

92. Consider a small cube of volume 1 mm 3 at the centre
of a circular loop of radius 10 cm carrying a current of
4 A. Find the magnetic energy stored inside the cube.

93. A long wire carries a current of 4.00 A. Find the energy
stored in the magnetic field inside a volume of 1.00 mm 3

at a distance of 10.0 cm from the wire.

94. The mutual inductance between two coils is 2.5 H. If
the current in one coil is changed at the rate of 1 As−1,
what will be the emf induced in the other coil ?

95. Find the mutual inductance between the straight wire
and the square loop of figure (38-E27).

96. Find the mutual inductance between the circular coil
and the loop shown in figure (38-E8).

97. A solenoid of length 20 cm, area of cross-section 4.0 cm 2

and having 4000 turns is placed inside another solenoid
of 2000 turns having a cross-sectional area 8.0 cm 2 and
length 10 cm. Find the mutual inductance between the
solenoids.

98. The current in a long solenoid of radius R and having
n turns per unit length is given by i = i0 sin ωt. A coil
having N turns is wound around it near the centre. Find
(a) the induced emf in the coil and (b) the mutual
inductance between the solenoid and the coil.

ANSWERS

OBJECTIVE I

 1. (b)  2. (a)  3. (d)  4. (c)  5. (b)  6. (c)
 7. (a)  8. (b)  9. (b) 10. (a) 11. (c) 12. (d)

OBJECTIVE II

 1. (b), (c)  2. (d)  3. (c), (d)
 4. (a), (c), (d)  5. (a), (b), (c)  6. (b), (d)
 7. (d)  8. (b)  9. (a), (b), (c)
10. (b), (c)

EXERCISE

 1. ML 2I – 1T – 3 in each case 
 2. (a) volt/sec, volt, volt-sec (or weber) (b) 1.2 volt 
 3. (a) – 2.0 mV, – 4.0 mV, 4.0 mV, 2.0 mV
   (b)10 ms to 20 ms and 20 ms to 30 ms 

 4. 7.8 × 10 – 3 V 

 5. 1 × 10 – 10 V

 6. (a) 50 V (b) 50 V (c) zero
 7. (a) 25 J (b) 25 J (c) 50 J 

 8. (a) 0.015 V (b) 7.5 × 10 – 3 V (c) zero 

 9. 10 μV 
10. 5.0 T 
11. BA/R 

12. 2 × 10 – 4 C 
13. (a) 2Bav (b) 2Bav/R (c) a 2 B/R

14. E  = 1.0 V, anticlockwise
15. zero 

16. (a) 3 × 10 – 4 V, (b) zero, (c) 3 × 10 – 4 V and (d) zero 

17. 2 × 10 – 4 J

18. 3.9 × 10 – 5 A

19. (a) 1.25 × 10 – 7 A, a to d (b) 1.25 × 10 – 7 A, d to a,

   (c) zero (d) zero

20. 
πμ0 Na 2a′ 2E Rv

2 L(a 2 + x 2) 3/2(R′ + r) 2
 where R′ = R for part (a) and

R/2 for part (b)

21. (a) 6.28 × 10 – 2 V (b) 1.57 × 10 – 3 C

22. (a) 2.0 × 10 – 3 V (b) zero (c) 5.0 × 10 – 5 C

23. 4.7 × 10 – 5 C

24. (a) 6.6 × 10 – 4 V (b) zero (c) 2.2 × 10 – 7 V 2

25. 1.3 × 10 – 7 J

&
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Figure 38-E33
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26. 1.57  10 – 6 V

27. (a) 1.6  10 – 21 N (b) 1.0  10 – 2 Vm 1 (c) 2.0  10 – 3 V

28. 0.4 V

29. 0.09 V
30. 1 mV
31. (a) zero   (b) vB(bc), positive at c (c) zero 
   (d) vB(bc), positive at a
32. (a) 2rvB  (b) zero

33. 17  10 – 3 V

34. (a) at the ends of the diameter perpendicular to the
velocity, 2 rvB (b) at the ends of the diameter parallel to the
velocity, zero
35. zero

36. 
Blv

2rl  vt

37. (a) 
B 2l 2v

2rl  vt
  (b) l/v

38. (a) 
Blv

R  r
 (b) 

B 2l 2v
mR  r

 towards left (c) v  v0  
B 2l 2x

mR  r

   (d) 
mv0R  r

B 2l 2

39. (a) 25 m s1 (b) 4.0  10 – 2 V (c) 3.6  10 – 2 V

   (d) 4.0  10 – 3 V

40. tan – 11/3
42. (a) 0.1 mA (b) zero
43. (a) zero (b) 1 mA
44. (a) 0.1 mA (b) 0.2 mA 

45. 
ir  Blv

2r
46. ilBt/m, away from the generator
47. 2l/g

48. (a) 
RF  vl 2B 2

mR
 (b) 

RF

l 2B 2

49. (a) 
1
r

 E  vBl from b to a (b) 
lB
r

 E  vBl towards

right (c) 
E
Bl

50. (a) vBl  (b) 
vBl

r
 , b to a  (c) g  

B 2l 2

mr
 v   (d) 

mgr

B 2l 2
 

    (e) vm1  e – gt/vm        (f) vmt  
vm 2

g
 1  e – gt/vm

51. 9.4  10 – 6 V

52. 
1
2

 r 2B

53. 05 mA, leaves

54. 
B0v0 l

2

55. 
0 iv
2

 ln




2x  l
2x  l





56. (a) 
v
R




0 i
2

 ln 
2x  l
2x  l





 2

 (b) 
o iv
2R

 ln 
2x  l
2x  l

   (c) 
1
R




0 iv
2

 ln 
2x  l
2x  l





 2

 (d) same as (c)

57. (a) 
0 ia
2

 ln 

1  

a
b



 (b) 

0 ai0 cos t

2
 ln 


1  

a
b



 

   (c) 
50 

2a 2i0 
2

2r
 ln 2 



1  

a
b



 

58. 
 ilvb

2aa  l

59. 
a 3B 2

2R
 to the right of OA in the figure

60. 
8
3

 
a 2B

R

61. 
a 3B 2

2R
  mg sin

62. 
aB2 E  a 2B

2 mg cos

63. 
mg

m  CB 2l 2 

64. (a) 
r
2

 
dB
dt

65. (a) 1.6  10 – 8 weber (b) 1.2  10 – 7 V m1

    (c) 5.6  10 – 7 V m1

66. 0.4 H

67. 4  10 – 2 H

68. 6  10 – 4 V

69. 2.3, 4.6, 6.9

70. 0.50 s

71. (a) 0.17 A (b) 0.03 J
72. 4.0 H

73. 0.66 V

74. (a) 0.44 A (b) 0.79 A (c) 1.8 A and (d) 2.0 A

75. (a) 0.27 A s1 (b) 0.036 A s1 and (c) 4.1  10 – 9 A s1

76. (a) 0.27 V (b) 0.036 V (c) 4.1  10 – 9 V

77. (a) 2.5  10 3 V s 1 (b) 17 V s1 and (c) 0.00 V s1

78. (a) 3.16 V (b) 4.97 V and (c) 5.00 V
79. (a) 1.8 mC (b) 5.7 mC and (c) 45 mC

80. 10 ms

81. (a) 35 ms (b) 61 ms (c) 61 ms

82.  ln 
1

2  2

83. (a) 0.40 s (b) 0.40 s (c) 1.0 W and (d) 0.64 W

84. 160 
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85. (a) 
E
R

 {t − 
L
R

 (1 − x)}

    (b) 
E 2

R
 {t − 

L
R

 (1 − x)}

   (c) 
E 2

R
 {t − 

L
2R

 (3 − 4 x + x 2)}

    (d) 
LE 2

2 R 2 (1 − x) 2 , where x = e – Rt/L

86. (a) 6.3 mA (b) 12.6 mW (c) 8.0 mW and (d) 4.6 mW

87. (a) 1.6 (b) 1.4 (c) 1.0

88. (a) 0.14 s (b) 28 Ω

90. (a) 
E (R1 + R2)

R1R2

   (b) 
L

R1 + R2

   (c) 
E

R1e

91. 7.9 × 10 – 4 J

92. 8π × 10 – 14 J

93. 2.55 × 10 – 14 J

94. 2.5 V

95. 
μ0 a
2π

 ln
⎛
⎜
⎝
1 + 

a
b

⎞
⎟
⎠

96. N 
μ0 πa 2a′ 1/2

2(a 2 + x 2) 3/2 

97. 2.0 × 10 – 2 H

98. (a) πμ0 i0 nNωR 2 cos ωt (b) πμ0 nNR 2
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CHAPTER 39

ALTERNATING CURRENT

39.1 ALTERNATING CURRENT

When a resistor is connected across the terminals
of a battery, a current is established in the circuit. The
current has a unique direction, it goes from the
positive terminal to the negative terminal via the
external resistor. The magnitude of the current also
remains almost constant. If the direction of the current
in a resistor or in any other element changes
alternately, the current is called an alternating current
(AC). In this chapter, we shall study the alternating
current that varies sinusoidally with time. Such a
current is given by
          i = i0 sin(ωt + ϕ). … (39.1)

The current repeats its value after each time
interval T = 2π/ω. This time interval is called the time
period. The current is positive for half the time period
and is negative for the remaining half period. This
means, its direction reverses after each half time
period. The maximum value of the current is i0 which
is called the peak current or the current amplitude. To
get sinusoidally varying alternating current, we need
a source which can generate sinusoidally varying emf.
An AC generator, also called an AC dynamo, can be
used  as such a source. It converts mechanical energy
into electrical energy, producing an alternating emf.

39.2 AC GENERATOR, OR AC DYNAMO

Construction

A schematic design of an AC dynamo is shown in
figure (39.2a). A simplified diagram of the same is
shown in figure (39.2b). It consists of three main parts:
a magnet, an armature with slip rings and brushes.

Magnet: It may be a permanent magnet or an
electromagnet. The poles of the magnet face each other

so that a strong uniform magnetic field B
→

 is produced
between the poles.

Armature: It is a coil generally wound over a soft-
iron core. The core increases the magnetic field due to
its magnetization. The two ends of the coil are
connected to two slip rings C1 and C2. The coil together
with the rings can rotate in the magnetic field. The
axis of rotation is in the plane of the coil but
perpendicular to the magnetic field.

Brushes: Two graphite brushes B1 and B2

permanently touch the slip rings. As the armature
rotates, the slip rings C1 and C2 slip against the
brushes so that the contact is maintained all the time.
These brushes are connected to two terminals P and
Q. The external circuit is connected to these terminals.

emf Induced as the Coil Rotates

Suppose the area of the coil is A, it contains N
turns and it is rotated at a constant angular velocity
ω. Suppose, the plane of the coil is perpendicular to
the magnetic field at t = 0. The total magnetic flux
through each turn of the coil is BA in this position. In
time t, the coil rotates through an angle θ = ωt. The
flux through each turn of the coil at this time t is

            Φ = BA cos ωt.

Using Faraday’s law, the emf induced in each turn
of the coil is
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       − 
dΦ
dt

 = BAω sin ωt.

The total emf induced in the coil is,

        E  = NBA ω sin ωt

 = E 0 sin ωt. … (39.2)

We see that the emf varies sinusoidally with time
with an angular frequency ω and hence with a time
period T = 2π/ω. The maximum magnitude of the emf,
known as peak emf, is E 0 .

If the terminals P and Q are connected to an
external circuit, this emf drives a current in the circuit
which also varies sinusoidally with time as shown in
figure (39.1).

Household Power Generation

The electricity that we use in our houses is
generally AC electricity and is produced in power
plants using the same principle as described above.
The armature is connected to a turbine. The turbine
has a rotor with blades. Steam at high pressure, water
from a height or air at high speed strikes the blades.
This rotates the rotor of the turbine. As the armature
is connected to the turbine, the armature also rotates
and alternating emf is produced. Gensets, which are
used in houses at the time of power failure, at
marriage functions, at public meetings, in fields where
regular electric power is not available, etc., also work
on the same principle. Here a diesel or a petrol engine
drives the armature.

39.3 INSTANTANEOUS AND RMS CURRENT

An alternating current is given by
            i = i0 sin(ωt + ϕ). … (i)

This equation gives the instantaneous current at
any instant t. The current changes with time,
sometimes it is positive and sometimes negative. We
define the average current or mean current over a time
interval 0 to t as

          i
_
 = 

∫ 
0

t

i dt

∫ 
0

t

dt

 = 
1
T

 ∫ 
0

t

idt ⋅

Using (i),

   i
_
 = 

i0

t
 ∫ 
0

t

sin(ωt + ϕ) dt = − 
i0

t
 



 
cos(ωt + ϕ)

ω


0

 t

⋅

   or, i
_
 = − 

i0

t
 




cos(ωt + ϕ) − cosϕ
ω




 . … (ii)

For a time period, t = T and ωT = 2π so that,

     i
_
 = − 

i0

Tω
 [cos(2π + ϕ) − cos ϕ] = 0.

If we take the average over a long time, the value
of i

_
 will be the same as for one time period. This can

be easily seen from equation (ii). As cosine of an angle
must remain between ± 1, the numerator has a finite
value. If t is large, the denominator is large and the

average current i
_
 tends to zero.

The instantaneous current i could be positive or
negative at a given instant but the quantity i 2 always
remains positive and hence its average is also positive.
The average of i 2 over a time period is

    i 2
__

 = 

∫ 
0

T

i 2 dt

∫ 
0

T

dt

      = 
1
T

 ∫ 
0

T

i0
 2 sin 2(ωt + ϕ) dt

= 
i0
 2

2T
 ∫ 
0

T

[1 − cos 2(ωt + ϕ)]dt

= 
i0
 2

2T
 



t − 

sin2(ωt + ϕ)
2ω



 0

 T

= 
i0
 2

2T
 



T − 

sin(4π + 2ϕ) − sin 2ϕ
2ω




 = 

i0
 2

2
 ⋅

This is known as the mean square current. The
square root of mean square current is called root-mean-
square current or rms current. This is also known as
the virtual current. Thus, the rms current or the
virtual current corresponding to the current
i = i0 sin(ωt + ϕ) is 

         irms = √i 2
__

 = 
i0

√2
 ⋅ … (39.3)

The equations for mean square current and root-
mean-square current are derived for one time period.
They are also valid if the average is calculated over a
long period of time.

An alternating voltage (potential difference) may
be written as

V = V0 sin(ωt + ϕ).
This gives the instantaneous voltage. The mean
voltage V

__
 over a complete cycle is zero, the mean

square voltage over a cycle is V0
 2
/2 and the root-mean-

square voltage (rms voltage or virtual voltage) is
V0 /√2. The significance of rms current and rms
voltage may be shown by considering a resistor of
resistance R carrying a current
         i = i0 sin(ωt + ϕ). … (i)
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The voltage across the resistor is
         V = Ri = (i0 R) sin(ωt + ϕ). … (ii)

The thermal energy developed in the resistor
during the time t to t + dt is
      i 2R dt = i0

 2
R sin 2(ωt + ϕ)dt.

The thermal energy developed in one time period is

       U = ∫ 
0

T

i 2 Rdt

 = R ∫ 
0

T

i0
 2 sin 2(ωt + ϕ)dt

    = RT 




1
T

 ∫ 
0

T

i0
 2 sin 2(ωt + ϕ)dt





= irms
 2  RT.

Thus, if we pass a constant current irms through
the resistor, it will produce the same thermal energy
in a time period as that produced when the alternating
current i passes through it. Similarly, a constant
voltage Vrms applied across a resistor produces the
same thermal energy as that produced by the voltage
V = V0 sin(ωt + ϕ). These statements are also valid if
we consider a long period of time. The alternating
voltage and the alternating current are generally
measured and mentioned in terms of their rms values.
When we say that the household supply is 220 V AC
we mean that the rms value is 220 V. The peak value
would be (220 V) √2 = 311 V.

Example 39.1

   The peak value of an alternating current is 5 A and its
frequency is 60 Hz. Find its rms value. How long will
the current take to reach the peak value starting from
zero ?

Solution : 

The rms current is

         irms = 
i0

√2
 = 

5 A
√2

 = 3.5 A.

The time period is

T = 
1
ν

 = 
1
60

 s.

The current takes one fourth of the time period to reach
the peak value starting from zero. Thus, the time
required is

t = 
T
4

 = 
1

240
 s.

39.4 SIMPLE AC CIRCUITS

AC Circuit Containing only a Resistor

Figure (39.3) shows a circuit containing an AC
source E  = E 0 sin ωt and a resistor of resistance R.

Such a circuit is also known as a purely resistive
circuit. Notice the symbol for an AC source.

If the current at time t is i, Kirchhoff’s loop law
gives
           E 0 sin ωt = Ri

   or,          i = 
E 0
R

 sin ωt

= i0 sin ωt … (39.4)

   where i0 = 
E 0
R

 ⋅ … (39.5)

AC Circuit Containing only a Capacitor

Figure (39.4) shows an AC source connected across
a capacitor. The resistance of the circuit is assumed
to be zero. Such a circuit is also known as a purely
capacitive circuit. Suppose the charge on the capacitor
is q and the current is i at time t. Any charge that
goes through a wire accumulates on the capacitor, so
that
           idt = dq

   or, i = 
dq
dt

 ⋅

Using Kirchhoff’s loop law,

       E 0 sin ωt = 
q
C

   or, q = C E 0 sin ωt

   or, i = 
dq
dt

 = C E 0 ω cos ωt

   or, i = i0 cos ωt … (39.6)

   where i0 = C E 0 ω = 
E 0

1/ωC
 ⋅ … (39.7)

There are several points to be discussed. If a
battery is connected across a capacitor, there is a
current only for a short time in which the capacitor
gets charged. After this the current becomes negligible.
In case of an AC source, the current exists as along
as the source is connected. We say that a capacitor
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stops direct current but allows alternating current. The
physical reason behind it is obvious. The charge on a
capacitor is determined by the emf of the source. In
case of an AC source, the emf keeps on changing.
Accordingly, the charge q keeps on changing and we
get continuous current through the connecting wires
and the source.

Another important point to note is the relation
between the peak emf and the peak current. We have

          i0 = 
E 0

1/ωC

   or, i0 = 
E 0
Xc

  where  Xc = 
1

ωC
 ⋅

We see that Xc = 1/ωC plays the role of effective
resistance. It is called the reactance of the capacitor
and its unit is ohm. It depends on the capacitance of
the capacitor as well as on the frequency of the AC
source. For a source of high frequency, the reactance
Xc = 1/ωC is small and the peak current i0 is large.
For a small frequency, the reactance 1/ωC is large and
consequently the peak current is small.

If the frequency is zero, we get a direct-current
(DC) source producing a constant emf. In this case, the
reactance 1/ωC is infinity and i0 = 0. So the response
of a capacitor to an alternating-current source depends
on the frequency of the source.

The third important point concerns the phase
difference between the emf and the current. We have,

       E  = E 0 sin ωt
   and i = i0 cos ωt = i0 sin(ωt + π/2).

Thus, the current leads the emf by π/2. When the
emf E  is zero, the current has maximum magnitude.
When the emf has maximum magnitude, the current
is zero. Figure (39.5) shows variations in the current
through the capacitor and in the emf as time passes.

Example 39.1

   Find the reactance of a capacitor (C = 200 µF) when it is
connected to (a) a 10 Hz AC source, (b) a 50 Hz AC source
and (c) a 500 Hz AC source.

Solution :

The reactance is Xc = 1
ωC

 = 1
2πνC

 ⋅

(a)     Xc = 
1

2π(10 Hz) (200 × 10 − 6 F)

       = 80 Ω.

Similarly, the reactance is 16 Ω for 50 Hz and 1.6 Ω for
500 Hz.

AC Circuit Containing only an Inductor

Figure (39.6) shows an inductor connected to an
AC source. Such a circuit is also known as a purely
inductive circuit.

The induced emf across the inductor is −L di
dt

 so

that from Kirchhoff’s loop law,

        E 0 sin ωt − L 
di
dt

 = 0

   or,        
di
dt

 = 
E 0
L

 sin ωt

   or,       i = − 
E 0
ωL

 cos ωt + c … (i)

where c is a constant. Now, average of cos ωt over one
time period is zero. Also, in the circuit we are
discussing, the emf is sinusoidal and we expect the
current to be sinusoidal too. Thus, average of i must
be zero over one time period. Hence, from (i), c = 0 and

          i = − 
E 0
ωL

 cos ωt

   or, i = 
E 0
ωL

 sin(ωt − π/2) … (39.8)

   or, i = i0 sin(ωt − π/2)

where i0 = 
E 0
ωL

 ⋅ … (39.9)

The constant XL = ωL plays the role of effective
resistance in this circuit. It is called the reactance of
the inductor. It is zero for direct current (ω = 0) and
increases as the frequency is increased. We see from
equation (39.8) that the phase of the current is π/2 less
than that of the emf. The current lags behind the emf.
Figure (39.7) shows plots of the current through an
inductor and of the emf as time passes.
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Example 39.2

   An inductor (L = 200 mH) is connected to an AC source
of peak emf 210 V and frequency 50 Hz. Calculate the
peak current. What is the instantaneous voltage of the
source when the current is at its peak value ?

Solution : The reactance of the inductor is

       XL = ωL = (2π × 50 s − 1) × (200 × 10 − 3 H)

 = 62.8 Ω.

The peak current is

i0 = 
E 0

XL

 = 
210 V
62.8 Ω

 = 3.3 A.

As the current lags behind the voltage by π/2, the voltage
is zero when the current has its peak value.

Impedance

The peak current and the peak emf in all the three
circuits discussed above may be written as 

              i0 = 
E 0
Z

… (39.10)

where   Z = R for a purely resistive circuit

Z = 
1

ωC
    for a purely capacitive circuit

and Z = ωL    for a purely inductive circuit.

The peak current and the peak emf are related by
equation (39.10) for any series circuit (one-loop circuit)
having an AC source. The general name for Z is
impedance. Thus, the impedance of a purely resistive
circuit is R, that of a purely capacitive circuit is 1/ωC
and that of a purely inductive circuit is ωL.

Phase factor

We have seen that the current and the emf are, in
general, not in phase in an AC circuit. If the emf is
            E  = E 0 sin ωt,
the current may be written as

i = i0 sin(ωt + ϕ).
For a purely resistive circuit, ϕ = 0; for a purely

capacitive circuit, ϕ = π/2 and for a purely inductive
circuit, ϕ = − π/2. We shall call the constant ϕ the
phase factor.

39.5 VECTOR METHOD TO FIND THE CURRENT
    IN AN AC CIRCUIT

Let us now describe a simple method by which we
can calculate the current in an AC circuit. We shall
confine the discussion to series circuits only. Suppose
an emf
             E  = E0 sin ωt

is applied in a series AC circuit which may contain a
resistance, a capacitor, an inductor or any combination
of these. Let us represent the resistance of a resistor
by a vector of magnitude R, the reactance of a
capacitance by a vector of magnitude Xc = 1/ωC and
the reactance of an inductor by a vector of magnitude
XL = ωL. The vector corresponding to the resistance is
drawn along the X-axis, the vector for the capacitive
reactance is drawn π/2 ahead of the resistance, that
is, along the positive Y-axis and the vector for the
inductive reactance is drawn π/2 behind the resistance,
that is, along the negative Y-axis.

The impedance of the circuit, Z, and the phase
factor ϕ are obtained by the vector sum of these three
vectors. The magnitude of the vector sum gives the
impedance Z, and its angle with the X-axis gives the
phase factor.

Thus, if the resistance of the circuit is R and the

net reactance is X, the impedance is Z = √R 2 + X 2  and

tanϕ = X
R

 ⋅

Once Z and ϕ are obtained, the current in the
circuit can be easily written as

           i = 
E 0
Z

 sin (ωt + ϕ). … (39.11)

It should be clearly understood that the resistance,
capacitance, inductance, etc., are not vector quantities.
The above description is only a method to derive easily
the equations for the current in an AC circuit. Figure
(39.8) shows the construction of vector diagrams for
the three circuits discussed above.

39.6 MORE AC CIRCUITS

When an AC source is connected in a circuit with
a resistance and a reactance, the current varies
initially in a complex way. After sufficient time, a
sinusoidally varying current persists in the circuit.
This steady-state current has a frequency equal to that
of the source and may have a phase difference with
the source. This steady-state current may be obtained
by the vector method described above.
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CR Circuit

Let us find the current in a CR circuit using the
vector method. The circuit and the corresponding
vector diagram are drawn in figure (39.9). The
resistance is represented by a vector of magnitude R
along the x-axis and the capacitive reactance by a
vector of magnitude 1/ωC along the positive y-axis. The
impedance of the circuit is given by the magnitude of
the resultant of these two. It is

         Z = √R 2 + (1/ωC) 2 … (i)

and hence the peak current is

i0 = 
E 0
Z

 = 
E 0

√R 2 + (1/ωC) 2
 ⋅

Also, the direction of the resultant makes an angle
ϕ with the x-axis where

tanϕ = 
1

ωCR
 ⋅ … (ii)

The steady-state current in the circuit is 

i = 
E0

Z
 sin (ωt + ϕ)

where Z and ϕ are given by equations (i) and (ii).
The reactance of the circuit is 1/ωC. We see that

the current leads the emf.

LR Circuit

Figure (39.10) shows an inductor, a resistor and
an AC source connected in series together with its
vector diagram. The resistance is represented by a
vector of magnitude R along the x-axis and the
inductive reactance by a vector of magnitude ωL along
the negative y-axis. The impedance of the circuit is
equal to the magnitude of the resultant of these two.
Its value is

          Z = √R 2 + ω 2L 2 . … (i)

The resultant is at an angle ϕ below the x-axis
where

        tanϕ = 
ωL
R

 ⋅ … (ii)

The current in steady state is, therefore, given by

         i = 
E 0

√R 2 + ω 2L 2
 sin (ωt − ϕ)

where ϕ is given by equation (ii). The reactance of the
circuit is ωL. We see that the current lags behind the
emf.

LCR Circuit

Figure (39.11) shows an inductor, a capacitor and
a resistor connected in series with an AC source and
the vector diagram to find the steady-state current.

The resultant of 1/ωC and ωL is

        X = Xc − XL = 




1
ωC

 − ωL




in the direction of the positive y-axis. This is the net
reactance of the circuit. The resultant of the vector for

R and that for the reactance 




1
Cω

 − Lω



 has a magnitude

        Z = √R 2 + 




1
ωC

 − ωL




 2

… (39.12)

which is the impedance of the circuit. This resultant
makes an angle ϕ with the x-axis where

 tanϕ = 

1
ωC

 − ωL

R
 ⋅ … (39.13)

The steady-state current in the circuit is given by

i = 
E 0

√R 2 + 




1
ωC

 − ωL




 2
 sin(ωt + ϕ)

where ϕ is given by equation (39.13).
If Xc = 1/ωC is greater than XL = ωL, the vector for

the net reactance Xc − XL is along the positive Y-axis.
From equation (39.13), the phase factor ϕ is positive.
Thus, the current leads the emf. If Xc < XL, the vector
for the net reactance is along the negative Y-axis and
ϕ is negative. In this case, the current lags behind the
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emf. If XL  Xc, the net reactance is zero. It behaves
as purely resistive circuit and the vector for Z is along
the X-axis. The current is in phase with the emf in
this case.

If we vary the angular frequency  of the AC
source, the peak current

       i0  
E 0

R 2  


1
C

  L



 2

 

also varies. It is maximum when 

        
1
C

  L  0

or,          1
LC

 

The corresponding frequency is

           

2

  1
2

 1
LC

   (39.14)

This frequency is known as the resonant frequency
of the given circuit. The peak current in this case is
i0  E 0/R and the reactance is zero.

Figure (39.12) shows the variation in the peak
current i0 with the applied frequency  of the AC
source in two different circuits. The values of L as well
as the values of C are the same for the two circuits.
We see that if R is small, the resonance is sharp. This
means, if the applied frequency is close to the resonant
frequency 0, the current is high, otherwise it is small.
An LCR circuit used at a frequency close to the
resonance frequency is called resonant circuit.

The tuning circuit of a radio or a television is an
example of LCR resonant circuit. Signals are
transmitted by different stations at different
frequencies. The antenna receives these signals and
drives a current in the tuning circuit. Only the signal
corresponding to the resonant frequency is able to
drive appreciable current and is further processed.
When we ‘tune’ a radio, we change the capacitance of
the tuning circuit and hence the resonant frequency
changes. When this frequency matches with the
frequency of the signal from the desired station, the
tuning is complete.

LC oscillations

If the resistance R in an LCR circuit is zero, the
peak current at resonance is

           i  
E 0

zero
 

This means, there can be a finite current in the
pure LC circuit even without any applied emf. This is
the case when a charged capacitor is connected to a
pure inductor. There is a current in the circuit at

frequency   1
2

 1
LC

  The capacitor gets discharged

sending a current in the inductor and induced emf in
the inductor charges the capacitor again. Thus, the
energy oscillates between electric field energy in the
capacitor and magnetic field energy in the inductor.
This phenomenon is called LC oscillation.

Example 39.3

   An LCR series circuit with L 100 mH, C 100 F,
R  120  is connected to an AC source of emf
E  30 V sin 100 s  1t. Find the impedance, the peak
current and the resonant frequency of the circuit.

Solution :

The reactance of the circuit is

 X  
1
C

  L

 
1

100 s  1 100  10  6 F
  100 s  1  100  10  3 H

 100   10   90 .

The resistance is R  120 .

The impedance is 

Z  R 2  X 2

 120  2  90  2   150 .

The peak current is 

i0  
E0

Z
  

30 V
150 

  0.2 A.

The resonant frequency of the circuit is

     
1
2

 1
LC

 

 
1
2

 1

100  10  3 H 100  10  6 F

 50 Hz.

39.7 POWER IN AC CIRCUITS

Suppose an emf E    E 0 sin t is applied in a
circuit and a current i  i0 sin t   results. The
work done by the source during the time interval t to
t  dt is
            dW  E i dt

R1

R > R2 1

i0

0

R2

Figure 39.12
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   = E 0 i0 sin ωt sin(ωt + ϕ) dt

= E 0 i0(sin 2ωt cos ϕ + sin ωt cos ωt sin ϕ)dt.

The total work done in a complete cycle is

W = E 0 i0 cosϕ ∫ 
0

T

sin 2 ωt dt

                + E 0 i0 sin ϕ ∫ 
0

T

sin ωt cos ωt dt

= 
1
2

 E 0 i0 cos ϕ ∫ 
0

T

(1 − cos 2ωt)dt

                  + 
1
2

 E 0 i0 sin ϕ ∫ 
0

T

sin 2ωt dt

= 
1
2

 E 0 i0 T cos ϕ.

The average power delivered by the source is,
therefore,

    P = 
W
T

 = 
1
2

 E0 i0 cosϕ = 




E0

√2




 




i0

√2



 (cosϕ)

= E rms irms cosϕ. … (39.15)

This equation is derived for the average power in
a complete cycle. It also represents the average power
delivered in a long time.

The term cosϕ is called the power factor of the
circuit. For a purely resistive circuit, ϕ = 0 so that
cos ϕ = 1 and P = E rms irms. For purely reactive circuits
(no resistance, only capacitance and/or inductance),
ϕ = π/2  or  −π/2. In these cases, cosϕ = 0 and hence no
power is absorbed in such circuits.

39.8 CHOKE COIL

Choke coil is simply a coil having a large
inductance but a small resistance. Choke coils are used
with fluorescent mercury-tube fittings in houses (figure
39.13a).

At most places, the household electric power is
supplied at 220 V, 50 Hz. If such a source is directly
connected to a mercury tube, the tube will be damaged.
To reduce the current, a choke coil is connected in
series with the tube. Representing the tube by a
resistor and the choke coil by an ideal inductor, the
equivalent circuit is drawn in figure (39.13b). This is

a simple LR circuit with impedance Z = √R 2 + ω 2L 2 .

If the voltage applied is V = V0 sin ωt, the peak
current through the circuit is 

     i0 = 
V0

√R 2 + ω 2L 2
 ⋅

The rms current is 

irms = 
i0

√2
 = 

V0/√2

√R 2 + ω 2L 2
 = 

Vrms

√R 2 + ω 2L 2
 ⋅

The rms voltage appearing across the resistor is

VR, rms = R irms = 
R

√R 2 + ω 2L 2
 Vrms.

If the choke coil were not used, the voltage across
the resistor would be the same as the applied voltage.
Thus, by using the choke coil, the voltage across the
resistor is reduced by a factor

             
R

√R 2 + ω 2L 2
 ⋅

The advantage of using a choke coil to reduce the
voltage is that an inductor does not consume power.
Hence, we do not lose electric energy in the form of
heat. If we connect an additional resistor in series with
the tube to reduce the voltage, power will be lost in
heating this additional resistor.

39.9 HOT-WIRE INSTRUMENTS 

In an ordinary ammeter or voltmeter, a coil is free
to rotate in the magnetic field of a fixed magnet. To
measure a current or a voltage, current is passed
through the coil and the coil deflects due to the torque
acting on it. If an alternating current is passed through
such a coil, the torque will reverse its direction each
time the current changes direction and the average
value of the torque will be zero. Because of friction,
etc., the coil does not quickly respond to the changing
torque and remains undeflected. To measure
alternating currents or voltages, one would have to use
a property so that the deflection of the moving part
depends on i 2 and not on i. This ensures that the
deflection remains independent of the direction of the
current. The average of i

 2 is not zero and hence a
steady deflection may be obtained. Hot-wire
instruments are designed to work on this principle.

Hot-wire Ammeter 

The construction of a hot-wire ammeter is shown
in figure (39.14). A platinum–iridium wire AB is fixed
tightly between two fixed ends A and B. A spring is
fixed at one end C and is permanently connected to a
thin wire at the other end. The thin wire is wound
several times over a cylinder D and the end is
connected to the middle point of AB. The cylinder can
rotate about its axis. A pointer connected to the
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cylinder moves along a graduated scale when the
cylinder rotates. A small resistance r is connected in
parallel to the wire AB as a shunt. This makes the
total resistance of the ammeter small so that it does
not appreciably alter the current in the circuit. The
points A and B are connected to the outer terminals
T1 and T2.

The current to be measured is passed through the
instrument via T1, T2. The wire AB gets heated due to
the current, the rise in temperature being proportional
to irms

 2 . The length of the wire increases and
consequently its tension decreases. Because of the
tension in the spring on the other side, the cylinder
rotates a little and the pointer deflects along the scale.
The deflection is proportional to irms

 2  but the scale is
graduated in such a way that the reading gives directly
the rms current.

Hot-wire Voltmeter 

The construction of a hot-wire voltmeter is almost
identical to a hot-wire ammeter except that a high
resistance R is connected in series with the wire AB
in place of the shunt r (figure 39.15). The alternating
voltage to be measured is applied across T1 and T2. A
current passes through AB and the pointer attached
to the cylinder deflects. The deflection is proportional
to Vrms

 2 . The scale is graduated in such a way that it
reads directly the rms voltage.

38.10 DC DYNAMO 

An AC dynamo converts mechanical energy into
electrical energy and it supplies alternating current in the
circuit connected to it. A DC dynamo also converts
mechanical energy into electrical energy but it supplies
current in one direction only in the circuit connected to it.

The basic design of a DC dynamo (figure 39.16a)
is the same as that of an AC dynamo except for the
slip rings. Figure (39.16b) shows a simplified diagram
of the same. The slip rings are in the form of a split
cylinder (figure 39.16). The ends of the armature (coil)
are connected separately to the two halves C1 and C2

of the cylinders. The armature is rotated by some
external agency. The split cylinder rotates with the
armature. Two carbon brushes B1 and B2 press against
the rotating halves C1 and C2. As the gaps pass under
the brushes, the contacts to the external circuit are
reversed. For half of a period of rotation, the terminal
P is connected to C1 and the terminal Q to C2. For the
other half of the period, P is connected to C2 and Q to
C1. It is arranged in such a way that the gaps pass
under the brushes at the time the emf becomes zero.
Thus, although emf becomes negative, the current in
the external circuit continues in the same direction
(figure 39.17a). The system consisting of the split
cylinders with brushes is also called a slip-ring
commutator.

Although the current is unidirectional, its
magnitude oscillates in time. To reduce the variation
in the current, another coil perpendicular to the first

Figure 39.15
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one is added in the system. The emf from this coil,
again arranged properly with slip-ring commutator, is
fed to the external circuit. The emf from this coil is
maximum when the emf from the first coil is zero and
vice versa. The sum of the two contains less
oscillations and the current is more nearly constant
(figure 39.17b). One can increase the number of coils
to reduce the variation further.

39.11 DC MOTOR 

A motor is used to convert electrical energy into
mechanical energy and rotate a mechanical load. The
principle of a DC motor is the same as that of a
moving-coil galvanometer. The arrangement is
basically the same as that of a DC dynamo. We can
refer to figure (39.16) for its description. It has the
field magnets, the armature, the slip rings and the
brushes. A battery or the output of a DC generator is
connected to the brushes through the outer terminals
P and Q. The battery drives a current in the coil and
because of the magnetic field, a torque acts on it. This
torque rotates the coil which is on a shaft to which the
mechanical load is attached. This way the load is
rotated. The torque depends on the orientation of the
coil besides the strength of the current in it. It is zero
when the coil is perpendicular to the field and is
maximum in magnitude when it is parallel to the field.
As the coil rotates, an induced emf e is produced
opposite to the applied emf E . If the resistance of the
circuit is R, the current at any instant is given by
i = (E  − e)/R.

39.12 TRANSFORMER 

A transformer is used either to obtain a high AC
voltage from a low-voltage AC source or to obtain a
low AC voltage from a high-voltage AC source. The
design of a simple transformer is shown in figure
(39.18). Two coils are wound separately on a laminated
soft-iron core. One of the coils is called the primary
and the other is called the secondary. The original
source of alternating voltage is connected across the
primary. An induced emf appears across the ends of
the secondary which is used to drive current in the
desired circuit.

Suppose there are N1 turns in the primary and N2

turns in the secondary. An alternating emf E 1 is
applied across the primary which produces a current

i1 in the primary circuit and a current i2 in the
secondary circuit. The currents in the coils produce a
magnetization in the soft-iron core and there is a
corresponding magnetic field B inside the core. The
field due to magnetization of the core is large as
compared to the field due to the currents in the coils.
We assume that the field is constant in magnitude
everywhere in the core and hence its flux (BA) through
each turn is the same for the primary as well as for
the secondary coil. Let the flux through each turn be

Φ. The emf induced in the primary is − N1 
dΦ
dt

 and that

induced in the secondary is − N2 
dΦ
dt

 = E 2 . If we neglect

the resistance in the primary circuit, Kirchhoff’s loop
law applied to the primary circuit gives

       E 1 − N1 
dΦ
dt

 = 0

   or,      E 1 = N1 
dΦ
dt

 ⋅ … (i)

   Also, E 2 = − N2 
dΦ
dt

 ⋅ … (ii)

From (i) and (ii),

            E 2 = − 
N2

N1
 E 1. … (39.16)

The minus sign shows that E 2 is 180° out of phase
with E 1 . Equations (i), (ii) and (39.16) are valid for all
values of currents in the primary and the secondary
circuits.

Power Transfer

Let us first consider the case when the terminals
of the secondary are not connected to any external
circuit. The secondary circuit is incomplete and the
current through it is zero. Suppose, the current in the
primary is is in this case (the subscript s stands for
the source and not for the secondary). As we have
neglected the resistance in the primary circuit, it is a
purely inductive circuit. The current has a phase
difference of 90° with the applied emf E 1 and hence
the power delivered by the AC source is zero. The
power in the secondary circuit is anyway zero as there
is no current in this circuit.

Now suppose, the terminals of the secondary are
joined to a resistance R. There will be an alternating
current i2 through R. There will be additional emf’s
induced in the primary as well as in the secondary due
to i2. But the net induced emf in the primary should
remain equal and opposite to the source-emf E 1 by (i).
So, there will be an additional current i1 in the primary
circuit which will cancel the emf induced due to i2.
Thus the current in the primary will be is + i1 and in
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the secondary i2. The emf in the secondary will remain
E2 as given by (ii).

As the induced emf’s due to i1 and i2 always cancel
each other, the two alternating currents should be
180° out of phase. Also, i2 is in phase with E 2 (purely

resistive circuit), and E 1 is 180° out of phase with

E 2 (equation 39.16). This shows that i1 is in phase with

E 1 (figure 39.19).

The primary current (current in the primary
circuit) is + i1, therefore, has a component is which is

at a phase difference of 90° from the applied emf E 1

and a component i1 which is in phase with this emf.
The power delivered by the AC source is, therefore,
E 1 i1. The power consumed by the resistance in the

secondary circuit is E 2 i2. Neglecting any loss of energy
elsewhere,

          E 1i1 = E 2i2. … (i)

Using equation (39.16),

             i2 = − 
N1

N2
 i1. … (39.17)

The minus sign shows that i2 is 180° out of phase
with i1.

Quite often, the additional current i1 in the
primary is much larger than the original current is.
This can be easily shown by connecting an electric bulb
in series with the primary. The bulb glows much
brighter when the secondary circuit is completed than
when it is open. If is is negligible as compared to i1,
equation (39.17) gives the relation between the net
currents.

Step-up and Step-down Transformers

If N2 > N1, the secondary emf E 2 is larger in

magnitude than the primary emf E 1 . This type of
transformer is called a step-up transformer. The
secondary current is less than the primary current.
The primary coil is made from a thick wire so that it
can sustain the high current.

If N2 < N1, the emf in the secondary circuit is
smaller in magnitude than the primary emf. This type
of transformer is called a step-down transformer. The
secondary current is more than the primary current
and the wire used to make the secondary coil should
be sufficiently thick to carry the high current.

Efficiency of a Transformer

In an ordinary transformer, there is some loss of
energy due to primary resistance, hysteresis in the
core, eddy currents in the core, etc. The efficiency of
a transformer is defined as

         η = 
output power
input power

 ⋅

Efficiencies of the order of 99% can be easily
achieved.

Example 39.5

   A radio set operates at 6 V DC. A transformer with 18
turns in the secondary coil is used to step down the input
220 V AC emf to 6 V AC emf. This AC emf is then
rectified by another circuit to give 6 V DC which is fed
to the radio. Find the number of turns in the primary.

Solution :

We have,

        




E2

E1




 = 

N2

N1

or,     N1 = 




E1

E2




 N2 = 

220
6

 × 18 = 660.

Transmission of Power

The fact that an AC voltage can be stepped up or
stepped down, has application in transmission of power
from the electricity generation plants to the users.
Generally, these plants are quite far away from the
actual areas where the power is used. Power is
transmitted through several hundred kilometres of
wires before it is used. Because of the resistance of
these wires, some energy is lost in Joule heating in
the form of i 2Rt. The plant can supply a fixed power
depending on its capacity. If this power is supplied at
a high voltage, the current is small. Correspondingly,
the loss of power in transmission is small. So, the
voltage at the electricity generation plant is stepped
up to, say, 66 kV and fed to the transmission lines. In
a town or city, the voltage is stepped down to the
required value such as 220 V.
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Worked Out Examples

 1. A resistance of 20 Ω is connected to a source of
alternating current rated 110 V, 50 Hz. Find (a) the rms
current, (b) the maximum instantaneous current in the
resistor and (c) the time taken by the current to change
from its maximum value to the rms value.

Solution :

(a) The rms potential difference = 110 V and so

the rms current = 110 V
20 Ω

 = 5.5 A.

(b) The maximum instantaneous current
= √2 (rms current)               

= √2 × 5.5 A = 7.8 A.
(c) Let the current be i = i0 sin ωt.

If t1 and t2 be the time instants for consecutive
appearances of the maximum value and the rms value
of the current,
            i0 = i0 sin ωt1

and 
i0

√2
 = i0 sin ωt2.

If ωt1 = 
π
2

 , ωt2 = 
π
2

 + 
π
4

 ⋅

Hence, t2 − t1 = 
π

4ω

= 
π

4 × 2πν
 = 

1
8 × 50

 s = 2.5 ms.

 2. The electric current in a circuit is given by i = i0(t/τ) for
some time. Calculate the rms current for the period
t = 0  to t = τ.

Solution :

The mean square current is 

     i 2

__
 = 

1
τ
 ∫ 
0

τ

i0
 2 (t/τ) 2 dt = 

i0
 2

τ 3 ∫ 
0

τ

t 2 dt = 
i0
 2

3
 ⋅

Thus, the rms current is 

irms = √⎯⎯i 2

__
 = 

i0

√3
 ⋅

 3. A coil having a resistance of 50.0 Ω and an inductance
of 0.500 henry is connected to an AC source of 110 volts,
50.0 cycle/s. Find the rms value of the current in the
circuit.

Solution :

The angular frequency ω = 2πν = 100π s − 1.

The impedance of the coil

       = √⎯⎯⎯⎯⎯⎯⎯R 2 + L 2ω 2

 = √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯(50 Ω) 2 + (0.50 H × 100π s − 1) 2

= √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯2500 Ω 2 + 2500 π 2Ω 2  = 164.8 Ω.

The rms current is 
E rms

Z
 = 110 V

164.8 Ω
 ≈ 0.667 A.

The peak current = √2  (rms  current) ≈ 0.943 A.

 4. A capacitor of capacitance 100 μF and a coil of resistance
50 Ω and inductance 0.5 H are connected in series with
a 110 V, 50 Hz AC source. Find the rms value of the
current.

Solution :

The resistance of the circuit is R = 50 Ω.

The reactance of the capacitor = 
1

ωC

     = 
1

(2π × 50 s − 1) (100 × 10 − 6 F)
 = 31.8 Ω.

The reactance of the inductor = ωL

= (2π × 50 s − 1) (0.5 henry) = 157 Ω.

The reactance of the circuit = X = 
1

ωC
 − Lω

= 31.8 Ω − 157 Ω = − 125.2 Ω.

Hence, the impedance Z = √⎯⎯⎯⎯⎯⎯R 2 + X 2

     = √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯(50 Ω) 2 + (125.2 Ω) 2  ≈ 134.6 Ω.

The rms current = 
E rms

Z
 = 110 V

134.6 Ω
 = 0.82 A.

 5. A capacitor of capacitance 12.0 μF is joined to an AC
source of frequency 200 Hz. The rms current in the circuit
is 2.00 A. (a) Find the rms voltage across the capacitor.
(b) Find the average energy stored in the electric field
between the plates of the capacitor.

Solution :

(a) The impedance of the capacitor = 
1

ωC

        = 
1

(2π × 200 s − 1) (12 μF)
 = 66.3 Ω.

The rms voltage across the capacitor

= irms Z = 2.0 A × 66.3 Ω ≈ 133 V.

(b) The energy stored in the electric field = 
1
2

 CV 2.

Hence the average energy stored = 
1
2

 CV 2

___
.

But V 2

___
 = (Vrms) 

2.

Thus, the average energy stored

       = 
1
2

 × (12 μF) × (133 V) 2 ≈ 0.106 J.
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 6. A series AC circuit contains an inductor (20 mH), a
capacitor (100 F), a resistor (50 ) and an AC source
of 12 V, 50 Hz. Find the energy dissipated in the circuit
in 1000 s. 

Solution :

The time period of the source is

       T  1/  20 ms.

The given time 1000 s is much larger than the time period.
Hence we can write the average power dissipated as 

Pav  Vrms irms cos
where cos  R/Z is the power factor. Thus,

Pav  Vrms 
Vrms

Z
 
R
Z

  
R Vrms

 2

Z 2  

 
50  12 V 2

Z 2  

 
7200
Z 2  V 2.  (i)

The capacitive reactance 
1
C

  
1

2  50  100  10 6
 

 
100


 .

The inductive reactance  L

 2  50  20  10  3   2 .

The net reactance is X  1
C

  L

 
100


   2   25.5 .

Thus,

       Z 2  50  2  25.5  2  3150  2.

From (i), average power Pav  
7200 V 2

3150  2   2.286 W.

The energy dissipated in 1000 s  Pav  1000 s

           2.3  10 3 J.

 7. An inductor of inductance 100 mH is connected in series
with a resistance, a variable capacitance and an AC
source of frequency 2.0 kHz. What should be the value of
the capacitance so that maximum current may be drawn
into the circuit ?

Solution :

This is an LCR series circuit. The current will be
maximum when the net reactance is zero. For this,

    
1
C

  L

or,    C  
1

 2L
  

1

4 2  2.0  10 3 s  1 2 0.1 H

           63 nF.

 8. An inductor coil joined to a 6 V battery draws a steady
current of 12 A. This coil is connected to a capacitor and
an AC source of rms voltage 6 V in series. If the current
in the circuit is in phase with the emf, find the rms
current.

Solution :

The resistance of the coil is R  
6 V
12 A

  0.5 .

In the AC circuit, the current is in phase with the emf.
This means that the net reactance of the circuit is zero.
The impedance is equal to the resistance, i.e.,

Z  0.5 .

The rms current  
rms voltage

Z
  

6 V
0.5 

  12 A.

QUESTIONS FOR SHORT ANSWER

 1. What is the reactance of a capacitor connected to a
constant DC source ?

 2. The voltage and current in a series AC circuit are given
by

         V  V0 cos t  and  i  i0 sin t.
What is the power dissipated in the circuit ?

 3. Two alternating currents are given by 

       i1  i0 sin t  and  i2  i0 sin 



t  


3



 

Will the rms values of the currents be equal or
different ?

 4. Can the peak voltage across the inductor be greater than
the peak voltage of the source in an LCR circuit ?

 5. In a circuit containing a capacitor and an AC source,
the current is zero at the instant the source voltage is
maximum. Is it consistent with Ohm’s law ?

 6. An AC source is connected to a capacitor. Will the rms
current increase, decrease or remain constant if a
dielectric slab is inserted into the capacitor ?

 7. When the frequency of the AC source in an LCR circuit
equals the resonant frequency, the reactance of the
circuit is zero. Does it mean that there is no current
through the inductor or the capacitor ?

 8. When an AC source is connected to a capacitor there is
a steady-state current in the circuit. Does it mean that
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the charges jump from one plate to the other to complete
the circuit ?

 9. A current i1 = i0 sin ωt passes through a resistor of
resistance R. How much thermal energy is produced in
one time period ? A current i2 = – i0 sin ωt passes through
the resistor. How much thermal energy is produced in
one time period ? If i1 and i2 both pass through the
resistor simultaneously, how much thermal energy is
produced ? Is the principle of superposition obeyed in
this case ?

10. Is energy produced when a transformer steps up the
voltage ?

11. A transformer is designed to convert an AC voltage of
220 V to an AC voltage of 12 V. If the input terminals

are connected to a DC voltage of 220 V, the transformer
usually burns. Explain.

12. Can you have an AC series circuit in which there is a
phase difference of (a) 180° (b) 120° between the emf
and the current ?

13. A resistance is connected to an AC source. If a capacitor
is included in the series circuit, will the average power
absorbed by the resistance increase or decrease ? If an
inductor of small inductance is also included in the
series circuit, will the average power absorbed increase
or decrease further ?

14. Can a hot-wire ammeter be used to measure a direct
current having a constant value ? Do we have to change
the graduations ?

OBJECTIVE I

 1. A capacitor acts as an infinite resistance for 
(a) DC               (b) AC
(c) DC as well as AC     (d) neither AC nor DC.

 2. An AC source producing emf

       E  = E 0 
⎡
⎣cos(100 π s − 1)t + cos(500 π s − 1)t⎤

⎦
   is connected in series with a capacitor and a resistor.

The steady-state current in the circuit is found to be

     i = i1 cos⎡
⎣(100 π s − 1)t + ϕ1

⎤
⎦ + i2 cos⎡

⎣(500 π s − 1)t + φ2
⎤
⎦ ⋅

   (a) i1 > i2     (b) i1 = i2      (c) i1 < i2

(d) The information is insufficient to find the relation
       between i1 and i2.

 3. The peak voltage in a 220 V AC source is
(a) 220 V             (b) about 160 V
(c) about 310 V         (d) 440 V.

 4. An AC source is rated 220 V, 50 Hz. The average voltage
is calculated in a time interval of 0.01 s. It 
(a) must be zero         (b) may be zero
(c) is never zero          (d) is (220/√2)V.

 5. The magnetic field energy in an inductor changes from
maximum value to minimum value in 5.0 ms when
connected to an AC source. The frequency of the
source is
(a) 20 Hz   (b) 50 Hz   (c) 200 Hz   (d) 500 Hz.

 6. Which of the following plots may represent the reactance
of a series LC combination ?

 7. A series AC circuit has a resistance of 4 Ω and a
reactance of 3 Ω. The impedance of the circuit is
(a) 5 Ω   (b) 7 Ω   (c) 12/7 Ω   (d) 7/12 Ω.

 8. Transformers are used
(a) in DC circuits only     (b) in AC circuits only
(c) in both DC and AC circuits
(d) neither in DC nor in AC circuits.

 9. An alternating current is given by
        i = i1 cos ωt + i2 sin ωt.
The rms current is given by

   (a) 
i1 + i2

√2
  (b) 

⎪
⎪i1 + i2

⎪
⎪

√2
  (c)√⎯⎯⎯i1

 2 + i2
 2

2
  (d)√⎯⎯⎯i1

 2 + i2
 2

√2
 ⋅

10. An alternating current having peak value 14 A is used
to heat a metal wire. To produce the same heating effect,
a constant current i can be used where i is
(a) 14 A  (b) about 20 A  (c) 7 A  (d) about 10 A.

11. A constant current of 2.8 A exists in a resistor. The rms
current is
(a) 2.8 A        (b) about 2 A
(c) 1.4 A        (d) undefined for a direct current.

 OBJECTIVE II

 1. An inductor, a resistor and a capacitor are joined in
series with an AC source. As the frequency of the source
is slightly increased from a very low value, the reactance
(a) of the inductor increases
(b) of the resistor increases

(c) of the capacitor increases
(d) of the circuit increases.

 2. The reactance of a circuit is zero. It is possible that the
circuit contains 
(a) an inductor and a capacitor 
(b) an inductor but no capacitor 
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(c) a capacitor but no inductor
(d) neither an inductor nor a capacitor.

 3. In an AC series circuit, the instantaneous current is zero
when the instantaneous voltage is maximum. Connected
to the source may be a
(a) pure inductor       (b) pure capacitor
(c) pure resistor
(d) combination of an inductor and a capacitor.

 4. An inductor-coil having some resistance is connected to
an AC source. Which of the following quantities have
zero average value over a cycle ?
(a) Current        (b) Induced emf in the inductor
(c) Joule heat
(d) Magnetic energy stored in the inductor

 5. The AC voltage across a resistance can be measured
using
(a) a potentiometer      (b) a hot-wire voltmeter
(c) a moving-coil galvanometer
(d) a moving-magnet galvanometer.

 6. To convert mechanical energy into electrical energy, one
can use
(a) DC dynamo            (b) AC dynamo
(c) motor                 (d) transformer.

 7. An AC source rated 100 V (rms) supplies a current of
10 A (rms) to a circuit. The average power delivered by
the source
(a) must be 1000 W       (b) may be 1000 W
(c) may be greater than 1000 W
(d) may be less than 1000 W.

EXERCISES

 1. Find the time required for a 50 Hz alternating current
to change its value from zero to the rms value.

 2. The household supply of electricity is at 220 V (rms
value) and 50 Hz. Find the peak voltage and the least
possible time in which the voltage can change from the
rms value to zero.

 3. A bulb rated 60 W at 220 V is connected across a
household supply of alternating voltage of 220 V.
Calculate the maximum instantaneous current through
the filament.

 4. An electric bulb is designed to operate at 12 volts DC.
If this bulb is connected to an AC source and gives
normal brightness, what would be the peak voltage of
the source ?

 5. The peak power consumed by a resistive coil when
connected to an AC source is 80 W. Find the energy
consumed by the coil in 100 seconds which is many times
larger than the time period of the source.

 6. The dielectric strength of air is 3.0  10 6 V/m. A
parallel-plate air-capacitor has area 20 cm 2 and plate
separation 0.10 mm. Find the maximum rms voltage of
an AC source which can be safely connected to this
capacitor.

 7. The current in a discharging LR circuit is given by
i  i0 e – t/ where  is the time constant of the circuit.
Calculate the rms current for the period t  0 to t  .

 8. A capacitor of capacitance 10 F is connected to an
oscillator giving an output voltage E   10 Vsin t. Find
the peak currents in the circuit for   10 s – 1, 100 s – 1,
500 s – 1, 1000 s – 1.

 9. A coil of inductance 5.0 mH and negligible resistance is
connected to the oscillator of the previous problem. Find
the peak currents in the circuit for   100 s – 1,
500 s – 1, 1000 s – 1.

10. A coil has a resistance of 10  and an inductance of 0.4

henry. It is connected to an AC source of 6.5 V, 30


 Hz.

Find the average power consumed in the circuit.

11. A resistor of resistance 100  is connected to an AC
source E   12 V sin 250  s – 1t. Find the energy
dissipated as heat during t  0 to t  1.0 ms.

12. In a series RC circuit with an AC source, R  300 ,
C  25 F, E 0  50 V  and    50/ Hz. Find the peak
current and the average power dissipated in the circuit.

13. An electric bulb is designed to consume 55 W when
operated at 110 volts. It is connected to a 220 V, 50 Hz
line through a choke coil in series. What should be the
inductance of the coil for which the bulb gets correct
voltage ?

14. In a series LCR circuit with an AC source, R  300 ,
C  20 F, L  1.0 henry, E rms  50 V and   50/ Hz.
Find (a) the rms current in the circuit and (b) the rms
potential differences across the capacitor, the resistor
and the inductor. Note that the sum of the rms potential
differences across the three elements is greater than the
rms voltage of the source.

15. Consider the situation of the previous problem. Find the
average electric field energy stored in the capacitor and
the average magnetic field energy stored in the coil.

16. An inductance of 2.0 H, a capacitance of 18 F and a
resistance of 10 k are connected to an AC source of
20 V with adjustable frequency. (a) What frequency
should be chosen to maximise the current in the circuit ?
(b) What is the value of this maximum current ?

17. An inductor-coil, a capacitor and an AC source of rms
voltage 24 V are connected in series. When the frequency
of the source is varied, a maximum rms current of 6.0 A
is observed. If this inductor coil is connected to a battery
of emf 12 V and internal resistance 4.0 , what will be
the current ?

18. Figure (39-E1) shows a typical circuit for low-pass filter.
An AC input Vi  10 mV is applied at the left end and

1.0 k

10 nFVi V0

Figure 39-E1
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the output V0 is received at the right end. Find the
output voltages for ν = 10 kHz, 100kHz, 1.0 MHz and
10.0 MHz. Note that as the frequency is increased the
output decreases and hence the name low-pass filter.

19. A transformer has 50 turns in the primary and 100 in
the secondary. If the primary is connected to a 220 V
DC supply, what will be the voltage across the
secondary ?

ANSWERS

OBJECTIVE I

 1. (a)  2. (c)  3. (c)   4. (b)  5. (b)  6. (d)
 7. (a)  8. (b)  9. (c)  10. (d) 11. (a)

OBJECTIVE II

 1. (a)  2. (a), (d)  3. (a), (b), (d)
 4. (a), (b)  5. (b)  6. (a), (b)
 7. (b), (d)

EXERCISES

 1. 2.5 ms
 2. 311 V, 2.5 ms
 3. 0.39 A
 4. 17 volts
 5. 4.0 kJ

 6. 210 V

 7. 
i0

e
 √⎯⎯⎯⎯⎯⎯⎯(e 2 − 1)/2  

 8. 1.0 × 10 − 3 A, 0.01 A, 0.05 A, 0.1 A
 9. 20 A, 4.0 A, 0.20 A
10. 5/8 W

11. 2.61 × 10 − 4 J
12. 0.10 A, 1.5 W
13. 1.2 H
14. (a) 0.10 A (b) 50 V, 30 V, 10 V
15. 25 mJ, 5 mJ
16. (a) 27 Hz (b) 2 mA
17. 1.5 A
18. 8.5 mV, 1.6 mV, 0.16 mV, 16 μV
19. zero.
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CHAPTER 40

ELECTROMAGNETIC WAVES

40.1 INTRODUCTION

We have seen that in certain situations light
may be described as a wave. The wave equation for
light propagating in x-direction in vacuum may be
written as

         E = E0 sin ω(t − x/c)
where E is the sinusoidally varying electric field at the
position x at time t. The constant c is the speed of light
in vacuum. The electric field E is in the Y–Z plane,
that is, perpendicular to the direction of propagation.

There is also a sinusoidally varying magnetic field
associated with the electric field when light
propagates. This magnetic field is perpendicular to the
direction of propagation as well as to the electric field
E. It is given by

B = B0 sin ω(t − x/c).
Such a combination of mutually perpendicular

electric and magnetic fields is referred to as an
electromagnetic wave in vacuum. The theory of
electromagnetic wave was mainly developed by
Maxwell around 1864. We give a brief discussion of
this theory.

40.2 MAXWELL’S DISPLACEMENT CURRENT

We have stated Ampere’s law as

           ∫O B
→

⋅dl
→
 = µ0 i … (40.1)

where i is the electric current crossing a surface

bounded by a closed curve and the line integral of B
→

(circulation) is calculated along that closed curve. This
equation is valid only when the electric field at the
surface does not change with time. This law tells us
that an electric current produces magnetic field and
gives a method to calculate the field.

Ampere’s law in this form is not valid if the electric
field at the surface varies with time. As an example,
consider a parallel-plate capacitor with circular plates,
being charged by a battery (figure 40.1). If we place a
compass needle in the space between the plates, the

needle, in general, deflects. This shows that there is a
magnetic field in this region. Figure (40.1) also shows
a closed curve γ which lies completely in the region
between the plates. The plane surface S bounded by
this curve is also parallel to the plates and lies
completely inside the region between the plates.

During the charging process, there is an electric
current through the connecting wires. Charge is
accumulated on the plates and the electric field at the
points on the surface S changes. It is found that there
is a magnetic field at the points on the curve γ and
the circulation

        ∫O B
→

⋅dl
→

has a nonzero value. As no charge crosses the surface
S, the electric current i through the surface is zero.
Hence,

∫O B
→

⋅dl
→
 ≠ µ0 i. … (i)

Now, Ampere’s law (40.1) can be deduced from
Biot–Savart law. We can calculate the magnetic field
due to each current element from Biot–Savart law and
then its circulation along the closed curve γ. The
circulation of the magnetic field due to these current
elements must satisfy equation (40.1). If we denote this

magnetic field by B
→

′,

∫O B
→

′⋅dl
→
 = 0. … (ii)

This shows that the actual magnetic field B
→

 is

different from the field B
→

′ produced by the electric
currents only. So, there must be some other source of
magnetic field. This other source is nothing but the

�

�
�

Figure 40.1



changing electric field. As the capacitor gets charged,
the electric field between the plates changes and this
changing electric field produces magnetic field.

We know that a changing magnetic field produces
an electric field. The relation between the two is given
by Faraday’s law

          ∫O E
→

⋅dl
→
 = − 

dΦB

dt
 ⋅

Here, ΦB = ∫ B→⋅dS
→

 is the flux of the magnetic field
through the area bounded by the closed curve along

which the circulation of E
→

 is calculated. Now we find
that a changing electric field produces a magnetic field.
The relation between the changing electric field and
the magnetic field resulting from it is given by

 ∫O B
→

⋅dl
→
 = µ0 ε0 

dΦE

dt
 ⋅ … (40.2)

Here, ΦE is the flux of the electric field through
the area bounded by the closed curve along which the

circulation of B
→

 is calculated. Equation (40.1) gives the
magnetic field resulting from an electric current due
to flow of charges and equation (40.2) gives the
magnetic field due to the changing electric field. If
there exists an electric current as well as a changing
electric field, the resultant magnetic field is given by

       ∫O B
→

⋅dl
→
 = µ0 i + µ0 ε0 





dΦE

dt





or, ∫O B
→

⋅dl
→
 = µ0(i + id) … (40.3)

where id = ε0 
dΦE

dt
 ⋅

It was James Clerk Maxwell who generalised
Ampere’s law from equation (40.1) to equation (40.3).

Maxwell named the term id = ε0 
dΦE

dt
 as displacement

current. The current due to flow of charges is often
called conduction current and is denoted by ic.

Example 40.1

   A parallel-plate capacitor is being charged. Show that
the displacement current across an area in the region
between the plates and parallel to it (figure 40.1) is equal
to the conduction current in the connecting wires.

Solution :

The electric field between the plates is

              E = 
Q

ε0 A

where Q is the charge accumulated at the positive plate.
The flux of this field through the given area is

      ΦE = 
Q

ε0 A
 × A = 

Q
ε0

 ⋅

The displacement current is

       id = ε0 
dΦE

dt
 = ε0 

d
dt

 




Q

ε0




 = 

dQ
dt

 ⋅

But dQ
dt

 is the rate at which the charge is carried to the

positive plate through the connecting wire. Thus,
id = ic.

40.3 CONTINUITY OF ELECTRIC CURRENT

Consider a closed surface enclosing a volume
(figure 40.2). Suppose charges are entering into the
volume and are also leaving it. If no charge is
accumulated inside the volume, the total charge going
into the volume in any time is equal to the total charge
leaving it during the same time. The conduction
current is then continuous.

If charge is accumulated inside the volume, this
continuity breaks. However, if we consider the
conduction current plus the displacement current, the
total current is still continuous. Any loss of conduction
current ic appears as displacement current id. This can
be shown as follows.

Suppose a total conduction current i1 goes into the
volume and a total conduction current i2 goes out of
it. The charge going into the volume in a time dt is
i1 dt and that coming out is i2 dt. The charge
accumulated inside the volume is 

       d(qinside) = i1 dt − i2 dt

   or, 
d
dt

(qinside) = i1 − i2. … (i)

From Gauss’s law,

       ΦE = ∫O E
→

⋅dS
→

 = 
qinside

εo

or, ε0 
dΦE

dt
 = 

d
dt

 (qinside)

or, id = 
d
dt

 (qinside).

Comparing with (i),

i1 − i2 = id

or, i1 = i2 + id.

Thus, the total current (conduction + displacement)
going into the volume is equal to the total current
coming out of it.

��

�

�

�

�

Figure 40.2
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40.4 MAXWELL’S EQUATIONS AND PLANE
    ELECTROMAGNETIC WAVES

The whole subject of electricity and magnetism
may be described mathematically with the help of four
fundamental equations:

Gauss’s law for electricity O E

dS


  
q
0

Gauss’s law for magnetism O B

dS


  0

Faraday’s law O E

dl

   

dB

dt

Ampere’s law O B

dl

  0i  00 

dE

dt
 

These equations are collectively known as
Maxwell’s equations.

In vacuum, there are no charges and hence no
conduction currents. Faraday’s law and Ampere’s law
take the form 

           O E

dl

   

dB

dt
 (i)

and        O B

dl

  0 0 

dE

dt
 (ii)

respectively.
Let us check if these equations are satisfied by a

plane electromagnetic wave given by

   
E  Ey  E0 sin t  x/c 

and           B  Bz  B0 sin t  x/c.




 (40.4)

The wave described above propagates along the
positive x-direction, the electric field remains along the
y-direction and the magnetic field along the z-direction.
The magnitudes of the fields oscillate between
 E0  and   B0 respectively. It is a linearly polarized
light, polarized along the y-axis.

Faraday’s Law

Let us consider the rectangular path abcd in the
x–y plane as shown in figure (40.3a). Let us evaluate
the terms in the Faraday’s law on this path. The
electric field is parallel to the y-axis. The circulation
of E is

 O E

dl

   

a

b

E

dl

   

b

c

E

dl

   

c

d

E

dl

   

d

a

E

dl


   0  Ex2 l  0  Ex1  l
 E0 l sin t  x2 / c  sin t  x1/c.  (i)

Next, let us calculate the flux of the magnetic field
B , through the same rectangle abcd (figure 40.3b).
The flux through a strip of width dx at x is

      Bx l dx  B0 [sin t  x/c] l dx.
The flux through the rectangle abcd is

    B   
x1

x2

B0 l sin t  x/c dx

  
c


 B0 l cos t  x2/c  cos t  x1/c.

Thus,

     
dB

dt
   cB0 lsin t  x2/c  sin t  x1/c.

 (ii)

The Faraday’s law for vacuum is

        O E

dl

   

dB

dt
 

Putting from (i) and (ii) in this equation, we see
that Faraday’s law is satisfied by the wave given by
equation (40.4a) if 
               E0  cB0 .  (40.5)

Ampere’s Law

Let us consider the rectangular path efgh in the
x–z plane as shown in figure (40.4a). 

The circulation of B


 is

  O B

dl

   

e

f

B

dl

   

f

g

B

dl

   

g

h

B

dl

   

h

e

B

dl


 Bx1 l  0  Bx2 l  0

         B0 lsin t  x1/c  sin t  x2/c.
 (i)

The flux of the electric field through the same
rectangle efgh (figure 40.4b) is

E   E

dS


  
x1

x2

Ex l dx

Figure 40.3

Figure 40.4
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        = E0 l ∫ 
x1

x2

sin ω(t − x/c) dx

= − 
c
ω

 E0 l[− cos ω(t − x2 /c) + cos ω(t − x1 /c)]

or, 
dΦE

dt
 = − cE0 l[sin ω(t − x2 /c) − sin ω(t − x1 /c)].

…  (ii)

The Ampere’s law for vacuum is

        ∫O B
→

⋅dl
→
 = µ0 ε0 

dΦE

dt
 ⋅

Putting from (i) and (ii) in this equation, we see
that Ampere’s law is satisfied if 

          B0 = µ0 ε0 c E0

or, µ0 ε0 = 
B0

E0c
 ⋅

Using equation (40.5),

µ0 ε0 = 
1
c 2

 

   or, c = 
1

√µ0 ε0
 ⋅ … (40.6)

Thus, Maxwell’s equations have a solution giving
a plane electromagnetic wave of the form (40.4) with
E0 = cB0 and the speed of this wave is 1

√µ0 ε0

 ⋅

In older days, µ0  and  ε0 were defined in terms of
electric and magnetic measurements. Putting these
values of µ0  and  ε0, the speed of electromagnetic
waves came out to be c = 2.99793 × 10 8 m/s which was
the same as the measured speed of light in vacuum.
This provided a confirmatory proof that light is an
electromagnetic wave.

It may be recalled that the speed of electro-
magnetic waves, which is the same as the speed of
light, is now an exactly defined constant. Similarly,
the constant µ0 = 4π × 10 − 7 T−m/A is an exactly defined
constant. The quantity ε0 is defined by the equation
(40.6).

Example 40.2

   The maximum electric field in a plane electromagnetic
wave is 600 N C −1. The wave is going in the x-direction
and the electric field is in the y-direction. Find the
maximum magnetic field in the wave and its direction.

Solution :

We have B0 = 
E0

c
 = 600 N C 

−1

3 × 10 
8
 m s 

−1 = 2 × 10 − 6 T.

As E
→

, B
→

 and the direction of propagation are mutually

perpendicular, B
→

 should be along the z-direction.

40.5 ENERGY DENSITY AND INTENSITY

The electric and magnetic field in a plane
electromagnetic wave are given by

        E = E0 sin ω(t − x/c)
and B = B0 sin ω(t − x/c).

In any small volume dV, the energy of the electric
field is

UE = 
1
2

 ε0 E 2dV

and the energy of the magnetic field is 

UB = 
1

2µ0
 B 2dV.

Thus, the total energy is

U = 
1
2

 ε0 E 2 dV + 
1

2µ0
 B 2dV.

The energy density is u = 
1
2

 ε0 E 2 + 
1

2µ0
 B 2

= 
1
2

 ε0 E0
 2 sin 2ω(t − x/c) + 

1
2 µ0

 B0
 2 sin 2 ω(t − x/c).

If we take the average over a long time, the sin 2

terms have an average value of 1/2. Thus,

     uau = 
1
4

 ε0 E0
 2 + 

1
4 µ0

 B0
 2.

From equations (40.5) and (40.6),

 E0 = cB0  and  µ0ε0 = 
1
c 2

        so that, 

   
1

4 µ0
 B0

 2 = 
ε0 c 2

4
 



E0

c





 2

 = 
1
4

 ε0 E0
 2.

Thus, the electric energy density is equal to the
magnetic energy density in average.

or,    uav = 
1
4

 ε0 E0
 2 + 

1
4

 ε0 E0
 2 = 

1
2

 ε0 E0
 2. … (40.7)

Also, uav = 
1

4 µ0
 B0

 2 + 
1

4 µ0
 B0

 2 = 
1

2 µ0
 B0

 2. … (40.8)

Example 40.3

   The electric field in an electromagnetic wave is given by
          E = (50 N C −1) sin ω(t − x/c).
Find the energy contained in a cylinder of cross-section
10 cm 2 and length 50 cm along the x-axis.

Solution :

The energy density is

uav = 
1
2

 ε0 E0
 2 = 

1
2

 × (8.85 × 10 − 12 C 2N −1m −2) × (50 N C −1) 2

= 1.1 × 10 − 8 J m −3.

The volume of the cylinder is

       V = 10 cm 2 × 50 cm = 5 × 10 − 4 m 3.

The energy contained in this volume is
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    U  1.1  10  8 J m 3  5  10  4 m 3

 5.5  10  12 J.

Intensity 

The energy crossing per unit area per unit time
perpendicular to the direction of propagation is called
the intensity of a wave.

Consider a cylindrical volume with area of cross-
section A and length ct along the X-axis (figure 40.5).
The energy contained in this cylinder crosses the area
A in time t as the wave propagates at speed c. The
energy contained is

           U  uavc tA.

The intensity is I  U
At

  uav c.

In terms of maximum electric field,

I  
1
2

 0 E0
 2c.  (40.9)

Example 40.4

   Find the intensity of the wave discussed in example
(40.3).

Solution :

The intensity is

   I  
1
2

 0 E0
 2 c  1.1  10  8 J m 3  3  10 8 m s 1

 3.3 W m 2.

40.6 MOMENTUM 

The electromagnetic wave also carries linear
momentum with it. The linear momentum carried by
the portion of wave having energy U is given by

            p  
U
c

   (40.10)

Thus, if the wave incident on a material surface is
completely absorbed, it delivers energy U and
momentum p U/c to the surface. If the wave is totally
reflected, the momentum delivered is 2U/c because the
momentum of the wave changes from p to – p. It
follows that electromagnetic waves incident on a
surface exert a force on the surface.

40.7 ELECTROMAGNETIC SPECTRUM
    AND RADIATION IN ATMOSPHERE

Maxwell’s equations are applicable for electro-
magnetic waves of all wavelengths. Visible light has
wavelengths roughly in the range 380 nm to 780 nm.
Today we are familiar with electromagnetic waves
having wavelengths as small as 30 fm
(1 fm  10  15 m) to as large as 30 km. Figure (40.6)
shows the electromagnetic spectrum we are familiar
with. The boundaries separating different regions of
spectrum are not sharply defined. The gamma ray
region and the X-ray region overlap considerably. We
can only say that on the average, wavelengths of
gamma rays are shorter than those of X-rays.

The basic source of electromagnetic waves is an
accelerated charge. This produces changing electric
field and changing magnetic field which constitute the
wave. Radio waves may be produced by charges
accelerating in AC circuits having an inductor and a
capacitor. These waves are used in radio and TV
communication. Microwaves are also produced by such
electric circuits with oscillating current. They are used
for radar systems among other applications.
Microwave ovens are used for cooking. Infrared waves
are emitted by the atoms and molecules of hot bodies.
These waves are used in physical therapy. Among the
electromagnetic waves, visible light is most familiar to
us. This is emitted by atoms under suitable conditions.
An atom contains electrons and the light emission is
related to the acceleration of an electron inside the
atom. The mechanism of emission of ultraviolet
radiation is similar to that for visible light. The sun
emits large amount of ultraviolet radiation. This
radiation is harmful to us if absorbed in large amount.
X-rays are produced most commonly when fast-moving
electrons decelerate inside a metal target. X-rays are
widely used in medical diagnosis. They are harmful to
living tissues. Gamma rays are emitted by the nuclei
and have the shortest wavelengths among the
electromagnetic waves we generally deal with.

Radiation in Atmosphere

The earth is surrounded by atmosphere up to a
height of about 300 km. The composition of atmosphere

� �

�����
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differs widely as one moves up. Most of the water
droplets, vapour and ice particles forming clouds, are
contained in a layer starting from the earth’s surface
up to height of about 12 km. This part is called
troposphere. The density of air at the top of the
troposphere is about one tenth of the density near the
earth’s surface. The atmosphere between the heights
of 12 km and 50 km is called stratosphere. In the upper
part of the stratosphere, we have a layer of ozone. The
density of air at the top of the stratosphere is about
10− 3 times the density at the surface of the earth. Then
we have mesosphere between a height of 50 km and
80 km. The atmosphere above that is called
ionosphere. There are no sharp boundaries between the
above divisions and the numbers given are only a
rough guide.

The main source of electromagnetic radiation in
the atmosphere is the sun. The sun sends
electromagnetic waves of different wavelengths
towards the earth. A major part of it is absorbed by
the atmosphere. Visible light is only weakly absorbed.
Most of the infrared radiation is absorbed by the
atmosphere and used to heat it. The radiation from
the sun has a lot of ultraviolet radiation. The ozone
layer absorbs most of this radiation and other
radiations of lower wavelengths and thus protects us
from their harmful effects. The ozone layer converts
the ultraviolet radiation to infrared which is used to
heat the atmosphere and the earth’s surface. It is
suspected that ozone layer  is slowly being depleted
and this is causing great concern to scientists and
environmentalists.

 Worked Out Examples

 1. A parallel-plate capacitor with plate area A and
separation between the plates d, is charged by a constant
current i. Consider a plane surface of area A/2 parallel
to the plates and drawn symmetrically between the
plates. Find the displacement current through this area.

Solution :

Suppose the charge on the capacitor at time t is Q. The
electric field between the plates of the capacitor is

E = Q
ε0 A

 ⋅ The flux through the area considered is

          ΦE = 
Q

ε0 A
 ⋅ A

2
 = 

Q
2 ε0

 ⋅

The displacement current is

       id = ε0 
dΦE

dt
 = ε0 





1
2 ε0




 
dQ
dt

 = 
i
2

 ⋅

 2. A plane electromagnetic wave propagating in the
x-direction has a wavelength of 5.0 mm. The electric field
is in the y-direction and its maximum magnitude is
30 V m−1. Write suitable equations for the electric and
magnetic fields as a function of x and t.

Solution :

The equation for the electric and the magnetic fields in
the wave may be written as

         E = E0 sin ω


t − 

x
c





B = B0 sin ω


t − 

x
c




.

We have,

      ω = 2πν = 
2π
λ

 c.

Thus,   E = E0 sin



2π
λ

 (ct − x)




= (30 V m −1) sin 




2π
5.0 mm

 (ct − x)



 .

The maximum magnetic field is

    B0 = 
E0

c
 = 

30 V m −1

3 × 10 8 m s −1 = 10 − 7 T.

So,        B = B0 sin 



2π
λ

 (ct − x)




       = (10 − 7 T) sin 




2π
5.0 mm

 (ct − x)



 .

The magnetic field is along the z-axis.

 3. A light beam travelling in the x-direction is described by
the electric field Ey = (300 V m −1) sin ω(t − x/c). An
electron is constrained to move along the y-direction with
a speed of 2.0 × 10 7 m s−1. Find the maximum electric
force and the maximum magnetic force on the electron.

Solution :

The maximum electric field is E0 = 300 V m −1. The
maximum magnetic field is

      B0 = 
E0

c
 = 

300 V m −1

3 × 10 8 m s −1 = 10 − 6 T

along the z-direction.

The maximum electric force on the electron is

      Fe = qE0 = (1.6 × 10 − 19 C) × (300 V m −1)

= 4.8 × 10 − 17 N.

The maximum magnetic force on the electron is 

Fb = qv
→
 × B

→
max

 = qvB0
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    1.6  10  19 C  2.0  10 7 m s 1  10  6 T

 3.2  10  18 N.

 4. Find the energy stored in a 60 cm length of a laser beam
operating at 4 mW.

Solution :

The time taken by the electromagnetic wave to move

through a distance of 60 cm is t  60 cm
c

  2  10  9 s. The

energy contained in the 60 cm length passes through a

cross-section of the beam in 2  10  9 s (figure 40-W1).
But the energy passing through any cross section in

2  10  9 s is

      U  4 mW  2  10  9 s

       4  10  3 Js 1  2  10  9 s

 8  10  12 J.
This is the energy contained in 60 cm length.

 5. Find the amplitude of the electric field in a parallel beam
of light of intensity 2.0 W m 2.

Solution :

The intensity of a plane electromagnetic wave is

       I  uav c  
1
2

 0 E0

 2
 c

or, E0  2I
0 c


 2  20 W m 2

885  10  12 C 2N 1m 2  3  10 8 m s 1

 38.8 N C 1.

QUESTIONS FOR SHORT ANSWER

 1. In a microwave oven, the food is kept in a plastic
container and the microwave is directed towards the
food. The food is cooked without melting or igniting the
plastic container. Explain.

 2. A metal rod is placed along the axis of a solenoid
carrying a high-frequency alternating current. It is found
that the rod gets heated. Explain why the rod gets
heated.

 3. Can an electromagnetic wave be deflected by an electric
field ? By a magnetic field ?

 4. A wire carries an alternating current i  i0 sin t. Is
there an electric field in the vicinity of the wire ?

 5. A capacitor is connected to an alternating-current
source. Is there a magnetic field between the plates ?

 6. Can an electromagnetic wave be polarized ?
 7. A plane electromagnetic wave is passing through a

region. Consider the quantities (a) electric field,
(b) magnetic field, (c) electrical energy in a small volume
and (d) magnetic energy in a small volume. Construct
pairs of the quantities that oscillate with equal
frequencies.

OBJECTIVE I

 1. A magnetic field can be produced by
(a) a moving charge     (b) a changing electric field
(c) none of them        (d) both of them.

 2. A compass needle is placed in the gap of a parallel plate
capacitor. The capacitor is connected to a battery
through a resistance. The compass needle
(a) does not deflect
(b) deflects for a very short time and then comes back
       to the original position
(c) deflects and remains deflected as long as the battery
       is connected
(d) deflects and gradually comes to the original position
       in a time which is large compared to the time constant.

 3. Dimensions of 1/00 is
(a) L/T    (b) T/L    (c) L2/ T 2      (d) T 2/L2.

 4. Electromagnetic waves are produced by
(a) a static charge        (b) a moving charge
(c) an accelerating charge   (d) chargeless particles.

 5. An electromagnetic wave going through vacuum is
described by
     E  E0 sinkx  t; B  B0 sinkx  t.
Then    
(a) E0 k  B0            (b)  E0 B0  k
(c) E0   B0 k           (d) none of these.

Figure 40-W1
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 6. An electric field E
→

 and a magnetic field B
→

 exist in a
region. The fields are not perpendicular to each other.
(a) This is not possible.
(b) No electromagnetic wave is passing through the
       region.
(c) An electromagnetic wave may be passing through the
       region.
(d) An electromagnetic wave is certainly passing
       through the  region.

 7. Consider the following two statements regarding a
linearly polarized, plane electromagnetic wave:
(A) The electric field and the magnetic field have equal
       average values.
(B) The electric energy and the magnetic energy have

       equal average values.
(a) Both A and B are true.  (b) A is false but B is true.
(c) B is false but A is true.  (d) Both A and B are false.

 8. A free electron is placed in the path of a plane
electromagnetic wave. The electron will start moving
(a) along the electric field
(b) along the magnetic field
(c) along the direction of propagation of the wave
(d) in a plane containing the magnetic field and the
       direction of propagation.

 9. A plane electromagnetic wave is incident on a material
surface. The wave delivers momentum p and energy E.
(a) p = 0,  E ≠ 0.        (b) p ≠ 0,  E = 0.
(c) p ≠ 0,  E ≠ 0.        (d) p = 0,  E = 0.

OBJECTIVE II

 1. An electromagnetic wave going through vacuum is
described by
            E = E0 sin(kx − ωt).
Which of the following is/are independent of the
wavelength ?
(a) k     (b) ω     (c) k/ω     (d) kω.

 2. Displacement current goes through the gap between the
plates of a capacitor when the charge of the capacitor
(a) increases            (b) decreases
(c) does not change         (d) is zero.

 3. Speed of electromagnetic waves is the same

   (a) for all wavelengths      (b) in all media
(c) for all intensities        (d) for all frequencies.

 4. Which of the following have zero average value in a
plane electromagnetic wave ?
(a) electric field       (b) magnetic field
(c) electric energy       (d) magnetic energy.

 5. The energy contained in a small volume through which
an electromagnetic wave is passing oscillates with
(a) zero frequency     (b) the frequency of the wave
(c) half the frequency of the wave
(d) double the frequency of the wave.

EXERCISES

 1. Show that the dimensions of the displacement current

ε0 
dϕE

dt
 are that of an electric current.

 2. A point charge is moving along a straight line with a
constant velocity v. Consider a small area A
perpendicular to the direction of motion of the charge
(figure 40-E1). Calculate the displacement current
through the area when its distance from the charge is
x. The value of x is not large so that the electric field
at any instant is essentially given by Coulomb’s law.

 3. A parallel-plate capacitor having plate-area A and plate
separation d is joined to a battery of emf E  and internal
resistance R at t = 0. Consider a plane surface of area
A/2, parallel to the plates and situated symmetrically
between them. Find the displacement current through
this surface as a function of time.

 4. Consider the situation of the previous problem. Define
displacement resistance Rd = V/id of the space between
the plates where V is the potential difference between

the plates and id is the displacement current. Show that
Rd varies with time as

              Rd = R(e t/τ − 1).
 5. Using B = µ0 H find the ratio E0/H0 for a plane

electromagnetic wave propagating through vacuum.
Show that it has the dimensions of electric resistance.
This ratio is a universal constant called the impedance
of free space.

 6. The sunlight reaching the earth has maximum electric
field of 810 V m−1. What is the maximum magnetic field
in this light ?

 7. The magnetic field in a plane electromagnetic wave is
given by

    B = (200 µT) sin [(4.0 × 10 15 s − 1) (t − x/c)].
Find the maximum electric field and the average energy
density corresponding to the electric field.

 8. A laser beam has intensity 2.5 × 10 14 W m –2. Find the
amplitudes of electric and magnetic fields in the beam.

 9. The intensity of the sunlight reaching the earth is
1380 W m –2. Assume this light to be a plane,
monochromatic wave. Find the amplitudes of electric
and magnetic fields in this wave.
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Figure 40-E1
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ANSWERS

OBJECTIVE I

 1. (d)  2. (d)  3. (c)  4. (c)  5. (a)  6. (c)
 7. (a)  8. (a)  9. (c)

OBJECTIVE II

 1. (c)  2. (a), (b)  3. (c),  4. (a), (b)
 5. (d)

EXERCISES

 2. 
q Av
2πx 3 

 3. 
E

2R
 e 

− 
td

ε AR

 5. 377 Ω

 6. 2.7 µT

 7. 6 × 10 4 N C −1, 0.016 J m −3

 8. 4.3 × 10 8 N C −1, 1.44 T

 9. 1.02 × 10 3 N C −1, 3.40 × 10 − 6 T
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CHAPTER 41 

ELECTRIC CURRENT THROUGH GASES

Gases are, in general, poor conductors of
electricity. This is because they do not have free
charged particles in large numbers which may respond
to an applied electric field. There may be some
ionization due to cosmic rays and other factors, but
regular recombination of ions of opposite polarity also
takes place and the number of charged particles does
not increase much. Electric current may be passed
through a gas if we ensure that by some mechanism
charged particles are continuously produced in the gas.
This can be done in many ways. One such method is
to apply a large potential difference across a gas
column at very low pressure. Another method is to
heat a metal kept in an evacuated chamber to high
temperatures at which  electrons are ejected from the
metal. Yet another method is to pass X-rays through
the gas. There are several other methods.

41.1 DISCHARGE THROUGH GASES
    AT LOW PRESSURE

To study electric currents through gases at low
pressures, one uses a glass tube known as discharge
tube. Normally, it is a closed tube of length of about
30 cm and diameter of about 4 cm. It is fitted with
two metal electrodes C and A (figure 41.1). A side tube
P is used to pump out the enclosed gas so as to obtain
the desired low pressure. The electrodes are connected
to the secondary of an induction coil so that a high
potential difference may be applied across the gas. The
electrode C connected to the negative terminal is called
the cathode and the electrode A connected to the
positive terminal is called the anode.

Sparking Potential  

If the potential difference between the electrodes
is gradually increased, sparking occurs in the gas at
a certain stage. The minimum potential difference
which can cause sparks in a gas is called the sparking
potential. Sparking potential depends on the pressure
of the gas as well as on the separation between the
electrodes. After careful studies, Paschen found that
the sparking potential of a gas in a discharge tube is
a function of the product of the pressure of the gas
and the separation between the electrodes:
             V = f(pd). … (41.1)

This is called the Paschen’s law. 

Low-Pressure Phenomena

In general, when a high potential difference is
applied across a gas, sparking occurs in the form of
irregular streaks of light. Suppose, in a typical case,
the pressure of the gas is about 10 cm of mercury and
sparking occurs. The sparking is accompanied by
crackling noise. If the pressure of the gas is gradually
decreased by pumping out the gas, a series of
phenomena take place. At a pressure of about 10 mm
of mercury, the irregular streaks broaden out in a
luminous column extending from the anode almost up
to the cathode (figure 41.2a). The crackling sound is
replaced by a continuous buzzing sound. This column
is known as positive column. The colour of the positive
column depends on the nature of the enclosed gas. It
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is reddish for air, bright red for neon, bluish for CO2,
etc.

As the pressure is further decreased to about
3–4 mm of mercury, the positive column decreases in
length. It starts from the anode but ends well before
the cathode. A bluish glow is seen around the cathode
and there is a dark space between this glow and the
positive column (figure 41.2b). The glow around the
cathode is called cathode glow or negative glow. The
dark space between the cathode glow and the positive
column is called Faraday dark space.  

When the pressure is reduced to about 1 mm of
mercury, the positive column is further shortened and
the length of the Faraday dark space increases. The
cathode glow is detached from the cathode and a new
dark space, called Crookes dark space (figure 41.2c),
appears between the cathode and the cathode glow.

As the pressure is decreased further, the Crookes
dark space and the cathode glow expand. At about
0.1 mm of mercury, the positive column is split into
alternate bright and dark bands called striations
(figure 41.2d). 

With further reduction in pressure, the striations
move towards the anode and finally vanish. The
cathode glow also vanishes at around 0.01 mm of
mercury and the Crookes dark space fills the entire
tube. A new phenomenon starts at this stage. The
walls of the tube begin to glow. This is called
fluorescence. The colour of the glow depends on the
nature of the glass. It is yellowish green for soda glass.

If the pressure is still decreased, the current
through the gas gradually decreases and finally the
tube stops conducting.

The values of pressure mentioned in the above
discussion represent only typical values. The actual
pressures at which these phenomena start, depend on
the geometry of the discharge tube, the potential
difference applied, the gas contained in the tube, etc.

Explanation of Discharge Phenomena

Due to cosmic rays and other factor, some ions are
always present in a gas. When a potential difference
is applied across a discharge tube, the ions are
accelerated due to the electric field. They soon collide
with other molecules of the gas and share the excess
energy acquired. If the potential difference is
sufficiently high, the ions get enough energy to ionize
the molecules on collision. This way, ions are produced
in large number and conductions starts. Generally, an
electron is detached from a molecule to make the
molecule a positive ion. At low pressures, this electron
can move through a considerably large distance before
attaching to another molecule forming a negative ion.

These free electrons and the positive ions play
important roles in discharge-tube phenomena.

Let us consider the case when the discharge tube
looks the most beautiful—there is Crookes dark space,
cathode glow, Faraday dark space and then alternate
dark and bright bands.

The positive ions produced near the surface of the
cathode are attracted towards it. Hence, the ions are
accelerated as they move towards the cathode. In the
process they gain kinetic energy. The ions strike the
cathode with sufficient kinetic energy to liberate more
electrons from its surface. These electrons are
accelerated away from the cathode and they ionize the
gas further by collision. Thus, ionization takes place
much more rapidly near the cathode.

When a molecule gets ionized, the electron moves
towards the anode and the positive ion towards the
cathode. The electron being light, is swept away very fast
by the electric field as compared to the slow-moving,
heavy, positive ions. Thus, a positive charge density builds
up near the cathode and an intense electric field is
produced between the cathode and this region. The
electrons emitted by the cathode acquire sufficient kinetic
energy while passing through this intense electric field to
ionize the neutral molecules with which they collide. These
ionized molecules emit light which appears as the cathode
glow. The electrons emitted from the cathode travel on the
average a distance equal to the mean free path before they
collide and cause cathode glow. Thus cathode glow appears
some distance away from the cathode and this explains
the Crookes dark space.

The slow-moving, positive ions create a positive
charge density in the region of cathode glow. As the
fast-moving electrons, coming from the cathode, pass
through this region they are slowed down and hence
lose their ionizing capacity. Thus, there is no emission
of light for some distance beyond the cathode glow and
this makes the Faraday dark space. After coming out
of the cathode glow, the electrons again accelerate due
to the electric field and acquire sufficient energy to
ionize the molecules. This starts the positive column.
The Faraday dark space is several times longer than
the Crookes dark space because the electric field here
is not as intense as it is near the cathode.

The successive process of ionizing, losing ionizing
power, accelerating for some distance and again ionizing,
is repeated till the electrons reach the anode. Thus, we
have alternate dark and bright bands, i.e., the striations.

As the pressure is still lowered, the mean free path
increases and hence the length of the Crookes dark
space increases. At very low pressure, when the mean
free path becomes larger than the length of the tube,
the Crookes dark space fills the entire tube and no
cathode glow or positive column is observed. The
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electrons coming out of the cathode strike the walls of
the tube and this impact causes fluorescence.

41.2 CATHODE RAYS 

When the pressure of the gas in a discharge tube
is lowered, at a certain stage the Crookes dark space
fills the whole length of the tube. The fact that the
walls of the tube glows (fluorescence) shows that
something is coming out from the cathode, travelling
through the length of the tube and falling on the walls.
As we have discussed above, this something is a
stream of fast-moving electrons. This fact was
recognised after a series of experiments carried out by
Crookes, Thomson and others. They named these
invisible streams coming from the cathode cathode rays
and established the following main properties.

(a) Cathode rays are emitted normally from the
cathode surface. Their direction is independent of the
position of the anode.

This can be shown by taking the cathode in the
shape of a concave surface. If a fluorescent material is
placed at the centre of curvature of the cathode
surface, the material glows with maximum intensity.
Any lateral shift reduces the glow.

(b) Cathode rays travel in straight lines.

This can be shown by placing a metal cross in the
path of the cathode rays. A shadow appears on the
wall on the opposite side as the cathode rays do not
reach there (there is no fluorescence in the shadow
region). If the cross is lowered, the shadow disappears.

(c) Cathode rays exert mechanical force on the
object they strike.

To show this, one can put a light wheel of mica in
the path of the cathode rays. With proper
arrangement, the wheel starts rotating as the cathode
rays fall on it.

(d) Cathode rays produce heat when they strike a
material surface.

If a blackened platinum strip is placed at the
centre of curvature of a concave-shaped cathode, the
strip becomes red-hot after some time.

(e) Cathode rays produce fluorescence when they
strike a number of crystals, minerals and salts.

(f) When cathode rays strike a solid object,
specially a metal, X-rays are emitted from the object.

(g) Cathode rays can be deflected by an electric
field and also by a magnetic field. The direction of
deflection is the same as that of a stream of negatively
charged particles. The deflection in such a condition is
independent of the gas present, the material of the
cathode, the position of the anode, etc.

Such a deflection was studied by Thomson using
an apparatus of the design similar to that shown in
figure (41.6). Cathode rays start from the cathode C
and pass undeflected into the larger bulb where it
causes fluorescence on the opposite surface. The
particular design ensures that the glow is in the shape
of a small dot. If a magnet is now brought closer to
the larger bulb, the dot moves on the wall showing
that the rays have been deflected. The direction of the
deflection confirms that cathode rays contain
negatively charged particles. Similar deflection can be
studied in electric field by bringing a charged rod near
the larger bulb.

(h) Cathode rays ionize the gas through which they
are passed.

(i) Cathode rays can penetrate thin foils of metal.
(j) Cathode rays affect photographic plates.
All the above properties can be easily understood

once we recognise that cathode rays are nothing but a
stream of fast-moving electrons.

41.3 CANAL RAYS OR POSITIVE RAYS 

If the cathode of a discharge tube has holes in it
and the pressure of the gas is around 1 mm of mercury,
streams of faint luminous glow come out from each
hole on the back side of the cathode. This shows that
something is coming out of the holes. These are called
canal rays or positive rays. The origin of the canal rays
can be easily understood. When the molecules near the
cathode are ionized, the positive ions move slowly
towards the cathode. The positive ions passing through
the holes constitute the positive or canal rays. The
positive rays are deflected by electric and magnetic
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field. The direction of the deflection is the same as that
of a stream of positively charged particles. They also
cause fluorescence when incident on certain materials.

41.4 DISCOVERY AND PROPERTIES OF ELECTRON

The experiments on discharge tube towards the
end of the nineteenth century played an important role
in the discovery of electron. The fact that cathode rays
are deflected in electric and magnetic field led
scientists to believe that they are made of tiny
negatively charged particles. These particles are the
electrons as we know them today. J J Thomson
(1856–1940)  is often credited with the discovery of
electron. This is not because he was the first to
perform the discharge-tube experiment or was the first
to explain cathode rays in terms of negatively charged
particles. The credit goes to him for studying the
properties of electrons and suggesting that electrons
are necessary constituents of all atoms. The basic
physics behind his famous experiment to measure the
“charge by mass” (e/m) ratio of electrons is described
below. This ratio is also called the specific charge of
the electron.

Determination of e/m

Figure (41.7) shows the basic design of Thomson’s
experiment to measure e/m. A large potential
difference V is applied between the cathode C and the
anode A sealed in a highly evacuated tube. A narrow
beam of electrons, ejected from the cathode, passes
through the holes in the anode A and in a parallel
metal electrode A′. The beam passes through the
region between the two metal plates D1, D2 and then
strikes the end of the tube. A fluorescent material is
coated on the inner surface of the tube at this end so
that a visible glow is produced when electrons strike
the end. The plate D1 is connected to the positive
terminal of a power supply and D2 to the negative.
Thus, a constant potential difference is maintained
between them. Knowing the separation between the
plates, the electric field E in the region between the
plates can be computed. This field E is in the
downward direction in figure (41.7) and exerts a force
in the upward direction on the electrons. When the
potential difference is applied, the glow at the end of
the tube shifts in the upward direction.

A magnetic field B can also be applied in the region
between the plates by passing electric currents in
circular coils C1, C2. This field is perpendicular to the
electric field as well as to the undeviated path of the
cathode rays. If this field alone is present, the electrons
move in a circular arc in the field region and hence
are deflected from their straight path. The direction of
the current in C1, C2 is so chosen that the magnetic
force on the electrons is in the downward direction in
the figure. Thus, the electron beam is deflected
downwards due to the magnetic force.

If both the electric and the magnetic field are
switched on and the values are so chosen that

            v = E/B, … (i)

the magnetic force evB will exactly cancel the electric
force eE and the beam will pass undeflected. If the
potential difference between the anode A and the
cathode C is V, the speed of the electrons coming out
of A is given by

1
2

 mv 2 = eV. … (ii)

Putting the value of v from (i) into (ii),

      
1
2

 m 


E
B




 2

 = eV

   or,
e
m

 = 
E 2

2 B 2V
 ⋅ … (41.2)

In an experiment, the position of the glow at the
end of the tube is noted without applying any electric
or magnetic field. The fields are now applied and the
potential difference between D1 and D2 is adjusted till
the glow returns to its original position. The value of
e/m is calculated by equation (41.2) in this situation.

Millikan Oil-drop Experiment : Determination of e

Thomson’s experiment described above, could
determine the value of e/m. The value of electronic charge
e was measured by Robert Andrews Millikan about
fifteen years after Thomson’s experiment. Millikan was
awarded the Nobel Prize in physics for 1923 for this
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classic experiment. The basic design of the Millikan
oil-drop experiment is shown in figure (41.8).

Two accurately-aligned, parallel metal plates A
and B are separated by a small distance of the order
of few millimetres. The plates are enclosed in a
chamber with glass walls. An electric potential
difference is applied between the plates to produce an
electric field E in the vertically downward direction.
Small droplets of oil are sprayed in the region between
the plates through a hole in the upper plate A. Some
of the droplets acquire electric charge due to friction
with air (this process may be aided by passing X-rays
through the air or by putting some radioactive
material in the chamber). The chamber is illuminated
by sending light horizontally through it. The drops can
be seen by using a telescope placed perpendicular to
the light beam. A drop looks like a bright star moving
either downwards or upwards. If a droplet has a mass
m and charge q, the forces on it are (a) its weight mg,
(b) electric force qE, (c) buoyancy B and (d) viscous
force F.

Most of the drops acquire a negative charge so that
the electric force is upwards. A particular drop is
chosen in the field of view of the telescope and the
magnitude of the field E is adjusted to make the drop
stationary. In this case, there is no force of viscosity
and the other three forces add to zero. Thus,

        qE + B = mg

or, qE = mg − B

= 
4
3

 πr 3(ρ − σ)g

   or, q = 
4πr 3(ρ − σ)g

3E
 ⋅ … (i)

Here r is the radius of the drop, and ρ and σ are
the densities of the oil and the air respectively.

To determine the radius of the drop, the electric
field is switched off. The drop accelerates downwards.
After a while, the speed of the drop becomes constant.
This speed v is measured by noting the time taken by
the drop to fall through a predetermined distance. In
this case, the viscous force 6πηrv and the buoyancy B
taken together balance the weight mg.

      6πηrv + 
4
3

 π r 3σg = 
4
3

 π r 3ρg

or,      6πηv = 
4
3

 π r 2(ρ − σ)g

or,         r = 




9ηv
2(ρ − σ)g





 1/2

.

  

Putting this value of r in (i)

        q = 
18π
E

 √η 3v 3

2(ρ − σ)g
⋅

Millikan and his coworkers repeated the
experiement thousands of times and measured the
charges on so many drops. It was found that each drop
had a charge that was a small integral multiple of a
basic value e = 1.6 × 10 − 19 C within the accuracy of
the experiment. From this observation, Millikan
concluded that e = 1.6 × 10 − 19 C is the charge on an
electron. If one electron is attached to a drop, the
charge on the drop is e. If two electrons are attached
to a drop, the charge on the drop is 2e and so on.

41.5 THERMIONIC EMISSION 

When a metal is heated to a high temperature,
electrons escape from its surface. This phenomenon is
called thermionic emission and the electrons coming
out are called thermions. When an electron attempts
to come out, the remaining metal, which becomes
positively charged, pulls it back. The electron is thus
slowed down and is able to come out only if it has got
some extra kinetic energy to overcome the pull. The
minimum energy that must be given to an electron to
take it out of the metal is called the work function of
the metal. Work function is denoted by the symbol ϕ
and is different for different metals.

At ordinary temperatures, the free electrons of a
metal do not have sufficient energy to come out. As
the temperature is increased, the average kinetic
energy of the electrons increases. Some of the electrons
having sufficient  kinetic energy are able to come out
from the metal.

If n thermions are ejected per unit time by a metal
surface, the thermionic current is i = ne. This current
is given by the Richardson–Dushman equation

           i = ne = AST 2e − ϕ/kT. … (41.3)

Here S is the surface area, T is the absolute
temperature of the surface, ϕ is the work function of
the metal, k is the Boltzmann constant and A is a
constant which depends only on the nature of the
metal.

Example 41.1

   The work function of a thermionic emitter is 4.5 eV. By
what factor does the thermionic current increase if its
temperature is raised from 1500 K to 2000 K ?

Solution :

If i1 and i2 represent the thermionic currents at
temperatures T1 = 1500 K and T2 = 2000 K respectively,

           i1 = AST1
 2 e − ϕ/kT1

and i2 = AST2
 2 e − ϕ/kT2.

Thus,      
i2

i1

 = 




T2

T1





 2

 e 
− 
ϕ
k

 




1
T2

 − 
1

T1



 .
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Putting the values of T1, T2, ϕ and k

             
i2

i1

 = 10625.

41.6 DIODE VALVE

A diode valve consists of a cathode which can be
heated to a high temperature to emit electrons and an
anode which can collect these electrons. The cathode
and the anode are sealed in an evacuated glass bulb.
The cathode is also called filament and the anode is
also called plate. In one design, a pure tungsten wire
or a thorium-coated tungsten wire is used as the
cathode. This wire can be directly connected to an
external circuit driving current through it and hence
increasing its temperature. In another design, a hollow
nickel tube coated with barium oxide is used as the
cathode. The tube surrounds a heater coil. When the
external circuit drives a current through the heater
coil, the nickel tube gets heated by radiation. The
anode is in the form of a hollow nickel cylinder which
surrounds the cathode. Potential difference may be
applied between the cathode and the anode by
connecting a battery through the leads coming out of
the sealed valve. The positive terminal of the battery
is connected to the anode and the negative terminal
to the cathode.

Figure (41.9) shows the symbolic representation of
a diode valve and the circuit to study the current
through the valve. When the cathode is heated, it emits
electrons. These electrons are attracted towards the
anode when a positive potential Vp (with respect to the
cathode) is applied to it. This potential Vp is called the
plate voltage.  The electrons pass through the battery
and then return to the cathode. Thus, an electric
current ip is established in the circuit which can be
measured by the ammeter connected in the circuit.
This current is called the plate current. If the plate
voltage Vp is changed, the plate current ip is also
changed. A set of plots between the plate current and
the plate voltage is called diode characteristics.

Diode Charactersitics

Figure (41.10) shows the nature of diode
characteristics at different temperatures of the
cathode. The space between the cathode and the anode
contains electrons and hence, is negatively charged.

This negative charge is called the space charge and it
repels the newly ejected electrons back to the cathode.
The plate current ip is thus reduced due to the space
charge. As the plate voltage is increased, the electrons
are pulled with a greater force and the effect of space
charge decreases. Thus, the plate current ip increases
as the plate voltage Vp increases. When Vp is
sufficiently large, all the electrons emitted by the
cathode are collected by the anode and the current
becomes saturated. Further increase in Vp does not
increase ip.

If the anode is given a negative potential with
respect to the cathode, the electrons are pushed back
towards the cathode and no current flows in the
external circuit. We say that the diode does not conduct
in this case. Thus, the diode allows current only in one
direction. The electrons can leave the diode at the
anode and enter into it at the cathode.
Correspondingly, positive current can enter the diode
at the anode and may come out at the cathode.

If the temperature of the filament is increased,
greater number of electrons are ejected from the
cathode and the saturation current increases.

Far from the saturation, the current is roughly
proportional to Vp

3/2. Thus,

           ip = k Vp
3/2

where k is a constant for a given diode. This law is
called Langmuir–Child law.

Dynamic Plate Resistance

The resistance of a metallic conductor is defined
as R = V/i. One can define the resistance of a diode
using this equation. However, a more useful quantity,
called the dynamic plate resistance of the diode, is
defined as follows. Suppose the diode is operated at a
plate voltage Vp and the plate current is ip (figure
41.11). Now the plate voltage Vp is changed by a small
amount to Vp + ∆Vp. Consequently, the current will

'

�
�

'

�

�

��
��

����
��

Figure 41.9

(

'�

(

(#

$

)��

Figure 41.10

'�

��

��

�'
�

�

Figure 41.11

346 Concepts of Physics



change by a small amount from ip to ip + ∆ip. The
dynamic plate resistance of the diode is defined as

            rp = 
∆Vp

∆ip

 ⋅ … (41.4)

It is clear that rp depends on the operating
conditions (Vp,  ip). Referring to figure (41.11), the
dynamic plate resistance is the inverse of the slope of
the ip−Vp characteristic at the operating point.

Example 41.2

   When the plate voltage applied to a diode valve is
changed from 40 V to 42 V, the plate current increases
from 50 mA to 60 mA. Calculate the dynamic plate
resistance at the operating condition.

Solution : Here ∆Vp = 42 V − 40 V = 2 V

and ∆ip = 60 mA − 50 mA = 10 mA.

Thus, the dynamic plate resistance is

        rp = 
∆Vp

∆ip
 = 

2 V
10 mA

 = 200 Ω.

Rectification

If a source of alternating current is conneted to a
resistor, the direction of the current in the resistor
changes alternately. By using a diode in the circuit,
one can have current in the resistor in a fixed
direction. Obtaining a unidirectional current from an
AC source is called rectification.

Half-Wave Rectification

Figure (41.12) shows a circuit containing an AC
source, a diode and a resistor. When the point A is at
a potential higher than that of B, the anode is also at
a potential higher than that of the cathode. The diode
allows current to pass through. Thus, the AC source
sends a current which goes through the diode, through
the resistor and then back to the source. The current
in the resistor is from left to right.

When the potential at A becomes less than that at
B, the diode does not allow a current. There is no
current in the resistance in this case.

Figure (41.13) shows the variations in the applied
AC voltage (potential of A with respect to B) and the
current in the resistor as time passes. The current is
allowed only in the positive half-cycles and is stopped
in the negative half-cycles.

We see that the current in the resistor is always
from left to right. The diode has rectified the AC
voltage. As the current is allowed only for half the
time, the rectification is called half-wave rectificition.

Full-Wave Rectification

Figure (41.14) shows the circuit for full-wave
rectification. The AC source is connected to the
primary of a transformer. The terminals of the
secondary are connected to the anodes of two diodes
D1 and D2. The two cathodes are connected to one end
of a resistor. The other end of the resistor is connected
to the centre C of the secondary of the transformer.

Let us take the potential at C to be zero. Consider
a half-cycle in which the potential of A is positive and
that of B is negative. The diode D1 conducts but D2

does not. So a current passes through D1 and then
through the resistor back to the secondary. The current
in the resistor is from right to left. In the next
half-cycle, the potential at B is positive and that at A
is negative. The diode D2 conducts, but D1 does not.
The current passes through D2 and then through the
resistor back to the secondary. Again, the current in
the resistor is from right to left. So, the current in the
resistor is from right to left in both the half-cycles.
Figure (41.15) shows the variations in the applied AC
voltage and the current in the resistor as time passes.

41.7 TRIODE VALVE

A triode valve is similar in construction to a diode
valve except that a wire grid is inserted between the
cathode and the anode. Thus, there are three external
terminals in a triode which are connected to the
cathode, the grid and the anode. Figure (41.16) shows
the symbol of a triode valve.
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When the cathode is heated, it emits thermions.
These thermions pass through the holes in the grid
and reach the anode. If the anode is given a positive
potential and the grid is kept at zero potential (both
with respect to the cathode), the anode attracts the
electrons and the triode works like a diode. The
current through the anode is called the plate current
or anode current and is denoted by ip. This current is
affected by the space charge near the cathode. The
space charge is controlled both by the  grid voltage
Vg (with respect to the cathode) and the plate voltage
Vp. If the grid voltage Vg is made negative, the grid
repels the electrons coming from the cathode and the
current decreases. If the grid voltage is made positive,
it will help the electrons to go towards the anode,
increasing the current. As the grid is closer to the
cathode, changing grid voltage is more effective than
changing plate voltage in bringing about a change in
the plate current. In absence of the grid, the current
is roughly given by ip = k Vp

3/2. When the grid is added,
the current is given by

           ip = k(Vp + µ Vg) 
3/2. … (41.4)

Thus, a grid voltage Vg has the same effect as a plate
voltage µVg. The constant µ, which may be typically of
the order of 10, is called amplification factor.

Triode Characteristics

Figure (41.17) shows the circuit used to study the
current in a triode. The plate current is measured by
the ammeter A, the plate voltage Vp by the voltmeter
V1 and the grid voltage Vg by the voltmeter V2. These
voltages may be changed by changing the rheostat
settings. The grid potential may be made positive or
negative.

In a triode, there are several currents and voltages
and one can draw a number of characterstic curves.
More important are ip−Vp curves at constant Vg and
ip−Vg curves at constant Vp. The curves in the first set
are called the anode characteristics and those in the

second set are called the mutual characteristics. Figure
(41.18a) and (41.18b) show the two characteristics
qualitatively.

The operating point of a triode is determined by
specifying Vp, Vg and ip. Generally, the triode is
operated in the linear portions of its characteristics
(figure 41.18).

Dynamic plate resistance

If the grid voltage is kept constant and the plate
voltage is changed, the plate current changes. We
define the dynamic plate resistance rp as

          rp = 




∆Vp

∆ip



∆Vg = 0

. … (41.5)

Mutual conductance

If the plate voltage Vp is kept constant and the
grid voltage Vg is changed, the plate current changes.
The mutual conductance gm is defined as

           gm = 




∆ip

∆Vg



∆Vp = 0

. … (41.6)

Mutual conductance is also called transconductance.
If both Vg and Vp change, the plate current

changes by

     ∆ip = 




∆ip

∆Vp



∆Vg = 0

∆Vp + 




∆ip

∆Vg



∆Vp = 0

∆Vg

= 
1
rp

 ∆Vp + gm ∆Vg. … (41.7)

Amplification factor

If the grid voltage is increased, the plate current
ip also increases. One can bring the current back to
ip by decreasing the plate voltage Vp. The amplification
factor µ is defined as

          µ = − 




∆Vp

∆Vg



∆ip = 0

. … (41.8)
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The negative sign is put in the definition because
if the grid voltage is increased, one should decrease
the plate voltage so as to maintain the same current.
Thus, Vp and Vg are of opposite signs so that the
definition makes  positive. This same  is used in
equation (41.4).

From equation (41.7), if ip  0,

            
Vp

Vg
  

gm

1/rp

   or,            rp  gm.  (41.9)

41.8 TRIODE AS AN AMPLIFIER 

We have seen that a small change in the grid
voltage leads to a large change in the plate current.
This fact is used for amplification of small signals.
Figure (41.19) shows the basic circuit for amplification.
A small fluctuating voltage vs (from a microphone for
example) is included in the grid circuit. This voltage
is called the signal. The value vs also gives the amount
by which the grid voltage changes. Thus,

            vs  Vg.

A load resistance RL is included in the plate circuit.
The value of Vg (with zero signal), and Vp are so
adjusted that the operating point lies on the linear
portion of the mutual characteristics (figure 41.18). As
the signal vs changes, the grid potential changes and
consequently the plate current ip changes. The voltage
appearing across the load resistance also changes
accordingly. Suppose that the signal is small enough

so that the operating point always remains on the
linear portion. The change in the voltage across the
load resistance, then, follows the pattern of the signal
but the amplitudes are much larger. The change in the
voltage across the load resistance is called the output
voltage v0.

Thus,

            v0  RLip.  (i)

The ratio A  
v0

vs
 is called the voltage-gain or gain

factor.

If V is the potential difference across the battery
in the plate circuit, that across the triode is

         Vp  V  RL ip

or, Vp   RL ip   v0.

From equation (41.7),

        ip  
Vp

rp
  gm Vg

            
v0

rp
  gm vs.

From (i), the output voltage is,

        v0  RL ip

  
RLv0

rp
  RL gm vs

or, v0 



1  

RL

rp




  RL gmvs

or, 
v0

vs
  

RL gm

1  
RL

rp

  
RL gmrp

rp  RL

   or, A  
RL 

rp  RL
  



1  
rp

RL

 (41.10)

where   gmrp is the amplification factor.

Worked Out Examples

 1. The mean free path of the electrons in a discharge tube
is 20 cm. The tube itself is 10 cm long. What is the length
of the Crookes dark space ?

Solution : The mean free path of the electrons is much
longer than the length of the tube. Thus, the electrons,
in general, do not collide in between, no ionization takes
place and hence no light is emitted. The Crookes dark
space fills the entire tube and hence is 10 cm long.

 2. Consider a cylindrical tube closed at one end and fitted
with a conducting, movable piston at the other end. A
cathode is fixed in the tube near the closed end and an
anode is fixed with the piston. A gas is filled in the tube
at pressure p. Using Paschen equation V  f(pd), show
that the sparking potential does not change as the piston
is slowly moved in or out. Assume that the temperature
does not change in the process.

Vg

ip

LR

vs
Vp

V

vs

pR iL

Figure 41.19
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Solution : As the piston is moved, the volume of the gas
and hence its pressure changes. As the tube is
cylindrical, the volume is proportional to the length of
the tube. From Boyle’s law, pd = constant and hence the
sparking potential does not change as the piston is
moved.

 3. The number of thermions emitted in a given time
increases 100 times as the temperature of the emitting
surface is increased from 600 K to 800 K. Find the work
function of the emitter. Boltzmann constant
k = 8.62 × 10 − 5 eV K −1.

Solution : The number of thermions n, emitted by a
surface, in a given time is given by (Richardson–
Dushman equation)

             n = A′ST 2 e− ϕ/kT

where A′ is a constant and other symbols have their
usual meanings. Let n1 and n2 be the number of electrons
emitted at temperatures T1 and T2. Then

   
n1

n2

 = 
T1

 2

T2
 2 

e − ϕ/kT1

e − ϕ/kT2
 

or, 
n1 T2

 2

n2 T1
 2
 = e 

− 
ϕ

k
 




1
T1

 − 
1

T2





or, − 
ϕ
k

 


1
T1

 − 
1
T2




 = ln 

n1 T2
 2

n2 T1
 2 

or, 
ϕ(T2 − T1)

kT1T2

 = ln 
n2 T1

 2

n1 T2
 2 

or,      ϕ = 
kT1 T2

T2 − T1

 ln 
n2 T1

 2

n1 T2
 2 

    = 
(8.62 × 10 − 5 eV K −1) (600 K) (800 K)

200 K
 ln 


100 × 

36
64





= 0.83 eV.

 4. The constant A in the Richardson–Dushman equation is
60 × 10 4 A m −2K −2 for tungsten. A tungsten cathode has

a total surface area of 2.0 × 10 − 5 m 2 and operates at
2000 K. The work function of tungsten is 4.55 eV.
Calculate the electric current due to thermionic emission.

Solution :

The Richardson–Dushman equation is

         i = AST 2 e − ϕ/kT.

We have, 
ϕ

kT
 = 

4.55 eV

(8.62 × 10 − 5 eV K −1) (2000 K)

= 26.4.

Thus, the thermionic current i is

= 60 × 10 4 A m −2K −2 × (2.0 × 10 − 5
 m 2) × (2000 K) 2 × e − 26⋅4

= (4.8 × 10 5 A) e − 26⋅4 = 0.16 mA.

 5. Calculate the saturation thermionic current if 120 W is
applied to a thoriated-tungsten filament of surface area
1.0 cm 2. Assume that the surface radiates like a
blackbody. The required constants are

A = 3 × 10 4 A m −2−K 2, ϕ = 2.6 eV, k = 8.62 × 10 − 5 eV K −1

and σ = 6 × 10 − 8 W m −2K −4. 

Solution : The thermionic current is given by the
Richardson–Dushman equation

               i = AST 2 e − ϕ/kT. … (i)

When the power input to the filament equals the power
radiated, the temperature becomes constant. The
thermionic current then becomes saturated. The power
radiated is given by the Stefan’s law

      P = SσT 4

or, 120 W = (1.0 × 10 − 4 m 2) × (6 × 10 − 8 W m −2K −4) × T 4

or,    T = 2114 K.

Now  
ϕ

kT
 = 

2.6 eV

(8.62 × 10 − 5 eV K −1) (2114 K)
 = 14.26.

Putting in (i),

 i = 3 × 10 4 A m −2K −2 × (1.0 × 10 − 4 m 2) (2114 K) 2 e − 14.26

= (1.34 × 10 7 A) e − 14.26 = 8.6 A.

 6. In a Millikan-type oil-drop experiment, the plates are
8 mm apart. An oil drop is found to remain at rest when
the upper plate is at a potential 136 V higher than that
of the lower one. When the electric field is switched off,
the drop is found to fall a distance of 2.0 mm in
36 seconds with a uniform speed. Find (a) the charge on
the drop and (b) the number of electrons attached to this
drop. Density of oil = 880 kg m −3 and coefficient of
viscosity of air = 180 µpoise.

Solution : (a) The charge on the drop is

         q = 
18 π

E
 √η 3v 3

2(ρ − σ)g
⋅ … (i)

Here  E = 
136 V

8 × 10 − 3 m
 = 1.7 × 10 4 V m −1

η = 180 µpoise = 1.8 × 10 − 5 N sm −2

v = 
2.0 mm

36 s
 = 

1
18

 × 10 − 3 m s −1

and ρ = 880 kg m −3.

The density of air σ (1.29 kg m −3) may be neglected in
comparison to that of the oil. Putting values in (i),

          q = 7.93 × 10 − 19 C.

(b) The number of electrons attached to the drop is,
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         n = 
7.93 × 10 − 19 C

1.6 × 10 − 19 C
 = 4.96.

It is clear that 5 electrons are attached to the drop.

 7. Show that the dynamic plate resistance of a diode is
2 V
3 i

 where V and i are the plate voltage and the plate

current respectively. Assume Langmuir–Child equation to
hold.

Solution :

The dynamic plate resistance of the diode is R = dV
di

 ⋅

The Langmuir–Child equation is

              i = cV 3/2 … (i)

where c is a constant for a given diode. This gives

                 
di
dV

 = 
3
2

 cV 1/2. … (ii)

Dividing (ii) by (i), 
1
i
 
di
dV

 = 
3

2V

or, 
dV
di

 = 
2V
3i

 ⋅

 8. The mutual conductance of a triode valve is 2.5 millimho.
Find the change in the plate current if the grid voltage
is changed from –2.0 V to –4.5 V.

Solution :

The mutual conductance of a triode valve is

         gm = 




∆ip

∆Vg



 ∆Vp = 0

or, ∆ip = gm ∆Vg

= (2.5 × 10 − 3 Ω − 1) × (− 4.5 V + 2.0 V)

= − 6.25 × 10 − 3 A.

 9. A triode valve has amplification factor 21 and dynamic
plate resistance 10 kΩ. This is used as an amplifier with
a load of 20 kΩ . Find the gain factor of the amplifier.

Solution :

The gain factor of a triode valve amplifier is

A = 
µ

1 + 
rp

RL

where µ is the amplification factor, rp is the plate
resistance and RL is the load resistance. Thus,

A = 
21

1 + 
10 kΩ
20 kΩ

 = 14.

QUESTIONS FOR SHORT ANSWER

 1. Why is conduction easier in gases if the pressure is low ?
Will the conduction continue to improve if the pressure
is made as low as nearly zero ?

 2. An AC source is connected to a diode and a resistor in
series. Is the current through the resistor AC or DC ?

 3. How will the thermionic current vary if the filament
current is increased ?

 4. Would you prefer a material having a high melting point
or a low melting point to be used as a cathode in a diode ?

 5. Would you prefer a material having a high work function
or a low work function to be used as a cathode in a diode ?

 6. An isolated metal sphere is heated to a high
temperature. Will it become positively charged due to
thermionic emission ?

 7. A diode valve is connected to a battery and a load
resistance. The filament is heated so that a constant
current is obtained in the circuit. As the cathode
continuously emits electrons, does it get more and more
positively charged ?

 8. Why does thermionic emission not take place in
nonconductors ?

 9. The cathode of a diode valve is replaced by another
cathode of double the surface area. Keeping the voltage
and temperature conditions the same, will the plate
current decrease, increase or remain the same ?

10. Why is the linear portion of the triode characteristic
chosen to operate the triode as an amplifier ?

OBJECTIVE I

 1. Cathode rays constitute a stream of
(a) electrons             (b) protons
(c) positive ions           (d) negative ions.

 2. Cathode rays are passing through a discharge tube. In
the tube, there is
(a) an electric field but no magnetic field
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(b) a magnetic field but no electric field
(c) an electric as well as a magnetic field
(d) neither an electric nor a magnetic field.

 3. Let i0 be the thermionic current from a metal surface
when the absolute temperature of the surface is T0. The
temperature is slowly increased and the thermionic
current is measured as a function of temperature. Which
of the following plots may represent the variation in
(i/i0) against (T/T0) ?

 4. When the diode shows saturated current, dynamic plate
resistance is
(a) zero         (b) infinity
(c) indeterminate    (d) different for different diodes.

 5. The anode of a thermionic diode is connected to the
negative terminal of a battery and the cathode to its
positive terminal.
(a) No appreciable current will pass through the diode.

(b) A large current will pass through the diode from the
       anode to  the cathode.
(c) A large current will pass through the diode from the
       cathode to the anode.
(d) The diode will be damaged.

 6. A diode, a resistor and a 50 Hz AC source are connected
in series. The number of current pulses per second
through the resistor is
(a) 25      (b) 50     (c) 100      (d) 200.

 7. A triode is operated in the linear region of its
characteristics. If the plate voltage is slightly increased,
the dynamic plate resistance will
(a) increase                (b) decrease
(c) remain almost the same
(d) become zero.

 8. The plate current in a triode valve is maximum when
the potential of the grid is
(a) positive   (b) zero   (c) negative   (d) nonpositive.

 9. The amplification factor of a triode operating in the
linear region depends strongly on
(a) the temperature of the cathode
(b) the plate potential       (c) the grid potential
(d) the separations of the grid from the cathode and the
       anode.

OBJECTIVE II

 1. Electric conduction takes place in a discharge tube due
to the movement of
(a) positive ions         (b) negative ions
(c) electrons            (d) protons.

 2. Which of the following are true for cathode ray ?
(a) It travels along straight lines.
(b) It emits X-ray when strikes a metal.
(c) It is an electromagnetic wave.
(d) It is not deflected by magnetic field.

 3. Because of the space charge in a diode valve,
(a) the plate current decreases
(b) the plate voltage increases
(c) the rate of emission of thermions increases
(d) the saturation current increases.

 4. The saturation current in a triode valve can be changed
by changing
(a) the grid voltage       (b) the plate voltage

(c) the separation between the grid and the cathode
(d) the temperature of the cathode.

 5. Mark the correct options.
(a) A diode valve can be used as a rectifier.
(b) A triode valve can be used as a rectifier.
(c) A diode valve can be used as an amplifier.
(d) A triode valve can be used as an amplifier.

 6. The plate current in a diode is zero. It is possible that
(a) the plate voltage is zero
(b) the plate voltage is slightly negative
(c) the plate voltage is slightly positive
(d) the temperature of the filament is low.

 7. The plate current in a triode valve is zero. The
temperature of the filament is high. It is possible that
(a) Vg > 0,  Vp > 0         (b) Vg > 0,  Vp < 0
(c) Vg < 0,  Vp > 0         (d) Vg < 0,  Vp < 0.

EXERCISES

 1. A discharge tube contains helium at a low pressure.
A large potential difference is applied across the
tube. Consider a helium atom that has just been
ionized due to the detachment of an atomic electron.
Find the ratio of the distance travelled by the free
electron to that by the positive ion in a short time dt
after the ionization.

 2. A molecule of a gas, filled in a discharge tube, gets
ionized when an electron is detached from it. An electric
field of 5.0 kV m −1 exists in the vicinity of the event. (a)
Find the distance travelled by the free electron in 1 µs
assuming no collision. (b) If the mean free path of the
electron is 1.0 mm, estimate the time of transit of the
free electron between successive collisions.
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Figure 41-Q1
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 3. The mean free path of electrons in the gas in a discharge
tube is inversely proportional to the pressure inside it.
The Crookes dark space occupies half the length of the
discharge tube when the pressure is 0.02 mm of
mercury. Estimate the pressure at which the dark space
will fill the whole tube.

 4. Two discharge tubes have identical material structure
and the same gas is filled in them. The length of one
tube is 10 cm and that of the other tube is 20 cm.
Sparking starts in both the tubes when the potential
difference between the cathode and the anode is 100 V.
If the pressure in the shorter tube is 1.0 mm of mercury,
what is the pressure in the longer tube ?

 5. Calculate nT/n1000 K for tungsten emitter at
T  300 K, 2000 K and 3000 K where n(T) represents
the number of thermions emitted per second by the
surface at temperature T. Work function of tungsten is
4.52 eV.

 6. The saturation current from a thoriated-tungsten cathode
at 2000 K is 100 mA. What will be the saturation current
for a pure-tungsten cathode of the same surface area
operating at the same temperature ? The constant A in the
Richardson–Dushman equation is 60  10 4 A m 2K 2 for
pure tungsten and 3.0  10 4 A m 2K 2 for thoriated
tungsten. The work function of pure tungsten is 4.5 eV and
that of thoriated tungsten is 2.6 eV.

 7. A tungsten cathode and a thoriated-tungsten cathode
have the same geometrical dimensions and are operated
at the same temperature. The thoriated-tungsten
cathode gives 5000 times more current than the other
one. Find the operating temperature. Take relevant data
from the previous problem.

 8. If the temperature of a tungsten filament is raised from
2000 K to 2010 K, by what factor does the emission
current change ? Work function of tungsten is 4.5 eV.

 9. The constant A in the Richardson–Dushman equation
for tungsten is 60  10 4 A m –2 K –2. The work function
of tungsten is 4.5 eV. A tungsten cathode having a
surface area 2.0  10  5 m 2 is heated by a 24 W electric
heater. In steady state, the heat radiated by the cathode
equals the energy input by the heater and the
temperature becomes constant. Assuming that the
cathode radiates like a blackbody, calculate the
saturation current due to thermions. Take Stefan
constant  6  10  8 W m –2 K –4. Assume that the
thermions take only a small fraction of the heat
supplied.

10. A plate current of 10 mA is obtained when 60 volts are
applied across a diode tube. Assuming the
Langmuir–Child equation ip  Vp

 3/2 to hold, find the
dynamic resistance rp in this operating condition.

11. The plate current in a diode is 20 mA when the plate
voltage is 50 V or 60 V. What will be the current if the
plate voltage is 70 V ?

12. The power delivered in the plate circuit of a diode is
1.0 W when the plate voltage is 36 V. Find the power
delivered if the plate voltage is increased to 49 V.
Assume Langmuir–Child equation to hold.

13. A triode valve operates at Vp  225 V and Vg  – 0.5 V.
The plate current remains unchanged if the plate voltage
is increased to 250 V and the grid voltage is decreased
to – 2.5 V. Calculate the amplification factor.

14. Calculate the amplification factor of a triode valve which
has plate resistance of 2 k and transconductance of
2 millimho.

15. The dynamic plate resistance of a triode valve is 10 k.
Find the change in the plate current if the plate voltage
is changed from 200 V to 220 V.

16. Find the values of rp,   and  gm of a triode operating at
plate voltage 200 V and grid voltage –6 V. The plate
characteristics are shown in figure (41-E1).

17. The plate resistance of a triode is 8 k and the
transconductance is 2.5 millimho. (a) If the plate voltage
is increased by 48 V, and the grid voltage is kept
constant, what will be the increase in the plate current ?
(b) With plate voltage kept constant at this increased
value, how much should the grid voltage be decreased
in order to bring the plate current back to its initial
value ?

18. The plate resistance and the amplification factor of a
triode are 10 k and 20. The tube is operated at plate
voltage 250 V and grid voltage –7.5 V. The plate current
is 10 mA. (a) To what value should the grid voltage be
changed so as to increase the plate current to 15 mA ?
(b) To what value should the plate voltage be changed
to take the plate current back to 10 mA ?

19. The plate current, plate voltage and grid voltage of a
6F6 triode tube are related as

           ip  41Vp  7 Vg 
1.41

where Vp and Vg are in volts and ip in microamperes.
The tube is operated at Vp  250 V, Vg  20 V. Calculate
(a) the tube current, (b) the plate resistance, (c) the
mutual conductance and (d) the amplification factor.

20. The plate current in a triode can be written as

           ip  k



Vg  

Vp






 3/2

.

Show that the mutual conductance is proportional to the
cube root of the plate current.

21. A triode has mutual conductance  2.0 millimho and
plate resistance 20 k. It is desired to amplify a signal
by a factor of 30. What load resistance should be added
in the circuit ?

Figure 41-E1
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22. The gain factor of an amplifier is increased from 10 to
12 as the load resistance is changed from 4 k to 8 k.
Calculate (a) the amplification factor and (b) the plate
resistance.

23. Figure (41-E2) shows two identical triode tubes
connected in parallel. The anodes are connected
together, the grids are connected together and the
cathodes are connected together. Show that the
equivalent plate resistance is half of the individual plate
resistance, the equivalent mutual conductance is double
the individual mutual conductance and the equivalent

amplification factor is the same as the individual
amplification factor.

ANSWERS

OBJECTIVE I

 1. (a)  2. (c)  3. (d)  4. (b) 5. (a)  6. (b)
 7. (c)  8. (a)  9. (d)

OBJECTIVE II

 1. (a), (b), (c)  2. (a), (b)  3. (a)
 4. (d)  5. (a), (b), (d)  6. all
 7. (b), (c), (d)

EXERCISES

 1. 7340

 2. (a) 440 m  (b) 1.5 ns

 3. 0.01 mm of mercury

 4. 0.5 mm of mercury

 5. 6.57  10 – 55, 9.73  10 11, 1.37  10 16

 6. 33 A

 7. 1914 K

 8. 1.14

 9. 1.0 mA
10. 4 k
11. 20 mA

12. 2.2 W

13. 12.5
14. 4
15. 2 mA

16. 8.0 k, 20 and 2.5 millimho

17. (a) 6 mA (b) 2.4 V

18. (a) 5.0 V (b) 200 V

19. (a) 30 mA (b) 2.53 k (c) 2.77 millimho (d) 7
21. 60 k
22. (a) 15 (b) 2 k

V

ippV

Figure 41-E2
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CHAPTER 42

PHOTOELECTRIC EFFECT AND
WAVE–PARTICLE DUALITY

42.1 PHOTON THEORY OF LIGHT

We have learnt that light has wave character as
well as particle character. Depending on the situation,
one of the two characters dominates. When light is
passed through a double slit, it shows interference.
This observation can only be understood in terms of
wave theory which was discussed in detail in an earlier
chapter. There are some phenomena which can only
be understood in terms of the particle theory of light.
When light of sufficiently low wavelength falls on a
metal surface, electrons are ejected. This phenomenon
is called the photoelectric effect and can be understood
only in terms of the particle nature of light.

The particles of light have several properties in
common with the material particles and several other
properties which are different from the material
particles. The particles of light are called photons. We
list some of the important properties of photons.

(a) A photon always travels at a speed
c = 299, 792, 458 ms−1 ≈ 3.0 × 10 8 m s−1 in vacuum.
This is true for any frame of reference used to observe
the photon.

(b) The mass of a photon is not defined in the
sense of Newtonian mechanics. We shall ignore this
concept. We simply state that the rest mass of a photon
is zero.

(c) Each photon has a definite energy and a
definite linear momentum.

(d) Let E and p be the energy and linear
momentum of a photon of light, and ν and λ be the
frequency and wavelength of the same light when it
behaves as a wave. Then,

   
E = hν = hc/λ

and                     p = h/λ = E/c
     ⎪⎪

⎪
… (42.1)

where h is a universal constant known as the Planck
constant and has a value 6.626 × 10 − 34 Js
= 4.136 × 10 − 15 eVs.

Thus, all photons of light of a particular
wavelength λ have the same energy E = hc/λ and the
same momentum p = h/λ.

(e) A photon may collide with a material particle.
The total energy and the total momentum remain
conserved in such a collision. The photon may get
absorbed and/or a new photon may be emitted. Thus,
the number of photons may not be conserved.

 (f) If the intensity of light of a given wavelength
is increased, there is an increase in the number of
photons crossing a given area in a given time. The
energy of each photon remains the same.

Example 42.1

   Consider a parallel beam of light of wavelengh 600 nm
and intensity 100 W m −2. (a) Find the energy and linear
momentum of each photon. (b) How many photons cross
1 cm 2 area perpendicular to the beam in one second ?

Solution :

(a) The energy of each photon E = hc/λ

    = 
(4.14 × 10 − 15 eVs) × (3 × 10 8 m s −1)

600 ×10 − 9 m
 = 2.07 eV.

The linear momentum is

   p = 
E
c

 = 
2.07 eV

3 × 10 8 m s −1 = 0.69 × 10 − 8 eVs m −1.

(b) The energy crossing 1 cm2 in one second

= (100 W m −2) × (1 cm 2) × (1 s) = 1.0 × 10 − 2 J.

The number of photons making up this amount of
energy is

n = 
1.0 × 10 − 2 J

2.07 eV
 = 

1.0 × 10 − 2

2.07 × 1.6 × 10 − 19
 = 3.0 × 10 16.



For a given wavelength λ, the energy of light is an
integer times hc/λ. Thus, the energy of light can be varied

only in quantums (steps) of hc
λ

 ⋅ The photon theory is,

therefore, also called the quantum theory of light.

42.2 PHOTOELECTRIC EFFECT

When light of sufficiently small wavelength is
incident on a metal surface, electrons are ejected from
the metal. This phenomenon is called the photoelectric
effect. The electrons ejected from the metal are called
photoelectrons. Let us try to understand photoelectric
effect on the basis of the photon theory of light.

We know that there are large number of free
electrons in a metal which wander throughout the body
of the metal. However, these electrons are not free to
leave the surface of the metal. As they try to come out
of the metal, the metal attracts them back. A minimum
energy, equal to the work function ϕ, must be given
to an electron so as to bring it out of the metal.

When light is incident on a metal surface, the
photons collide with the free electrons. In a particular
collision, the photon may give all of its energy to the
free electron. If this energy is more than the work
function ϕ, the electron may come out of the metal. It
is not necessary that if the energy supplied to an
electron is more than ϕ, it will come out. The electron
after receiving the energy, may lose energy to the
metal in course of collisions with the atoms of the
metal. Only if an electron near the surface gets the
extra energy and heads towards the outside, it is able
to come out. If it is given an energy E which is greater
than ϕ, and it makes the most economical use of it, it
will have a kinetic energy (E – ϕ) after coming out. If
it makes some collisions before coming out, the kinetic
energy will be less than (E – ϕ). The actual kinetic
energy of such an electron will depend on the total
energy lost in collisions. It is also possible that the
electron makes several collisions inside the metal and
loses so much energy that it fails to come out. So, the
kinetic energy of the photoelectron coming out may be
anything between zero and (E – ϕ) where E is the
energy supplied to the individual electrons. We can,
therefore, write

          Kmax = E − ϕ.

        Table 42.1 : Work functions of some
             photosensitive metals

Metal Work function
   (eV)

  Metal Work function
   (eV)

Cesium    1.9   Calcium    3.2

Potassium    2.2   Copper    4.5

Sodium    2.3   Silver    4.7

Lithium    2.5   Platinum    5.6

Let monochromatic light of wavelength λ be
incident on the metal surface. In the particle picture,
photons of energy hc/λ fall on the surface. Suppose, a
particular photon collides with a free electron and
supplies all its energy to the electron. The electron gets
an extra energy E = hc/λ and may come out of metal.
The maximum kinetic energy of this electron is,
therefore,

         Kmax = 
hc
λ

 − ϕ = hν − ϕ. … (42.2)

As all the photons have the same energy hc/λ,
equation (42.2) gives the maximum kinetic energy of
any of the ejected electrons.

Equation (42.2) is called Einstein’s photoelectric
equation. Einstein, after an average academic career,
put forward this theory in 1905 while working as a
grade III technical officer in a patent office. He was
awarded the Nobel Prize in physics for 1921 for
this work.

Threshold Wavelength

Equation (42.2) tells that if the wavelength λ is
equal to

          λ0 = hc/ϕ,

the maximum kinetic energy is zero. An electron may
just come out in this case. If λ > λ0, the energy hc/λ
supplied to the electron is smaller than the work
function ϕ and no electron will come out. Thus,
photoelectric effect takes place only if λ ≤ λ0. This
wavelength λ0 is called the threshold wavelength for
the metal. The corresponding frequency

ν0 = c/λ0 = ϕ/h
is called the threshold frequency for the metal.
Threshold wavelength and threshold frequency depend
on the metal used.

Writing ϕ = hν0, equation (42.2) becomes

          Kmax = h(ν − ν0). … (42.3)

Example 42.2

   Find the maximum wavelength of light that can cause
photoelectric effect in lithium.
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Solution : From table (42.1), the work function of lithium is
2.5 eV. The threshold wavelength is
         hc/.

 
4.14  10  15 eVs  3  10 8 m s 1

2.5 eV

 
1242 eVnm

2.5 eV
  497 nm.

This is the required maximum wavelength.

Experimental Arrangement

A systematic study of photoelectric effect can be
made in the laboratory with the apparatus shown in
figure (42.1). Two metal plates C and A are sealed in
a vacuum chamber. Light of reasonably short
wavelength passes through a transparent window in
the wall of the chamber and falls on the plate C which
is called the cathode or the emitter. The electrons are
emitted by C and collected by the plate A called the
anode or the collector. The potential difference between
the cathode and the anode can be changed with the
help of the batteries, rheostat and the commutator.
The anode potential can be made positive or negative
with respect to the cathode. The electrons collected by
the anode A flow through the ammeter, batteries, etc.,
and are back to the cathode C and hence an electric
current is established in the circuit. Such a current is
called a photocurrent.

As photoelectrons are emitted from the cathode C,
they move towards the anode A. At any time, the space
between the cathode and the anode contains a number
of electrons making up the space charge. This negative
charge repels the fresh electrons coming from the
cathode. However, some electrons are able to reach the
anode and there is a photocurrent. When the anode is
given a positive potential with respect to the cathode,
electrons are attracted towards the anode and the
photocurrent increases. The current thus depends on
the potential applied to the anode. Figure (42.2) shows
the variation in current with potential. If the potential

of the anode is increased gradually, a situation arrives
when the effect of the space charge becomes negligible
and any electron that is emitted from the cathode is
able to reach the anode. The current then becomes
constant and is known as the saturation current. This
is shown by the part bc in figure (42.2). Further
increase in the anode potential does not change the
magnitude of the photocurrent.

If the potential of the anode is made negative with
respect to the cathode, the electrons are repelled by
the anode. Some electrons go back to the cathode so
that the current decreases. At a certain value of this
negative potential, the current is completely stopped.
The smallest magnitude of the anode potential which
just stops the photocurrent, is called the stopping
potential.

The stopping potential is related to the maximum
kinetic energy of the ejected electrons. To stop the
current, we must ensure that even the fastest electron
fails to reach the anode. Suppose, the anode is kept at
a negative potential of magnitude V0 with respect to
the cathode. As a photoelectron travels from the
cathode to the anode, the potential energy increases
by eV0. This is equal to the decrease in the kinetic
energy of the photoelectron. The kinetic energy of the
fastest photoelectron, as it reaches the anode, is
Kmax  eV0 . If the fastest electron just fails to reach the
anode, we should have

         eV0  Kmax  
hc


  

   or, V0  
hc
e

 


1




  


e

   (42.3)

We see that the stopping potential V0 depends on
the wavelength of the light and the work function of
the metal. It does not depend on the intensity of light.
Thus, if an anode potential of – 2.0 V stops the
photocurrent from a metal when a 1 W source of light
is used, the same potential of – 2.0 V will stop the
photocurrent when a 100 W source of light of the same
wavelength is used.

The saturation current increases as the intensity of
light increases. This is because, a larger number of photons
now fall on the metal surface and hence a larger number
of electrons interact with photons. The number of electrons
emitted increases and hence the current increases.

Figure (42.3a) shows plots of photocurrent versus
anode potential for three different intensities of light.
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Figure 42.3
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Note that the stopping potential V0 is indepedent of
the intensity of light.

The variation in stopping potential V0 with 1/λ is
shown in figure (42.3b) for cathodes of two different
metals. From equation (42.3), the slope of each curve is

           tanθ = 
hc
e

which is the same for all metals. Also, the curves
intersect the 1/λ axis where V0 is zero. Using equation
(42.3), this corresponds to

          
hc
λ0

 = ϕ

   or,            
1
λ0

 = 
ϕ
hc

which is inverse of the threshold wavelength.
Let us summarise the results obtained from the

experiments described above.
1. When light of sufficiently small wavelength falls

on a metal surface, the metal emits electrons. The
emission is almost instantaneous.

2. There is a threshold wavelength λ0 for a given
metal such that if the wavelength of light is more than
λ0, no photoelectric effect takes place.

3. The kinetic energies of the photoelectrons vary
from zero to a maximum of Kmax where

           Kmax = hc
λ

 − ϕ

with usual meanings of the symbols.
4. The photocurrent may be stopped by applying

a negative potential to the anode with respect to the
cathode. The minimum magnitude of the potential
needed to stop the photocurrent is called the stopping
potential. It is proportional to the maximum kinetic
energy of the photoelectrons.

5. The stopping potential does not depend on the
intensity of the incident light. This means that the
kinetic energy of the photoelectrons is independent of
intensity of light.

6. The stopping potential depends on the
wavelength of the incident light.

7. The photocurrent increases if the intensity of
the incident light is increased.

Photoelectric Effect and Wave Theory of Light

According to wave thoery, when light falls on a
metal surface, energy is continuously distributed over
the surface. All the free electrons at the surface receive
light energy. An electron may be ejected only when it
acquires energy more than the work function. If we
use a low-intensity source, it may take hours before
an electron acquires this much energy from the light.
In this period, there will be many collisions and any
extra energy accumulated so far will be shared with

the remaining metal. This will result in no
photoelectron. This is contrary to experimental
observations. No matter how small is the intensity,
photoelectrons are ejected and that too without any
appreciable time delay. In the photon theory, low
intensity means less number of photons and hence less
number of electrons get a chance to absorb energy. But
any fortunate electron on which a photon falls, gets
the full energy of the photon and may come out
immediately.

In figure (42.4), we illustrate an analogy to the
wave and particle behaviour of light. In part (a), water
is sprayed from a distance on an area containing
several plants. Each plant receives water at nearly the
same rate. It takes time for a particular plant to
receive a certain amount of water. In part (b) of the
figure, water is filled in identical, loosely-tied water
bags and a particle physicist throws the bags randomly
at the plants. When a bag collides with a plant, it
sprays all its water on that plant in a very short time.
In the same way, whole of the energy associated with
a photon is absorbed by a free electron when the
photon hits it.

The maximum kinetic energy of a photoelectron does
not depend on the intensity of the incident light. This
fact is also not understood by the wave theory. According
to this theory, more intensity means more energy and
the maximum kinetic energy must increase with the
increase in intensity which is not true. The dependence
of maximum kinetic energy on wavelength is also against
the wave theory. There should not be any threshold
wavelength according to the wave thoery. According to
this theory, by using sufficiently intense light of any
wavelength, an electron may be given the required
amount of energy to come out. Experiments, however,
show the existence of threshold wavelength.

Example 42.3

   A point source of monochromatic light of 1.0 mW is
placed at a distance of 5.0 m from a metal surface. Light
falls perpendicularly on the surface. Assume wave theory
of light to hold and also that all the light falling on the

circular area with radius = 1.0 × 10 − 9 m (which is few
times the diameter of an atom) is absorbed by a single
electron on the surface. Calculate the time required by
the electron to receive sufficient energy to come out of the
metal if the work function of the metal is 2.0 eV.

��� ���

Figure 42.4
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Solution : The energy radiated by the light source per
second is 1.0 mJ. This energy is spread over the total
solid angle 4π. The solid angle subtended at the source
by the circular area mentioned is

     dΩ = 
dA
r 2  = 

π × (1.0 × 10 − 9 m) 2

(5.0 m) 2  = 
π

25
 × 10 − 18 sr.

Hence the energy heading towards the circular area per
second is

         
dΩ
4π

 (1.0 mJ) = 10 − 20 mJ.

The time required for accumulation of 2.0 eV of energy
on this circular area is

   t = 
2.0 × 1.6 × 10 − 19 J

10 − 20 mJ s −1
 = 3.2 × 10 4 s = 8.8 hours.

The assumption of continuous absorption of energy is
based on the wave theory. The above calculation shows
that if this theory were correct, the first electron would
be ejected not before 8.8 hours of continuous irradiation.
However, in actual case, photoelectrons come out almost
without any time delay after light falls on the metal.

42.3 MATTER WAVES

We have seen that light behaves in certain
situations as waves and in certain other situations as
particles. We know that electrons behave as particles
in many of the situations. Can electrons also show
wave nature in some suitable situations ? The answer
is yes. A large number of experiments are now
available in which electrons interfere like waves and
produce fringes. Electron microscope is built on the
basis of the wave properties of electrons. Protons,

neutrons or even bigger particles have intrinsic wave
properties. It is only a question of putting them under
proper experimental situations to bring out their wave
character.

If an electron behaves as waves, what is its
wavelength ? The relation was proposed by Prince
Louis Victor de Broglie in his PhD thesis for which he
was awarded the Nobel Prize in physics for 1929. The
wavelength is given by

             λ = 
h
p

… (42.4)

where p is the momentum of the electron and h is the
Planck constant. This wavelength is known as the
de Broglie wavelength of the electron. Same is the case
with other particles such as a neutron, a proton, a
molecule, etc. In fact, the equation also applies to light.
When light shows its photon character, each photon
has a momentum p = h/λ (equation 42.1).

Can we apply Newton’s laws to find the motion of
an electron if the electron has both particle and wave
characters. Indeed we should not rely upon Newton’s
laws to discuss the behaviour of electrons in all
situations. While discussing the “scope of classical
physics” it was mentioned that the classical mechanics
of Newton fails for particles of very small size. A rough
estimate was given that the classical mechanics works
well for particles of linear size greater than 10 − 4 cm.
For smaller particles, we should use quantum
mechanics which takes into account the dual nature
(wave nature and particle nature) of electrons, protons
and other subatomic particles.

Worked Out Examples

Use h = 6.63 × 10 
− 34

 Js = 4.14 × 10 
− 15

 eVs, c = 3 × 10 
8
 m s

 −1

and me = 9.1 × 10 
− 31

 kg wherever required.
                                                                                                                                                                                 

 1. How many photons are emitted per second by a 5 mW
laser source operating at 632.8 nm ?

Solution : The energy of each photon is

      E = 
hc
λ

= 
(6.63 × 10 − 34 J s) × (3 × 10 8 m s −1)

(632.8 × 10 − 9 m)

= 3.14 × 10 − 19 J.

The energy of the laser emitted per second is

5 × 10 − 3 J. Thus the number of photons emitted per

second

       = 
5 × 10 − 3 J

3.14 × 10 − 19 J
 = 1.6 × 10 16.

 2. A monochromatic source of light operating at 200 W
emits 4 × 10 20 photons per second. Find the wavelength
of the light.

Solution : The energy of each photon = 
200 J s −1

4 × 10 20 s −1

= 5 × 10 − 19 J.

Wavelength = λ = 
hc
E

       = 
(6.63 × 10 − 34 J s) × (3 × 10 8 m s −1)

(5 × 10 − 19 J)

= 4.0 × 10 − 7 m = 400 nm.
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 3. A hydrogen atom moving at a speed v absorbs a photon
of wavelength 122 nm and stops. Find the value of v.
Mass of a hydrogen atom = 1.67 × 10 − 27 kg.

Solution : The linear momentum of the photon

   = 
h
λ

 = 
6.63 × 10 − 34 Js

122 × 10 − 9 m
 = 5.43 × 10 − 27 kg m s −1.

As the photon is absorbed and the atom stops, the total
final momentum is zero. From conservation of linear
momentum, the initial momentum must be zero. The
atom should move opposite to the direction of motion of
the photon and they should have the same magnitudes
of linear momentum. Thus,

      (1.67 × 10 − 27 kg) v = 5.43 × 10 − 27 kg m s −1

or, v = 
5.43 × 10 − 27

1.67 × 10 − 27
 m s −1 = 3.25 m s −1.

 4. A parallel beam of monochromatic light of wavelength
500 nm is incident normally on a perfectly absorbing
surface. The power through any cross-section of the beam
is 10 W. Find (a) the number of photons absorbed per
second by the surface and (b) the force exerted by the
light beam on the surface.

Solution :

(a) The energy of each photon is

   E = 
hc
λ

 = 
(4.14 × 10 − 15 eVs) × (3 × 10 8 m s −1)

500 nm

= 
1242 eVn m

500 nm
 = 2.48 eV.

In one second, 10 J of energy passes through any cross
section of the beam. Thus, the number of photons
crossing a cross section is

          n = 
10 J

2.48 eV
 = 2.52 × 10 19.

This is also the number of photons falling on the surface
per second and being absorbed.

(b) The linear momentum of each photon is

            p = 
h
λ

 = 
hν
c

 ⋅

The total momentum of all the photons falling per
second on the surface is

    = 
nhν

c
 = 

10 J
c

 = 
10 J

3 × 10 8 m s −1 = 3.33 × 10 − 8 Ns.

As the photons are completely absorbed by the surface,
this much momentum is transferred to the surface per
second. The rate of change of the momentum of the
surface, i.e., the force on it is

    F = 
dp
dt

 = 
3.33 × 10 − 8 Ns

1 s
 = 3.33 × 10 − 8 N.

 5. Figure (42-W1) shows a small, plane strip suspended
from a fixed support through a string of length l. A

continuous beam of monochromatic light is incident
horizontally on the strip and is completely absorbed. The
energy falling on the strip per unit time is W. (a) Find
the deflection of the string from the vertical if the mirror
stays in equilibrium. (b) If the strip is deflected slightly
from its equilibrium position in the plane of the figure,
what will be the time period of the resulting oscillations ?

Solution :

(a) The linear momentum of the light falling per unit
time on the strip is W/c. As the light is incident on the
strip, its momentum is absorbed by the mirror. The
change in momentum imparted to the strip per unit time
is thus W/c. This is equal to the force on the strip by
the light beam. In equilibrium, the force by the light
beam, the weight of the strip and the force due to tension
add to zero. If the string makes an angle θ with the
vertical,

          T cosθ = mg

and        T sinθ = W/c.

Thus,     tanθ = 
W

mgc
 ⋅

(b) In equilibrium, the tension is

         T = 



(mg) 2 + 



W
c





 2




 1/2

or, 
T
m

 = 



g 2 + 



W
mc





 2




 1/2

.

This plays the role of effective g. The time period of
small oscillations is

      t = 2π √l
T/m

 = 2π 
√l




g 2 + 



W
mc





 2 



 
1
4

 ⋅

 6. A point source of light is placed at the centre of curvature
of a hemispherical surface. The radius of curvature is r
and the inner surface is completely reflecting. Find the
force on the hemisphere due to the light falling on it if
the source emits a power W.

Solution :

The energy emitted by the source per unit time, i.e., W
falls on an area 4πr 2 at a distance r in unit time. Thus,
the energy falling per unit area per unit time is
W/(4πr 2). Consider a small area dA at the point P of
the hemisphere (figure 42-W2). The energy falling per
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unit time on it is W dA

4πr 
2  ⋅ The corresponding momentum

incident on this area per unit time is W dA

4πr 
2
c
 ⋅ As the light

is reflected back, the change in momentum per unit
time, i.e., the force on dA is

           dF = 
2W dA
4πr 2c

 ⋅

Suppose the radius OP through the area dA makes an
angle θ with the symmetry axis OX. The force on dA is
along this radius. By symmetry, the resultant force on
the hemisphere is along OX. The component of dF along
OX is

        dF cosθ = 
2W dA
4πr 2c

 cosθ.

If we project the area dA on the plane containing the
rim, the projection is dA cosθ. Thus, the component of
dF along OX is,

       dF cosθ = 
2 W

4πr 2c
 (projection of dA).

The net force along OX is

F = 
2 W

4πr 2c
   


∑  projection of dA



.

When all the small areas dA are projected, we get the
area enclosed by the rim which is πr 2. Thus,

          F = 
2 W

4πr 2c
 × πr 2 = 

W
2c

 ⋅

 7. A perfectly reflecting solid sphere of radius r is kept in
the path of a parallel beam of light of large aperture. If
the beam carries an intensity I, find the force exerted by
the beam on the sphere.

Solution :

Let O be the centre of the sphere and OZ be the line
opposite to the incident beam (figure 42-W3). Consider

a radius OP of the sphere making an angle θ with OZ.
Rotate this radius about OZ to get a circle on the sphere.
Change θ to θ + dθ and rotate the radius about OZ to
get another circle on the sphere. The part of the sphere
between these circles is a ring of area 2πr 2 sinθ dθ.
Consider a small part ∆A of this ring at P. Energy of
the light falling on this part in time ∆t is

          ∆U = I∆t(∆A cosθ).

The momentum of this light falling on ∆A is ∆U/c along
QP. The light is reflected by the sphere along PR. The
change in momentum is

      ∆p = 2 
∆U
c

 cosθ = 
2
c

 I ∆t (∆A cos 2θ)

along the inward normal. The force on ∆A due to the
light falling on it, is

            
∆p
∆t

 = 
2
c

 I ∆A cos 2θ.

This force is along PO. The resultant force on the ring
as well as on the sphere is along ZO by symmetry. The
component of the force on ∆A, along ZO is

          
∆p
∆t

 cosθ = 
2
c

 I ∆A cos 3θ.

The force acting on the ring is

        dF = 
2
c

 I (2πr 2 sinθ dθ)cos 3θ.

The force on the entire sphere is

         F = ∫ 
0

π/2

4πr 2I
c

 cos 3θ sinθ dθ

= − ∫ 
θ = 0

π/2

4πr 2I
c

 cos 3θ d(cosθ)

= − 
4πr 2I

c
 




cos 4θ
4



 0

 π/2

 = 
πr 2I

c
 ⋅

Note that integration is done only for the hemisphere
that faces the incident beam.

 8. Find the threshold wavelengths for photoelectric effect
from a copper surface, a sodium surface and a cesium
surface. The work functions of these metals are 4.5 eV,
2.3 eV and 1.9 eV respectively.

Solution : If λ0 be the threshold wavelength and ϕ be the
work function,

         λ0 = 
hc
ϕ

= 
1242 eV nm

ϕ
 ⋅

For copper, λ0 = 
1242 eV nm

4.5 eV
 = 276 nm.

For sodium,  λ0 = 
1242 eV nm

2.3 eV
 = 540 nm.
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For cesium, λ0 = 
1242 eV nm

1.9 eV
 = 654 nm.

 9. Ultraviolet light of wavelength 280 nm is used in an
experiment on photoelectric effect with lithium
(ϕ = 2.5 eV) cathode. Find (a) the maximum kinetic
energy of the photoelectrons and (b) the stopping
potential.

Solution :

(a) The maximum kinetic energy is

      Kmax = 
hc
λ

 − ϕ

= 
1242 eV nm

280 nm
 − 2.5 eV

= 4.4 eV − 2.5 eV = 1.9 eV.

(b) Stopping potential V is given by

            eV = Kmax

or, V = 
Kmax

e
 = 

1.9 eV
e

 = 1.9 V.

10. In a photoelectric experiment, it was found that the
stopping potential decreases from 1.85 V to 0.82 V as the
wavelength of the incident light is varied from 300 nm
to 400 nm. Calculate the value of the Planck constant
from these data.

Solution : 
The maximum kinetic energy of a photoelectron is

         Kmax = 
hc
λ

 − ϕ

and the stopping potential is

        V = 
Kmax

e
 = 

hc
λe

 − 
ϕ
e

 ⋅

If V1, V2 are the stopping potentials at wavelengths
λ1  and  λ2 respectively,

            V1 = 
hc
λ1e

 − 
ϕ
e

and V2 = 
hc
λ2e

 − 
ϕ
e

 ⋅

This gives, V1 − V2 = 
hc
e

 


1
λ1

 − 
1
λ2





or,      h = 
e(V1 − V2)

c 


1
λ1

 − 
1
λ2





      = 
e(1.85 V − 0.82 V)

c 


1

300 × 10 − 9 m
 − 

1

400 × 10 − 9 m





    = 
1.03 eV

(3 × 10 8 m s −1) 


1
12

 × 10 7 m − 1



= 4.12 × 10 − 15 eVs.

11. A beam of 450 nm light is incident on a metal having
work function 2.0 eV and placed in a magnetic field B.
The most energetic electrons emitted perpendicular to the
field are bent in circular arcs of radius 20 cm. Find the
value of B.

Solution : The kinetic energy of the most energetic
electrons is

        K = 
hc
λ

 − ϕ

= 
1242 eV nm

450 nm
 − 2.0 eV

= 0.76 eV = 1.2 × 10 − 19 J.

The linear momentum = mv = √2mK

    = √2 × (9.1 × 10 
− 31

 kg) × (1.2 × 10 
− 19

 J)

= 4.67 × 10 − 25 kgms −1.

When a charged particle is sent perpendicular to a
magnetic field, it goes along a circle of radius

        r = 
mv
qB

 ⋅

Thus, 0.20 m = 
4.67 × 10 − 25 kg m s −1

(1.6 × 10 − 19 C) × B

or, B = 
4.67 × 10 − 25 kg m s −1

(1.6 × 10 − 19 C) × (0.20 m)
 = 1.46 × 10 − 5 T.

12. A monochromatic light of wavelength λ is incident on an
isolated metallic sphere of radius a. The threshold
wavelength is λ0 which is larger than λ . Find the number
of photoelectrons emitted before the emission of
photoelectrons will stop.

Solution : As the metallic sphere is isolated, it becomes
positively charged when electrons are ejected from it.
There is an extra attractive force on the photoelectrons.
If the potential of the sphere is raised to V, the electron
should have a minimum energy ϕ + eV to be able to come
out. Thus, emission of photoelectrons will stop when

            
hc
λ

 = ϕ + eV

             = 
hc
λ0

 + eV

or,         V = 
hc
e

 


1
λ

 − 
1
λ0




 ⋅

The charge on the sphere needed to take its potential
to V is
          Q = (4πε0a)V.

The number of electrons emitted is, therefore,

       n = 
Q
e

 = 
4πε0aV

e

= 
4πε0ahc

e 2  


1
λ

 − 
1
λ0




 ⋅
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13. Light described at a place by the equation

E = (100 V m −1) [sin (5 × 10 15 s − 1) t + sin (8 × 10 15 s − 1)t]
falls on a metal surface having work function 2.0 eV.

Calculate the maximum kinetic energy of the

photoelectrons.

Solution : The light contains two different frequencies.

The one with larger frequency will cause photoelectrons

with largest kinetic energy. This larger frequency is

        ν = 
ω
2π

 = 
8 × 10 15 s − 1

2π
 ⋅

The maximum kinetic energy of the photoelectrons is

   Kmax = hν − ϕ

= (4.14 × 10 − 15 eVs) × 




8 × 10 15

2π
 s − 1



 − 2.0 eV

= 5.27 eV − 2.0 eV = 3.27 eV.

QUESTIONS FOR SHORT ANSWER

 1. Can we find the mass of a photon by the definition
p = mv ?

 2. Is it always true that for two sources of equal intensity,
the number of photons emitted in a given time are
equal ?

 3. What is the speed of a photon with respect to another
photon if (a) the two photons are going in the same
direction and (b) they are going in opposite directions ?

 4. Can a photon be deflected by an electric field ? By a
magnetic field ?

 5. A hot body is placed in a closed room maintained at a
lower temperature. Is the number of photons in the room
increasing ?

 6. Should the energy of a photon be called its kinetic
energy or its internal energy ?

 7. In an experiment on photoelectric effect, a photon is
incident on an electron from one direction and the
photoelectron is emitted almost in the opposite direction.
Does this violate conservation of momentum ?

 8. It is found that yellow light does not eject photoelectrons
from a metal. Is it advisable to try with orange light ?
With green light ?

 9. It is found that photosynthesis starts in certain plants
when exposed to the sunlight but it does not start if the
plant is exposed only to infrared light. Explain.

10. The threshold wavelength of a metal is λ0. Light of
wavelength slightly less than λ0 is incident on an
insulated plate made of this metal. It is found that
photoelectrons are emitted for sometime and after that
the emission stops. Explain.

11. Is p = E/c valid for electrons ?

12. Consider the de Broglie wavelength of an electron and
a proton. Which wavelength is smaller if the two
particles have (a) the same speed (b) the same
momentum (c) the same energy ?

13. If an electron has a wavelength, does it also have a
colour ?

OBJECTIVE I

 1. Planck constant has the same dimensions as
(a) force × time         (b) force × distance
(c) force × speed        (d) force × distance × time.

 2. Two photons having
(a) equal wavelengths have equal linear momenta
(b) equal energies have equal linear momenta
(c) equal frequencies have equal linear momenta
(d) equal linear momenta have equal wavelengths.

 3. Let p and E denote the linear momentum and energy
of a photon. If the wavelength is decreased,
(a) both p and E increase
(b) p increases and E decreases
(c) p decreases and E increases
(d) both p and E decrease.

 4. Let nr and nb be respectively the number of photons
emitted by a red bulb and a blue bulb of equal power
in a given time.

(a) nr = nb     (b) nr < nb     (c) nr > nb
(d) The information is insufficient to get a relation
       between  nr and nb.

 5. The equation E = pc is valid
(a) for an electron as well as for a photon
(b) for an electron but not for a photon
(c) for a photon but not for an electron
(d) neither for an electron nor for a photon.

 6. The work function of a metal is hν0. Light of frequency
ν falls on this metal. The photoelectric effect will take
place only if
(a) ν ≥ ν0    (b) ν > 2ν0    (c) ν < ν0    (d) ν < ν0 /2.

 7. Light of wavelength λ falls on a metal having
work function hc/λ0. Photoelectric effect will take place
only if
(a) λ ≥ λ0   (b) λ ≥ 2λ0   (c) λ ≤ λ0   (d) λ < λ0 /2.

Photoelectric Effect and Wave–Particle Duality 363



 8. When stopping potential is applied in an experiment on
photoelectric effect, no photocurrent is observed. This
means that
(a) the emission of photoelectrons is stopped
(b) the photoelectrons are emitted but are re-absorbed
       by the  emitter metal
(c) the photoelectrons are accumulated near the
       collector  plate
(d) the photoelectrons are dispersed from the sides of
       the  apparatus.

 9. If the frequency of light in a photoelectric experiment is
doubled, the stopping potential will
(a) be doubled            (b) be halved
(c) become more than double
(d) become less than double.

10. The frequency and intensity of a light source are both
doubled. Consider the following statements.
(A) The saturation photocurrent remains almost
       the same.
(B) The maximum kinetic energy of the photoelectrons
       is doubled.
(a) Both A and B are true.  (b) A is true but B is false.
(c) A is false but B is true.   (d) Both A and B are false.

11. A point source of light is used in a photoelectric effect.
If the source is removed farther from the emitting metal,
the stopping potential
(a) will increase         (b) will decrease

(c) will remain constant
(d) will either increase or decrease.

12. A point source causes photoelectric effect from a small
metal plate. Which of the following curves may represent
the saturation photocurrent as a function of the distance
between the source and the metal ?

13. A nonmonochromatic light is used in an experiment on
photoelectric effect. The stopping potential
(a) is related to the mean wavelength
(b) is related to the longest wavelength
(c) is related to the shortest wavelength
(d) is not related to the wavelength.

14. A proton and an electron are accelerated by the same
potential difference. Let λe and λp denote the de Broglie
wavelengths of the electron and the proton respectively.
(a) λe = λp      (b) λe < λp      (c) λe > λp

(d) The relation between λe and λp depends on the
       accelerating potential  difference.

OBJECTIVE II

 1. When the intensity of a light source is increased,
(a) the number of photons emitted by the source in unit
       time  increases
(b) the total energy of the photons emitted per unit time
       increases
(c) more energetic photons are emitted
(d) faster photons are emitted.

 2. Photoelectric effect supports quantum nature of light
because
(a) there is a minimum frequency below which no
       photoelectrons are emitted
(b) the maximum kinetic energy of photoelectrons
       depends only  on the frequency of light and not on
       its intensity
(c) even when the metal surface is faintly illuminated
       the  photoelectrons leave the surface immediately
(d) electric charge of the photoelectrons is quantized.

 3. A photon of energy hν is absorbed by a free electron of
a metal having work function ϕ < hν.
(a) The electron is sure to come out.
(b) The electron is sure to come out with a kinetic
       energy hν − ϕ.
(c) Either the electron does not come out or it comes out
       with a kinetic energy hν − ϕ.
(d) It may come out with a kinetic energy less than
       hν − ϕ.

 4. If the wavelength of light in an experiment on
photoelectric effect is doubled,
(a) the photoelectric emission will not take place
(b) the photoelectric emission may or may not take place
(c) the stopping potential will increase
(d) the stopping potential will decrease.

 5. The photocurrent in an experiment on photoelectric
effect increases if
(a) the intensity of the source is increased
(b) the exposure time is increased
(c) the intensity of the source is decreased
(d) the exposure time is decreased.

 6. The collector plate in an experiment on photoelectric
effect is kept vertically above the emitter plate. Light
source is put on and a saturation photocurrent is
recorded. An electric field is switched on which has a
vertically downward direction.
(a) The photocurrent will increase.
(b) The kinetic energy of the electrons will increase.
(c) The stopping potential will decrease.
(d) The threshold wavelength will increase.

 7. In which of the following situations the heavier of the
two particles has smaller de Broglie wavelength ? The
two particles
(a) move with the same speed
(b) move with the same linear momentum
(c) move with the same kinetic energy
(d) have fallen through the same height.
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EXERCISES

Use h = 6.63 × 10 
− 34

 J s = 4.14 × 10 
− 15

 eVs, c = 3 × 10 
8
 m s

 −1

and me = 9.1 × 10 
− 31

 kg wherever needed.
                                                                                                                                                                                 

 1. Visible light has wavelengths in the range of 400 nm to
780 nm. Calculate the range of energy of the photons of
visible light.

 2. Calculate the momentum of a photon of light of
wavelength 500 nm.

 3. An atom absorbs a photon of wavelength 500 nm and
emits another photon of wavelength 700 nm. Find the
net energy absorbed by the atom in the process.

 4. Calculate the number of photons emitted per second by
a 10 W sodium vapour lamp. Assume that 60% of the
consumed energy is converted into light. Wavelength of
sodium light = 590 nm.

 5. When the sun is directly overhead, the surface of the
earth receives 1.4 × 10 3 W m –2 of sunlight. Assume that
the light is monochromatic with average wavelength
500 nm and that no light is absorbed in between the
sun and the earth’s surface. The distance between the
sun and the earth is 1.5 × 10 11 m. (a) Calculate the
number of photons falling per second on each square
metre of earth’s surface directly below the sun. (b) How
many photons are there in each cubic metre near the
earth’s surface at any instant ? (c) How many photons
does the sun emit per second ?

 6. A parallel beam of monochromatic light of wavelength
663 nm is incident on a totally reflecting plane mirror.
The angle of incidence is 60° and the number of photons
striking the mirror per second is 1.0 × 10 19. Calculate
the force exerted by the light beam on the mirror.

 7. A beam of white light is incident normally on a plane
surface absorbing 70% of the light and reflecting the
rest. If the incident beam carries 10 W of power, find
the force exerted by it on the surface.

 8. A totally reflecting, small plane mirror placed
horizontally faces a parallel beam of light as shown in
figure (42-E1). The mass of the mirror is 20 g. Assume
that there is no absorption in the lens and that 30% of
the light emitted by the source goes through the lens.
Find the power of the source needed to support the
weight of the mirror. Take g = 10 m s –2.

 9. A 100 W light bulb is placed at the centre of a spherical

chamber of radius 20 cm. Assume that 60% of the energy

supplied to the bulb is converted into light and that the

surface of the chamber is perfectly absorbing. Find the

pressure exerted by the light on the surface of the
chamber.

10. A sphere of radius 1.00 cm is placed in the path of a
parallel beam of light of large aperture. The intensity of
the light is 0.50 W cm –2. If the sphere completely absorbs
the radiation falling on it, find the force exerted by the
light beam on the sphere.

11. Consider the situation described in the previous
problem. Show that the force on the sphere due to the
light falling on it is the same even if the sphere is not
perfectly absorbing.

12. Show that it is not possible for a photon to be completely
absorbed by a free electron.

13. Two neutral particles are kept 1 m apart. Suppose by
some mechanism some charge is transferred from one
particle to the other and the electric potential energy
lost is completely converted into a photon. Calculate the
longest and the next smaller wavelength of the photon
possible.

14. Find the maximum kinetic energy of the photoelectrons
ejected when light of wavelength 350 nm is incident on
a cesium surface. Work function of cesium = 1.9 eV.

15. The work function of a metal is 2.5 × 10 − 19 J. (a) Find
the threshold frequency for photoelectric emission. (b) If
the metal is exposed to a light beam of frequency
6.0 × 10 14 Hz, what will be the stopping potential ?

16. The work function of a photoelectric material is 4.0 eV.
(a) What is the threshold wavelength ? (b) Find the
wavelength of light for which the stopping potential is
2.5 V.

17. Find the maximum magnitude of the linear momentum
of a photoelectron emitted when light of wavelength
400 nm falls on a metal having work function 2.5 eV.

18. When a metal plate is exposed to a monochromatic beam
of light of wavelength 400 nm, a negative potential of
1.1 V is needed to stop the photocurrent. Find the
threshold wavelength for the metal.

19. In an experiment on photoelectric effect, the stopping
potential is measured for monochromatic light beams
corresponding to different wavelengths. The data
collected are as follows:

   wavelength (nm):   350  400  450  500  550
   stopping potential(V): 1.45 1.00 0.66 0.38 0.16
   Plot the stopping potential against inverse of

wavelength (1/λ) on a graph paper and find (a) the
Planck constant, (b) the work function of the emitter and
(c) the threshold wavelength.

20. The electric field associated with a monochromatic beam
becomes zero 1.2 × 10 15 times per second. Find the
maximum kinetic energy of the photoelectrons when this
light falls on a metal surface whose work function is
2.0 eV.

21. The electric field associated with a light wave is given by

       E = E0 sin [(1.57 × 10 7 m − 1) (x − ct)].
Find the stopping potential when this light is used in

�
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an experiment on photoelectric effect with the emitter
having work function 1.9 eV.

22. The electric field at a point associated with a light wave is

E = (100 Vm −1) sin [(3.0 × 10 15 s − 1)t] sin [(6.0 × 10 15 s − 1)t].
If this light falls on a metal surface having a work
function of 2.0 eV, what will be the maximum kinetic
energy of the photoelectrons ?

23. A monochromatic light source of intensity 5 mW emits
8 × 10 15 photons per second. This light ejects
photoelectrons from a metal surface. The stopping
potential for this setup is 2.0 V. Calculate the work
function of the metal.

24. Figure (42-E2) is the plot of the stopping potential
versus the frequency of the light used in an experiment
on photoelectric effect. Find (a) the ratio h/e and (b) the
work function.

25. A photographic film is coated with a silver bromide
layer. When light falls on this film, silver bromide
molecules dissociate and the film records the light there.
A minimum of 0.6 eV is needed to dissociate a silver
bromide molecule. Find the maximum wavelength of
light that can be recorded by the film.

26. In an experiment on photoelectric effect, light of
wavelength 400 nm is incident on a cesium plate at the
rate of 5.0 W. The potential of the collector plate is made
sufficiently positive with respect to the emitter so that
the current reaches its saturation value. Assuming that
on the average one out of every 10 6 photons is able to
eject a photoelectron, find the photocurrent in the
circuit.

27. A silver ball of radius 4.8 cm is suspended by a thread
in a vacuum chamber. Ultraviolet light of wavelength
200 nm is incident on the ball for some time during
which a total light energy of 1.0 × 10 − 7 J falls on the
surface. Assuming that on the average one photon out
of every ten thousand is able to eject a photoelectron,
find the electric potential at the surface of the ball
assuming zero potential at infinity. What is the potential
at the centre of the ball ?

28. In an experiment on photoelectric effect, the emitter and
the collector plates are placed at a separation of 10 cm
and are connected through an ammeter without any cell

(figure 42-E3). A magnetic field B exists parallel to the
plates. The work function of the emitter is 2.39 eV and
the light incident on it has wavelengths between 400 nm
and 600 nm. Find the minimum value of B for which
the current registered by the ammeter is zero. Neglect
any effect of space charge.

29. In the arrangement shown in figure (42-E4), y = 1.0 mm,
d = 0.24 mm and D = 1.2 m. The work function of the
material of the emitter is 2.2 eV. Find the stopping
potential V needed to stop the photocurrent.

30. In a photoelectric experiment, the collector plate is at
2.0 V with respect to the emitter plate made of copper
(ϕ = 4.5 eV). The emitter is illuminated by a source of
monochromatic light of wavelength 200 nm. Find the
minimum and maximum kinetic energy of the
photoelectrons reaching the collector.

31. A small piece of cesium metal (ϕ = 1.9 eV) is kept at a
distance of 20 cm from a large metal plate having a
charge density of 1.0 × 10 − 9 C m –2 on the surface facing
the cesium piece. A monochromatic light of wavelength
400 nm is incident on the cesium piece. Find the
minimum and the maximum kinetic energy of the
photoelectrons reaching the large metal plate. Neglect
any change in electric field due to the small piece of
cesium present.

32. Consider the situation of the previous problem. Consider
the fastest electron emitted parallel to the large metal
plate. Find the displacement of this electron parallel to
its initial velocity before it strikes the large metal plate.

33. A horizontal cesium plate (ϕ = 1.9 eV) is moved vertically
downward at a constant speed v in a room full of
radiation of wavelength 250 nm and above. What should
be the minimum value of v so that the vertically upward
component of velocity is nonpositive for each
photoelectron ? 

34. A small metal plate (work function ϕ) is kept at a
distance d from a singly ionized, fixed ion. A
monochromatic light beam is incident on the metal plate
and photoelectrons are emitted. Find the maximum
wavelength of the light beam so that some of the
photoelectrons may go round the ion along a circle.

35. A light beam of wavelength 400 nm is incident on a metal
plate of work function 2.2 eV. (a) A particular electron
absorbs a photon and makes two collisions before coming
out of the metal. Assuming that 10% of the extra energy
is lost to the metal in each collision, find the kinetic
energy of this electron as it comes out of the metal.
(b) Under the same assumptions, find the maximum
number of collisions the electron can suffer before it
becomes unable to come out of the metal.
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ANSWERS

OBJECTIVE I

 1. (d)  2. (d)  3. (a)  4. (c)  5. (c)  6. (a)
 7. (c)  8. (b)  9. (c) 10. (b) 11. (c) 12. (d)
13. (c) 14. (c)

OBJECTIVE II

 1. (a), (b)  2. (a), (b), (c)  3. (d)
 4. (b), (d)  5. (a)  6. (b)
 7. (a), (c), (d)

EXERCISES

 1. 2.56 × 10 – 19 J  to  5.00 × 10 – 19 J

 2. 1.33 × 10 – 27 kg m s −1

 3. 1.1 × 10 – 19 J

 4. 1.77 × 10 19

 5. (a) 3.5 × 10 21 (b) 1.2 × 10 13 (c) 9.9 × 10 44

 6. 1.0 × 10 – 8 N

 7. 4.3 × 10 – 8 N
 8. 100 MW 

 9. 4.0 × 10 – 7 Pa

10. 5.2 × 10 – 9 N
13. 860 m, 215 m

14. 1.6 eV

15. (a) 3.8 × 10 14 Hz (b) 0.91 V

16. (a) 310 nm (b) 190 nm

17. 4.2 × 10 – 25 kg m s −1

18. 620 nm

19. (a) 4.2 × 10 – 15 eVs (b) 2.15 eV (c) 585 nm

20. 0.48 eV

21. 1.2 V

22. 3.93 eV

23. 1.9 eV

24. (a) 4.14 × 10 – 15 eVs (b) 0.414 eV

25. 2070 nm

26. 1.6 µA

27. 0.3 V in each case

28. 2.85 × 10 – 5 T

29. 0.9 V

30. 2.0 eV,  3.7 eV

31. 22.6 eV,  23.8 eV

32. 9.2 cm 

33. 1.04 × 10 6 m s −1

34. 
8πε0dhc

e 2 + 8πε0ϕd
 

35. (a) 0.31 eV (b) 4
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CHAPTER 43

BOHR’S MODEL AND PHYSICS
OF THE ATOM

43.1 EARLY ATOMIC MODELS

The idea that all matter is made of very small
indivisible particles is very old. It has taken a long
time, intelligent reasoning and classic experiments to
cover the journey from this idea to the present day
atomic models.

We can start our discussion with the mention of
English scientist Robert Boyle (1627–1691) who
studied the expansion and compression of air. The fact
that air can be compressed or expanded, tells that air
is made of tiny particles with lot of empty space
between the particles. When air is compressed, these
particles get closer to each other, reducing the empty
space. We mention Robert Boyle here, because, with
him atomism entered a new phase, from mere
reasoning to experimental observations. The smallest
unit of an element, which carries all the properties of
the element is called an atom. Experiments on
discharge tube, measurement of e/m by Thomson, etc.,
established the existence of negatively charged
electrons in the atoms. And then started the search
for the structure of the positive charge inside an atom
because the matter as a whole is electrically neutral.

Thomson’s Model of the Atom

Thomson suggested in 1898 that the atom is a
positively charged solid sphere and electrons are
embedded in it in sufficient number so as to make the
atom electrically neutral. One can compare Thomson’s
atom to a birthday cake in which cherries are
embedded. This model was quite attractive as it could
explain several observations available at that time. It
could explain why only negatively charged particles
are emitted when a metal is heated and never the
positively charged particles. It could also explain the
formation of ions and ionic compounds of chemistry.

Lenard’s Suggestion

Lenard had noted that cathode rays could pass
through materials of small thickness almost
undeviated. If the atoms were solid spheres, most of
the electrons in the cathode rays would hit them and
would not be able to go ahead in the forward direction.
Lenard, therefore, suggested in 1903 that the atom
must have a lot of empty space in it. He proposed that
the atom is made of electrons and similar tiny particles
carrying positive charge. But then, the question was,
why on heating a metal, these tiny positively charged
particles were not ejected ?

Rutherford’s Model of the Atom

Thomson’s model and Lenard’s model, both had
certain advantages and disadvantages. Thomson’s
model made the positive charge immovable by
assuming it to be spread over the total volume of the
atom. On the other hand, electrons were tiny particles
and could be ejected on heating a metal. But the
almost free passage of cathode rays through an atom
was not consistent with Thomson’s model. For that,
the atom should have a lot of empty space as suggested
by Lenard. So, the positive charge should be in the
form of tiny particles occupying a very small volume,
yet these particles should not be able to come out on
heating.

It was Ernest Rutherford who solved the problem
by doing a series of experiments from 1906 to 1911 on
alpha particle scattering.

In these experiments, a beam of alpha particles
was bombarded on a thin gold foil and their deflections
were studied (figure 43.1). Most of the alpha particles
passed through the gold foil either undeviated or with
a small deviation. This was expected because an alpha
particle is a heavy particle and will brush aside any
tiny particle coming in its way. However, some of the
alpha particles were deflected by large angles.



Rutherford found that some of the alpha particles,
about one in 8000, were deflected by more than 90°,
i.e., they were turned back by the foil.

This was interesting. When 8000 alpha particles
could go through the gold atoms undeflected, why then
one was forced to turn back. The alpha particle itself
is about 7350 times heavier than the electron. So
neither an electron, nor a similar positively charged
particle could cause a large scale deflection of an alpha
particle. The alpha particle must have encountered a
very heavy particle in its path, a particle with mass
of the order of the mass of the atom itself. Also,
thousands of alpha particles go undeviated or almost
undeviated. So this heavy mass in the atom should
occupy a very small volume so that the atom may
contain lot of empty space.

From the pattern of the scattering of alpha
particles, Rutherford made quantitative analysis. He
found that the heavy particle from which an alpha
particle suffered large deflection, had a positive charge
and virtually all the mass of the atom was
concentrated in it. Its size was also estimated from the
same experiment. The linear size was found to be
about 10 fermi (1 fermi = 1 femtometre =  10 − 15 m)

which was about 10 − 5 of the size of the linear atom.
As the volume is proportional to the cube of the linear
size, the volume of this positively charged particle was
only about 10 – 15 of the volume of the atom.

Based on these observations, Rutherford proposed
the model of nuclear atom which remains accepted to
a large extent even today. According to this model, the
atom contains a positively charged tiny particle at its
centre called the nucleus of the atom. This nucleus
contains almost all the mass of the atom. Outside this
nucleus, there are electrons which move around it at
some separation. The space between the nucleus and
the electrons is empty and determines the size of the

atom. The amount of the positive charge on the nucleus
is exactly equal to the total amount of negative charges
on all the electrons of the atom. Figure (43.2) shows
schematic representations of an atom in Thomson’s
model and Rutherford’s model.

So, Rutherford’s model explains the charge neutrality
and the large empty space inside the atom as suggested
by Lenard. It also explains why only negatively charged
particles are ejected easily by an atom. It is so because
the positively charged particle (nucleus) is so heavy that
when an atom gets energy from heating or otherwise,
this particle is hardly affected.

The movement of electrons around the nucleus was
a necessary part of Rutherford’s model. If the electrons
were at rest, they would fall into the nucleus because
of Coulomb attraction. If the electrons move in circular
orbits, the Coulomb force will only change the direction
of velocity providing the necessary centripetal force.
This electronic motion, however, created difficulties for
Rutherford’s model as we shall now study.

43.2 HYDROGEN SPECTRA   

When a material body is heated, it emits
electromagnetic radiation. The radiation may consist
of various components having different wavelengths.
When the filament of an electric bulb is heated, it gives
white light and all wavelengths in the visible range
are present in the emitted radiation. If the emitted
light is passed through a prism, components of
different wavelengths deviate by different amounts
and we get a continuous spectrum.

If hydrogen gas enclosed in a sealed tube is heated
to high temperatures, it emits radiation. If this
radiation is passed through a prism, components of
different wavelengths are deviated by different
amounts and thus we get the hydrogen spectrum. The
most striking feature in this spectrum is that only
some sharply defined, discrete wavelengths exist in the
emitted radiation. For example, light of wavelength
656.3 nm is observed and then light of wavelength
486.1 nm is observed. Hydrogen atoms do  not emit
any radiation between 656.3 nm and 486.1 nm.

A hydrogen sample also emits radiation with
wavelengths less than those in the visible range and
also with wavelengths larger than those in the visible
range. Figure (43.3) shows a schematic arrangement
of the wavelengths present in a hydrogen spectrum.
We see that the lines may be grouped in separate
series. In each series, the separation between the
consecutive wavelengths decreases as we go from
higher wavelength to lower wavelength. In fact, the
wavelengths in each series approach a limiting value
known as the series limit. Thus, we have indicated the
Lyman series (ultraviolet region), Balmer series
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(visible region), Paschen series (infrared region), etc.,
in the figure.  

The wavelengths nicely fit in the equation

           
1
λ

 = R 


1
n 2

 − 
1

m 2



 … (43.1)

where R ≈ 1.09737 × 10 7 m − 1 and n and m are integers
with m > n. Lyman series can be reproduced by setting
n = 1 and varying m from 2 onwards, Balmer series
by setting n = 2 with m >  2, Paschen series by setting
n = 3 with m > 3, etc.

It is said that John Jacob Balmer (1825–1898), a
Swiss schoolteacher, was fond of playing with
numbers. Once he complained to his physicist friend
that he was getting bored as he had no numbers to
play with. The friend gave him four wavelengths 656.3,
486.1, 434.1 and 420.2 nm of hydrogen spectrum and
asked if Balmer could find a relation amongst them.
And Balmer soon came out with his formula

     λ = 
364.56 m 2

m 2 − 4
 ,  where  m = 3, 4, 5, 6

which was later put in more convenient form (equation
43.1) by Rydberg.

43.3 DIFFICULTIES WITH RUTHERFORD’S MODEL

The sharply defined, discrete wavelengths in
hydrogen spectra posed a serious puzzle before
physicists.

A hydrogen atom consists of an electron and a
nucleus containing just a proton. The important
question is why the electron does not hit the proton
due to Coulomb attraction. In Rutherford’s model, we
assume that the electron revolves round the proton
and the Coulomb force provides the necessary
centripetal force to keep it moving in circular orbit.
From the point of view of mechanics, a revolving
electron in an atom is a satisfactory picture. But
Maxwell’s equations of electromagnetism show that
any accelerated electron must continuously emit

electromagnetic radiation. The revolving electron
should, therefore, always emit radiation at all
temperatures. The wavelength of the radiation should
be related to the frequency of revolution. If the
radiation is continuously emitted, the energy is spent
and the radius of the circle should gradually decrease
and the electron should finally fall into the proton.
Also, the frequency of revolution changes continuously
as the energy is spent, and so, the electron should emit
radiation of continuously varying wavelength during
the period of its motion.

The actual observations are quite different. At
room temperature or below, hydrogen is very stable;
it neither emits radiation nor does the electron collapse
into the proton. When extra energy is supplied through
heat or electric discharge, radiation is emitted, but the
wavelengths are sharply defined as given by equation
(43.1). These sharply defined wavelengths may be
taken as the fingerprints of the element (hydrogen).
Be it Calcutta, Delhi, Madras, Hyderabad, New York,
London or Canberra, sun or upper atmosphere,
hydrogen always emits only these fixed wavelengths.
Such observations could not be explained by classical
concepts and something new was about to take birth.

43.4 BOHR’S MODEL

In 1913, Niels Bohr, a great name in physics,
suggested that the puzzle of hydrogen spectra may be
solved if we make the following assumptions.

Bohr’s Postulates

(a) The electron revolves round the nucleus in
circular orbits.

(b) The orbit of the electron around the nucleus
can take only some special values of radius. In these
orbits of special radii, the electron does not radiate
energy as expected from Maxwell’s laws. These orbits
are called stationary orbits.

(c) The energy of the atom has a definite value in
a given stationary orbit. The electron can jump from
one stationary orbit to other. If it jumps from an orbit
of higher energy E2 to an orbit of lower energy E1, it
emits a photon of radiation. The energy of the photon
is E2 – E1. The wavelength of the emitted radiation is
given by the Einstein–Planck equation

        E2 − E1 = hν = 
hc
λ

 ⋅

The electron can also absorb energy from some source
and jump from a lower energy orbit to a higher energy
orbit.

(d) In stationary orbits, the angular momentum l
of the electron about the nucleus is an integral
multiple of the Planck constant h divided by 2π,
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          l = n 
h
2π

 ⋅

This last assumption is called Bohr’s quantization
rule and the assumptions (a) to (d) are known as Bohr’s
postulates.

Energy of a Hydrogen Atom

Let us now use the above postulates to find the
allowed energies of the atom for different allowed
orbits of the electron. The theory developed is
applicable to hydrogen atoms, and ions having just one
electron. Thus, it is valid for He+, Li++, Be+++, etc. These
ions are often called hydrogen-like ions. Let us assume
that the nucleus has a positive charge Ze (i.e., there
are Z protons in it) and an electron moves with a
constant speed v along a circle of radius r with the
centre at the nucleus. The force acting on the electron
is that due to Coulomb attraction and is equal to

            F = 
Ze 2

4πε0 r 2
 ⋅

The acceleration of the electron is towards the
centre and has a magnitude v

2/r. If m is the mass of
the electron, from Newton’s law,

          
Ze 2

4πε0 r 2
 = 

mv 2

r

or, r = 
Ze 2

4πε0 mv 2
 ⋅ … (i)

Also, from Bohr’s quantization rule, the angular
momentum is

            mvr = n 
h
2π

… (ii)

where n is a positive integer.
Eliminating r from (i) and (ii), we get

v = 
Ze 2

2ε0 hn
 ⋅ … (43.2)

Substituting this in (ii),

           r = 
ε0 h 2 n 2

πmZe 2
 ⋅ … (43.3)

We see that the allowed radii are proportional to
n

2. For each value of n, we have an allowed orbit. For
n = 1, we have the first orbit (smallest radius), for
n = 2, we have the second orbit and so on.

From equation (43.2), the kinetic energy of the
electron in the nth orbit is

        K = 
1
2

 mv 2 = 
mZ 2e 4

8ε0
 2 h 2 n 2

 ⋅ … (43.4)

The potential energy of the atom is

       V = − 
Ze 2

4πε0 r
 = − 

mZ 2e 4

4ε0
 2 h 2n 2

 ⋅ … (43.5)

We have taken the potential energy to be zero
when the nucleus and the electron are widely
separated.

The total energy of the atom is
             E = K + V

= − 
mZ 2e 4

8ε0
 2
h 2n 2

 ⋅ … (43.6)

Equations (43.2) through (43.6) give various
parameters of the atom when the electron is in the
nth orbit. The atom is also said to be in the nth energy
state in this case. In deriving the expression for the
total energy E, we have considered the kinetic energy
of the electron and the potential energy of the
electron–nucleus pair. It is assumed that the
acceleration of the nucleus is negligible on account of
its large mass.

Radii of different orbits

From equation (43.3), the radius of the smallest
circle allowed to the electron is (n = 1)

          r1 = 
ε0 h 2

πmZe 2
 ⋅

For hydrogen, Z = 1 and putting the values of other
constants we get r1 = 53 picometre (1 pm = 10 − 12 m) or
0.053 nm. This length is called the Bohr radius and is
a convenient unit for measuring lengths in atomic
physics. It is generally denoted by the symbol a0.

The second allowed radius is 4a0, third is 9a0 and
so on. In general, the radius of the nth orbit is

         rn = n 2a0.

For a hydrogen-like ion with Z protons in the
nucleus,

rn = 
n 2a0

Z
 ⋅ … (43.7)

Ground and excited states

From equation (43.6), the total energy of the atom
in the state n = 1 is

E1 = − 
mZ 2e 4

8ε0
 2 h 2

 ⋅

For hydrogen atom, Z = 1 and putting the values
of the constants, E1 = – 13.6 eV. This is the energy
when the electron revolves in the smallest allowed
orbit r = a0, i.e., the one with radius 0.053 nm. We also
see from equation (43.6) that the energy of the atom

in the nth energy state is proportional to 1

n 
2 ⋅ Thus,
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         En = 
E1

n 2
 = − 

13.6 eV
n 2

 ⋅ … (43.8)

The energy in the state n = 2 is
E2 = E1 /4 = –3.4 eV. In the state n = 3, it is
E1 /9 = –1.5 eV, etc. The lowest energy corresponds to
the smallest circle. Note that the energy is negative
and hence a larger magnitude means lower energy.
The zero of energy corresponds to the state where the
electron and the nucleus are widely separated. Figure
(43.4) shows schematically the allowed orbits together
with the energies of the atom. It also displays the
allowed energies separately.

The state of an atom with the lowest energy is
called its ground state. The states with  higher
energies are called excited states. Thus, the energy of
a hydrogen atom in the ground state is –13.6 eV and
in the first excited state –3.4 eV.

Hydrogen Spectra

We can now explain why hydrogen gas kept in a
flask at room temperature  does not emit radiation.
This is because almost all the atoms are in the ground
state and there are no orbits of lower energy to which
an electron can jump. Hence, the atoms cannot emit
any radiation. When energy is given in the form of
heat or by electric discharge or by some other means,
some of the electrons jump to the higher energy orbits
n = 2, n = 3, etc. These electrons then jump back to
lower energy orbits. The atoms radiate energy in the
process. This explains why the atoms radiate only

when they are heated or given energy in some other
form.

If an electron makes a jump from the mth orbit to
the nth orbit (m > n), the energy of the atom changes
from Em  to  En. This extra energy Em − En is emitted
as a photon of electromagnetic radiation. The
corresponding wavelength is given by

       
1
λ

 = 
Em − En

hc
 

= 
mZ 2e 4

8ε0
 2 h 3c

 


1
n 2

 − 
1

m 2




 

          = RZ 2 


1
n 2

 − 
1

m 2




… (43.9)

where R = me 
4

8ε0

 2
 h 

3
c
 is called the Rydberg constant.

Putting the values of different constants, the Rydberg
constant R comes out to be 1.0973 × 10 7 m − 1 and
equation (43.9) is in excellent agreement with the
experimental formula (43.1). In terms of the Rydberg
constant, the energy of the atom in the nth state is

E = − RhcZ 
2

n 
2  ⋅ Quite often, the energy of the atom is

mentioned in unit of rydberg. An energy of 1 rydberg
means –13.6 eV. It is useful to remember that
Rhc = 13.6 eV.

Example 43.1

   Calculate the energy of a He + ion in its first excited state.

Solution :

The energy is En = 
− RhcZ 

2

n 
2  = − 

(13.6 eV)Z 
2

n 
2

For a He + ion, Z = 2 and for the first excited state, n
= 2 so that the energy of He + ion in the first excited
state is –13.6 eV.

Example 43.2

   Calculate the wavelength of radiation emitted when He +

makes a transition from the state n = 3 to the state n = 2.

Solution :

The wavelength λ is given by

       
1
λ

 = RZ 2 


1
n 2 − 

1
m 2





      = 4R




1
4

 − 
1
9




 = 

5
9

 R

or,   λ = 
9

5R
 = 

9

5 × 1.09737 × 10 7 m − 1
 = 164.0 nm.
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Series structure

If a hydrogen atom makes transition from the state
n = 2 to the state n = 1, the wavelength of the emitted
radiation is given by

      
1
λ

 = R 

1 − 

1
4




  or,  λ = 121.6 nm.

If it makes transition from the state n = ∞ to the
state n = 1, the wavelength emitted is given by

      
1
λ

 = R(1 − 0)  or,  λ = 91.2 nm.

Thus, all the transitions ending at n = 1 correspond
to wavelengths grouped between 121.6 nm and
91.2 nm. These lines constitute the Lyman series.

Similarly, transitions from higher states to n = 2
lead to emission of radiation with wavelengths
between 656.3 nm and 365.0 nm. These wavelengths
fall in the visible region and constitute the Balmer
series. The transitions from higher states to n = 3 give
rise to Paschen series with wavelengths between
1875 nm and 822 nm, and similarly for other series.
This explains the grouping of wavelengths in different
series as shown in figure (43.3).

Ionization potential

What happens if we supply more than 13.6 eV to
a hydrogen atom in its ground state ? The total energy
is then positive. The equations deduced above are not
applicable in this case. In fact, a total energy of zero
corresponds to electron and nucleus separated by an
infinite distance. In this case, the electron is not bound
to the nucleus and is free to move anywhere. The atom
is said to be ionized, i.e., its electron has been
detatched from the nucleus. Positive energy means
that the atom is ionized and the electron is moving
independently with some kinetic energy.

The minimum energy needed to ionize an atom is
called ionization energy. The potential difference
through which an electron should be accelerated to
acquire this much energy is called ionization potential.
Thus, ionization energy of hydrogen atom in ground
state is 13.6 eV and ionization potential is 13.6 V. 

Binding energy

Binding energy of a system is defined as the energy
released when its constituents are brought from
infinity to form the system. It may also be defined as
the energy needed to separate its constituents to large
distances. If an electron and a proton are initially at
rest and brought from large distances to form a
hydrogen atom, 13.6 eV energy will be released. The
binding energy of a hydrogen atom is, therefore,
13.6 eV, same as its ionization energy.

Excitation potential 

The energy needed to take the atom from its
ground state to an excited state is called the excitation
energy of that excited state. The hydrogen atom in
ground state needs 10.2 eV to go into the first excited
state. Thus, the excitation energy of hydrogen atom in
the first excited state is 10.2 eV. The potential through
which an electron should  be accelerated to acquire
this much of energy is called the excitation potential.
Thus, the excitation potential of hydrogen atom in first
excited state is 10.2 V.

Example 43.3

   The excitation energy of a hydrogen-like ion in its first
excited state is 40.8 eV. Find the energy needed to remove
the electron from the ion.

Solution :

The excitation energy in the first excited state is

         E = RhcZ 2 


1
1 2 − 

1
2 2





= (13.6 eV) × Z 2 × 
3
4

 ⋅

Equating this to 40.8 eV, we get Z = 2. So, the ion in

question is He +. The energy of the ion in the ground
state is

E = − 
RhcZ 2

1 2  = − 4 × (13.6 eV)

          = − 54.4 eV.

Thus 54.4 eV is required to remove the electron from
the ion.

43.5 LIMITATIONS OF BOHR’S MODEL

Bohr’s model was a great success at a time when
the physicists were struggling hard to understand the
discrete wavelengths in hydrogen spectra. Even today
the model is very popular among beginners and
nonphysicists, who can ‘visualise’ the inside of the
atom as electrons going in circles around the nucleus.
However, the model did not go too far. It could not be
extended for atoms or ions having more than one
electron. Even helium spectrum was beyond the scope
of the Bohr’s model. As technology improved and the
wavelengths were measured with greater accuracy,
deviations were observed even in the case of hydrogen
spectral lines. Thus, at least seven components having
slightly different wavelengths are revealed in what
was previously known as the 656.3 nm line. On the
theoretical side also, the model is not quite consistent
with the physics in totality. Bohr’s postulates look more
like a patch on Maxwell’s electromagnetism. Maxwell’s
theory is not replaced or refuted but it is arbitrarily
assumed that in certain orbits, electrons get the licence
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to disobey the laws of electromagnetism and are
allowed not to radiate energy.

43.6 THE WAVE FUNCTION OF AN ELECTRON 

Physicists now have a mathematically and logically
sound theory in the name of quantum mechanics which
describes the spectra in a much better way. A very
brief introduction to this theory is given below.

We have seen in previous chapters that to
understand the behaviour of light, we must use the

wave picture (the electric field E
→

) as well as the particle
picture (the photon). The energy of a particular ‘photon’

is related to the ‘wavelength’ of the E
→

 wave. Light going
in x-direction is represented by the wave function
        E(x, t) = E0 sin(kx − ωt).

In general, if light can go in any direction, the
wave function is

         E
→

(r
→
,t) = E

→
0 sin(k

→
⋅r
→
 − ωt). … (i)

If |E
→

 |2 at a certain point r
→
 is large, the intensity

of light is high and we say that the ‘density of photons’
at that position is high. Suppose the intensity is so
low that we expect only a single photon in a large
volume. Even this weak light is represented by a wave

given by (i) with |E
→

0|
2 having a small value. Where

is this photon at time t ? We can’t assign a unique

position to the photon because E
→

 is spread over a large
space, and wherever E

→
 ≠ 0 there is light. But if we put

an instrument to detect the photon, we shall not detect
a part of photon here and a part there. The whole
photon is detected at just one point. The probability of

finding the photon is more where |E
→

(r
→
, t)|2 is large.

To know something about the ‘photon’, we have to get

the wave function E
→

(r
→
, t) of light and correlate the wave

properties with the particle properties. The wave

function E
→

(r
→
, t) satisfies Maxwell’s equations. Similar

is the case with electrons. An electron also has a wave
character as well as a particle character. Its wave

function is ψ(r
→
, t) which may be obtained by solving

Schrodinger’s wave equation. The particle properties of
the electron must be understood through this wave

function ψ(r
→
, t) . The wave function varies continuously

in space and may be extended over a large part of
space at a given instant. This does not mean that the
electron is spread over that large part. If we put an
instrument to detect the electron at a point, we shall
either detect a whole electron or none. But where will
this electron be found ? The answer is again hidden in
ψ(r

→
, t) . Wherever ψ ≠ 0, there is a chance to find the

electron. Greater the value of |ψ(r
→
, t)| 2, greater is the

probability of detecting the electron there. Not only the
information about the electron’s position but
information about all the properties including energy

is also contained in the wave function ψ(r
→
, t) .

43.7 QUANTUM MECHANICS OF THE
    HYDROGEN ATOM

The wave function ψ(r
→
, t) of the electron and the

possible energies E of a hydrogen atom or a hydrogen-like
ion are obtained from the Schrodinger’s equation

  
−h 2

8π 2m
 




∂ 2ψ
∂x 2

 + 
∂ 2ψ
∂y 2

 + 
∂ 2ψ
∂z 2




 − 

Ze 2ψ
4πε0 r

 = Eψ. … (43.10)

Here (x,y,z) refers to a point with the nucleus as
the origin and r is the distance of this point from the
nucleus. E refers to energy. The constant Z is the
number of protons in the nucleus. For hydrogen, we
have to put Z = 1. There are infinite number of

functions ψ(r
→
) which satisfy equation (43.10). These

functions, which are solutions of equation (43.10), may
be characterised in terms of three parameters n, l and
ml. With each solution ψnlml

, there is associated a

unique value of the energy E of the atom or the ion.
The energy E corresponding to the wave function
ψnlml

 depends only on n and may be written as

           En = − 
mZ 2e 4

8ε0
 2
h 2n 2

 ⋅ … (43.11)

These energies happen to be identical with the
allowed energies calculated in Bohr’s model. This
explains the success of Bohr’s model in quantitatively
obtaining the wavelengths in a hydrogen spectrum. For
each n there are n values of l, namely l = 0, 1, 2, …,
n − 1 and for each l there are 2l + 1 values of ml
namely ml = – l, – l + 1, – l + 2, …, l – 1, l. The
parameter n is called the principal quantum number,
l the orbital angular momentum quantum number and
ml the magnetic quantum number.

The lowest possible energy for the hydrogen atom
is – Rhc = – 13.6 eV and the wave function of the
electron in this ‘ground state’ is

      ψ(r
→
) = ψ100 = √Z 3

πa0
 2  e − r/a0. … (43.12)

In Bohr’s model, we say that the electron moves
in a circular orbit of radius a0 = 0.053 nm in the ground
state. In quantum mechanics, the very idea of orbit is
invalid. In ground state, the wave function of the
electron is given by equation (43.12). At any instant
this wave function is spread over large distances in
space, and wherever ψ ≠ 0, the presence of electron
may be felt. However, if the electron is detected by
some experiment, it will be detected at one single
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position only. The probability of finding the electron

in a small volume dV is |ψ(r
→
) | 2 dV. One can calculate

the probability P(r)dr of finding the electron at a
distance between r and r + dr from the nucleus. The
function P(r) is called linear probability density. In
ground state, given by equation (43.12), P(r) comes out
to be

            P(r) = 
4
a0

 3 r 2 e − 2r/a0.

A plot of P(r) versus r is shown in figure (43.5a).
Note that P(r) is maximum at r = a0. This means that
the electron is more likely to be found near r = a0 than
at any other distance.

It may be satisfying that at least the probability
of finding the electron is maximum at the same radial
distance from the nucleus where the Bohr’s model
assigns the electron to be. However, even this cannot
be stretched too far. The linear probability density P(r)
for n = 2, l = 0, m = 0 is plotted in figure (43.5b) which
has two maxima, one near r = a0 and the other near
r = 5.4 a0. In Bohr’s model, all n = 2 electrons should
be at r = 4 a0.

43.8 NOMENCLATURE IN ATOMIC PHYSICS

We have neglected the spin of the electron in the
discussion so far. A very interesting property of
electrons is that each electron has a permanent
angular momentum whose component along any given

direction is h
4π

 or − h
4π

 ⋅ This angular momentum is

different from the angular momentum resulting from
the motion of the electron and is known as the spin
angular momentum of the electron. The complete wave
function of an electron also has a part depending on
the state of the spin. The spin part of the wave function
is characterized by a spin quantum number ms which
can take values ms = + 1/2 or – 1/2. A wave function
is thus characterised by n, l, ml and ms. A particular
wave function described by particular values of n, l,
ml, ms corresponds to a quantum state. For n = 1, we
have l = 0 and ml = 0. But ms can be + 1/2 or − 1/2.
So there are two quantum states corresponding to
n = 1. For n = 2 there are 8 quantum states, for n = 3

there are 18 quantum states and so on. In general,
there are 2n 2 quantum states corresponding to a
particular n. The quantum states corresponding to a
particular n are together called a major shell. The
major shell corresponding to n = 1 is called K shell,
corresponding to n = 2 is called L shell, corresponding
to n = 3 is called M shell, etc.

A very interesting and important law of nature is
that there cannot be more than one electron in any
quantum state.  This is known as Pauli exclusion
principle. Thus, a K shell can contain a maximum of
2 electrons, an L shell can contain a maximum of 8
electrons, an M shell can contain a maximum of 18
electrons and so on.

It is customary to use the symbols s, p, d, f, etc.,
to denote the values of the orbital angular momentum
quantum number l. These symbols correspond to
l = 0, 1, 2, 3, etc., respectively. The quantum states
corresponding to a given principal quantum number n
and a given orbital angular momentum quantum
number l form what we call a subshell. Thus n = 1,
l = 0 is called 1s subshell. Similarly n = 2, l = 0 is
called 2s subshell, n = 2, l = 1 is called 2p subshell and
so on. For atoms having more than one electron also,
the concept of n, l, ml ,  ms is valid. The energy then
depends on n as well as on l. Thus 1s, 2s, 2p, etc., also
designate the energy levels. For an atom having many
electrons, the quantum states are, in general,
gradually filled from lower energy to higher energy to
form the ground state of the atom.

We have seen that electrons obey Pauli exclusion
principle. Apart from electrons, there are other
particles which obey this principle. Protons and
neutrons also obey this principle. Any particle that
obeys Pauli exclusion principle, is called a fermion.
Electrons, protons, neutrons are all fermions.

43.9 LASER

When an atom jumps from a higher energy state
to a lower energy state, it emits a photon of light. In
an ordinary source of light, atoms emit photons
independently of each other. As a result, different
photons have different phases and the light as a whole
becomes incoherent. Also, the energy of transition
differs slightly from photon to photon so that the
wavelength is not uniquely defined. There is a spread
∆λ in the wavelength λ. The direction of light is also
different for different transitions so that we do not get
a strictly parallel beam of light.

LASER (Light Amplification by Stimulated
Emission of Radiation) is a process by which we get a
light beam which is coherent, highly monochromatic
and almost perfectly parallel. The word ‘laser’ is also
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used for the light beam obtained by this process. All
the photons in the light beam, emitted by different
atoms at different instants, are in phase. The spread
∆λ in wavelength is very small, of the order of 10 – 6 nm
which is about 1000 times smaller than the spread in
the usual 86Kr light. A beam of laser can go to the
moon and return to the earth without much loss of
intensity. This shows that laser may be obtained as
an almost perfectly parallel beam.

To understand the process involved in laser, we
have to first discuss stimulated emission.

Stimulated Emission

Consider an atom which has an allowed state at
energy E1 and another allowed state at a higher energy
E2. Suppose the atom is in the lower energy state
E1. If a photon of light having energy E2 − E1 is incident
on this atom, the atom may absorb the photon and
jump to the higher energy state E2 (figure 43.6a). This
process is called stimulated absorption of light photon.
The incident photon has stimulated the atom to absorb
the energy.

Now, suppose the atom is in the higher energy
state E2. If we just leave the atom there, it will
eventually come down to the lower state by  emitting
a photon having energy E2 − E1 (figure 43.6b). This
process is called spontaneous emission. Typically, an
atom stays for about 10 ns in an excited state. The
average time for which an atom stays in an excited
state is called the lifetime of that state. There are
atoms which have certain excited states having a
lifetime of the order of a millisecond, i.e., about 10 5

times longer than the usual lifetimes. Such states are
called metastable states.

Finally, suppose the atom is in the higher energy
state E2 and a photon having energy (E2 − E1) is
incident on it (figure 43-6c). The incident photon
interacts with the atom and may cause the atom to
come down to the lower energy state. A fresh photon
is emitted in the process. This process is different from
spontaneous emission in which the atom jumps to the
lower energy state on its own. In the present case, the
incident photon has ‘stimulated’ the atom to make
the jump.

When an atom emits a photon due to its interaction
with a photon incident on it, the process is called
stimulated emission. The emitted photon has exactly the
same energy, phase and direction as the incident photon.

Basic Process of Laser

The basic scheme to get light amplification by
stimulated emission is as follows.

A system is chosen which has a metastable state
having an energy E2 (figure 43.7). There is another
allowed energy E1 which is less than E2. The system
may be a gas or a liquid in a cylindrical tube or a solid
in the shape of a cylindrical rod. Suppose, by some
technique, the number of atoms in the metastable
state E2 is made much larger than that in E1. Suppose
a photon of light of energy E2 − E1 is incident on one
of the atoms in the metastable state. This atom drops
to the state E1 emitting a photon in the same phase,
energy and direction as the first one. These two
photons interact with two more atoms in the state
E2 and so on. So the number of photons keeps on
increasing. All these photons have the same phase, the
same energy and the same direction. So the
amplification of light is achieved.

In this scheme, two arrangements are necessary.
Firstly, the metastable state with energy E2 must all
the time have larger number of atoms than the number
in the lower energy state. If the lower energy state has
a larger number of atoms, these atoms will absorb a
sizable number of photons to go up in energy. This
way the stimulated emission will be weakened and the
amplification will not be possible. When a higher
energy state has more number of atoms than a lower
energy state has, we say that population inversion has
taken place. This is because, normally, the population
in the lower energy state is higher. To sustain laser
action, we need an arrangement which ensures
population inversion between the states E1 and E2. The
metastable state should continue to get atoms and the
atoms should be continuously removed from the lower
energy state E1. This process is called pumping.

Secondly, the photons emitted due to stimulating
action should stimulate other atoms to emit more
photons. This means, the stimulated photons should
spend enough time in the system, interacting with the
atoms. To achieve this, two mirrors are fixed at the
ends of the cylindrical region containing the lasing
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material. The mirrors reflect the photons back and
forth to keep them inside the region for a long time.
One of the mirrors is made slightly transmitting so
that a small fraction, say 1%, of the light comes out
of the region. This is the laser which becomes available
to us for use.

Any photon travelling in a direction not parallel to
the axis of the cylindrical region is thrown out from
the sides after few reflections. The photons moving
parallel to the axis remain in the region for long time
and hence only the light along the axis is amplified.
This explains why the laser light is highly directional.

Let us now discuss a He–Ne laser which is most
widely used in classroom demonstrations.

He–Ne Laser

A schematic design of the system is shown in figure
(43.8). A mixture of helium (about 90%) and neon
(about 10%) at low pressures is taken in a cylindrical
glass tube. Two parallel mirrors M1  and  M2 are fixed
at the ends. One of the two mirrors, M2 in the figure,
is slightly transmitting and laser light comes out of it.
The tube contains two electrodes which are connected
to a high-voltage power supply so that a large electric
field is established in the tube.

The relevant energy levels of helium and neon are
shown in figure (43.9). Lasing action takes place
between the state at energy E2 = 20.66 eV and the state
at energy E1 = 18.70 eV of neon atoms. Helium has a
metastable state at E3 = 20.61 eV which happens to be
close to the level E2 of neon. Helium is used to pump
the neon atoms to the state E2 from where they may
come down to the state E1 by stimulated emission. The
energy difference is

          E2 − E1 = 1.96 eV

so that the wavelength of He–Ne laser is

          λ = 
hc

E2 − E1
 = 632.8 nm.

Working

When the power supply is switched on and the
electric field is established, some of the atoms of the
mixture get ionized. The electrons freed by these atoms
are accelerated by the high electric field. These
electrons collide with helium atoms to take them to
the metastable state at energy E3. Such an excited
atom collides with a neon atom and transfers the extra
energy to it. As a result, the helium atom comes back
to its ground state and the neon atom is excited to the
state at energy E2. This process takes place
continuously so that the neon atoms are continuously
pumped to the state at energy E2 to keep the
population of this state large.

Stimulated emission takes place between the
states at energies E2  and  E1. As the state at energy
E1 has a small lifetime, of the order of 10 ns, these
atoms readily jump to the still lower states. This way
the population of the state at energy E1 is always very
small. Thus, population inversion between E2 and E1

is achieved and maintained.
Laser light comes out of the partially transmitting

mirror.
Note that the higher energy state E2 of neon is not

itself metastable. But the metastable state of helium
accumulates atoms at higher energy which take neon
atoms to the level E2 by means of collisions.

Uses of Laser

Laser was invented in 1960. Since then, laser
technology has greatly advanced and now lasers have
widespread use in industry, scientific research,
surgery, etc.

Because of the near-perfect parallel and mono-
chromatic character, a laser beam can be focused by a
converging lens to a very small spot. This results in very
high intensity over that tiny spot. It can, therefore, be
used for very accurate microsurgery where a very small
area is to be treated. Lasers in infrared region are used
to burn away cervical tumours. These lasers are also
used for cutting tissues. Lasers are used to spot-weld
detached retina with great accuracy. Because of the high
intensity, lasers are used to drill sharp holes in metals
and diamond. In garment industry, lasers are used to
cut many layers (say 50 layers at a time) of cloth without
frayed edges.

Lasers are widely used to send telephone signals
over long distances through optical fibres. They are
also used in nuclear fusion research which is likely to
be the ultimate source of energy for us.

Figure 43.8

Figure 43.9
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Because of its directional properties, lasers are
used in surveying. Another use of laser is to align tools
and equipment in industry and scientific research.
Laser light is sent to the moon from where it is
reflected back to the earth without much loss of
intensity. Thus, points on the moon’s surface may be
monitored from the earth using lasers. Laser has
numerous military applications.

An interesting application of lasers is to produce
holograms, which record a 3 D image of an object. When
the hologram is viewed, again with a laser, the same 3 D
perception is achieved as it is with the actual object.

In compact disc (CD) audio systems, a laser beam
is used in place of the phonographic needle. Sound is
recorded on the compact disc using digital electronic
techniques. This results in great compression of the

sound data and a very large number of songs, speeches
etc. can be stored on a CD which is much smaller than
a traditional record. Also, the playback of the music is
more ‘true’ than traditional systems and almost
without any distortion. Using lasers, video images can
also be stored on discs which can be played back using
a laser disc player and a TV. Since the combination of
digital electronic techniques and CD allows us to store
a large amount of data in a small volume, books of
large volume like dictionaries and encyclopedias, are
now available on CDs. This technique is now being
used in computers for data retrieval and storage.
Lasers are used in laser printers. The present book
was also prepared with the help of a laser printer.
Incredible new applications are being created everyday
using lasers.

Worked Out Examples

   First Bohr radius a0 = 53 pm, energy of hydrogen atom
in ground state = − 13.6 eV, Planck constant

h = 4.14 × 10 − 15 eVs, speed of light = 3 × 10 8 m s −1.
                                                                                                                                                                                  
 

 1. Find the radius of Li++ ions in its ground state assuming
Bohr’s model to be valid.

Solution : For hydrogen-like ions, the radius of the nth
orbit is

            an = 
n 2a0

Z
 ⋅

For Li++, Z = 3 and in ground state n = 1. The radius is

          a1 = 
53 pm

3
 ≈ 18 pm.

 2. A particular hydrogen-like ion emits radiation of
frequency 2.467 × 10 15 Hz when it makes transition from
n = 2 to n = 1. What will be the frequency of the radiation
emitted in a transition from n = 3 to n = 1 ?

Solution : The frequency of radiation emitted is given by

             ν = 
c
λ

 = K 


1
n1

 2 − 
1
n2

 2



 ⋅

Thus, 2.467 × 10 15 Hz = K 


1
1 2 − 

1
2 2





or,         K = 
4
3

 × 2.467 × 10 15 Hz.

The frequency of the radiation emitted in the transition
n = 3 to n = 1 is

         ν′ = K 


1
1 2 − 

1
3 2





           = 
8
9

 K = 
8
9

 × 
4
3

 × 2.467 × 10 15 Hz

= 2.92 × 10 15 Hz.

 3. Calculate the two highest wavelengths of the radiation
emitted when hydrogen atoms make transitions from
higher states to n = 2 states.

Solution : The highest wavelength corresponds to the
lowest energy of transition. This will be the case for the
transition n = 3 to n = 2. The second highest wavelength
corresponds to the transition n = 4 to n = 2.

The energy of the state n is En = 
E1

n2  ⋅

Thus,     E2 = − 
13.6 eV

4
 = −3.4 eV

E3 = − 
13.6 eV

9
 = −1.5 eV

and      E4 = − 
13.6 eV

16
 = −0.85 eV.

The highest wavelength is λ1 = 
hc
∆E

      = 
1242 eVnm

(3.4 eV − 1.5 eV)
 = 654 nm.

The second highest wavelength is

      λ2 = 
1242 eVnm

(3.4 eV − 0.85 eV)
 = 487 nm.

 4. What is the wavelength of the radiation emitted when
the electron in a hydrogen atom jumps from n = ∞ to
n = 2 ?

Solution : The energy of n = 2 state is

         E2 = 
−13.6 eV

4
 = −3.4 eV.

The energy of n = ∞ state is zero.
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The wavelength emitted in the given transition is

        λ = 
hc
∆E

= 
1242 eV nm

3.4 eV
 = 365 nm.

 5. (a) Find the wavelength of the radiation required to excite
the electron in Li++ from the first to the third Bohr orbit.
(b) How many spectral lines are observed in the emission
spectrum of the above excited system ?

Solution : (a) The energy in the first orbit = E1 = Z 2E0

where E0 = −13.6 eV is the energy of a hydrogen atom
in ground state. Thus for Li++,

          E1 = 9E0 = 9 × (−13.6 eV).

The energy in the third orbit is

          E3 = 
E1

n 2 = 
E1

9
 = −13.6 eV.

Thus,       E3 − E1 = 8 × 13.6 eV = 108.8 eV.  

The wavelength of radiation required to excite Li++ from
the first orbit to the third orbit is given by

hc
λ

 = E3 − E1

or, λ = hc
E3 − E1

            = 
1242 eV nm

108.8 eV
 ≈ 11.4 nm.

(b) The spectral lines emitted are due to the transitions
n = 3 → n = 2,  n = 3 → n = 1  and  n = 2 → n = 1. Thus,
there will be three spectral lines in the spectrum.

 6. Find the wavelengths present in the radiation emitted
when hydrogen atoms excited to n = 3 states return to
their ground states.

Solution : A hydrogen atom may return directly to the
ground state or it may go to n = 2 and from there to the
ground state. Thus, wavelengths corresponding to
n = 3  →  n = 1,  n = 3  →  n = 2  and  n = 2  →  n = 1 are
present in the radiation.
The energies in n = 1, 2 and 3 states are

         E1 = −13.6 eV

         E2 = − 
13.6

4
 eV = −3.4 eV

and E3 = − 
13.6

9
 eV = −1.5 eV.

The wavelength emitted in the transition n = 3 to the
ground state is

         λ = 
hc
∆E

= 
1242 eV nm

13.6 eV − 1.5 eV
 = 103 nm.

Similarly, the wavelength emitted in the transition
n = 3 to n = 2 is 654 nm and that emitted in the
transition n = 2 to n = 1 is 122 nm. The wavelengths
present in the radiation are, therefore, 103 nm, 122 nm
and 654 nm.

 7. How many different wavelengths may be observed in the
spectrum from a hydrogen sample if the atoms are excited
to states with principal quantum number n ?

Solution : From the nth state, the atom may go to
(n − 1)th state, … , 2nd state or 1st state. So there are
(n − 1) possible transitions starting from the nth state.
The atoms reaching (n − 1)th state may make (n − 2)
different transitions. Similarly for other lower states.
The total number of possible transitions is

         (n − 1) + (n − 2) + (n − 3) + … 2 + 1

         = 
n(n − 1)

2
 ⋅

 8. Monochromatic radiation of wavelength λ is incident on
a hydrogen sample in ground state. Hydrogen atoms
absorb a fraction of light and subsequently emit radiation
of six different wavelengths. Find the value of λ.

Solution : As the hydrogen atoms emit radiation of six
different wavelengths, some of them must have been
excited to n = 4. The energy in n = 4 state is

        E4 = 
E1

4 2 = − 
13.6 eV

16
 = − 0.85 eV.

The energy needed to take a hydrogen atom from its
ground state to n = 4 is

         13.6 eV − 0.85 eV = 12.75 eV.

The photons of the incident radiation should have
12.75 eV of energy. So

          
hc
λ

 = 12.75 eV

or, λ = hc
12.75 eV

= 
1242 eV nm

12.75 eV
 = 97.5 nm.

 9. The energy needed to detach the electron of a
hydrogen-like ion in ground state is 4 rydberg. (a) What
is the wavelength of the radiation emitted when the
electron jumps from the first excited state to the ground
state  ? (b) What is the radius of the first orbit for this
atom ?

Solution : (a) In energy units, 1 rydberg = 13.6 eV. The
energy needed to detach the electron is 4 × 13.6 eV. The
energy in the ground state is, therefore,
E1 = − 4 × 13.6 eV. The energy of the first excited state

(n = 2) is E2 = 
E1

4
 = − 13.6 eV. The energy difference is

E2 – E1 = 3 × 13.6 eV = 40.8 eV. The wavelength of the
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radiation emitted is

           λ = 
hc
∆E

= 
1242 eV nm

40.8 eV
 = 30.4 nm.

(b) The energy of a hydrogen-like ion in ground state is
E = Z 2E0 where Z = atomic number and E0 = – 13.6 eV.

Thus, Z = 2. The radius of the first orbit is 
a0

Z
 where

a0 = 53 pm. Thus,

           r = 
53 pm

2
 = 26.5 pm.

10. A hydrogen sample is prepared in a particular excited state
A. Photons of energy 2.55 eV get absorbed into the sample
to take some of the electrons to a further excited state B.
Find the quantum numbers of the states A and B.

Solution : The allowed energies of hydrogen atoms are

           E1 = −13.6 eV

E2 = −3.4 eV

E3 = −1.5 eV

E4 = −0.85 eV

E5 = −0.54 eV.

We see that a difference of 2.55 eV can only be absorbed
in transition n = 2  to  n = 4. So the state A has quantum
number 2 and the state B has quantum number 4.

11. (a) Find the maximum wavelength λ0 of light which can
ionize a hydrogen atom in its ground state. (b) Light of
wavelength λ0 is incident on a hydrogen atom which is
in its first excited state. Find the kinetic energy of the
electron coming out.

Solution : (a) To ionize a hydrogen atom in ground state,
a minimum of 13.6 eV energy should be given to it. A
photon of light should have this much of energy in order
to ionize a hydrogen atom. Thus,

       
hc
λ0

 = 13.6 eV

or, λ0 = 
1242 eV nm

13.6 eV
 = 91.3 nm.

(b) The energy of the hydrogen atom in its first excited

state is − 13.6 eV
4

 = − 3.4 eV. Thus, 3.4 eV of energy is

needed to take the electron out of the atom. The energy
of a photon of the light of wavelength λ0 is 13.6 eV. Thus,
the electron coming out will have a kinetic energy
13.6 eV – 3.4 eV = 10.2 eV.

12. Derive an expression for the magnetic field at the site of
the nucleus in a hydrogen atom due to the circular
motion of the electron. Assume that the atom is in its
ground state and give the answer in terms of
fundamental constants.

Solution : We have

         
mv 2

r
 = 

e 2

4πε0 r 2 

   or, v 2r = 
e 2

4πε0 m
 ⋅ … (i)

From Bohr’s quantization rule, in ground state,

              vr = 
h

2πm
 ⋅ … (ii)

From (i) and (ii),

               v = 
e 2

2ε0 h
… (iii)

   and r = 
ε0 h 2

πme 2 ⋅ … (iv)

As the electron moves along a circle, it crosses any point

on the circle v
2πr

 times per unit time. The charge crossing

per unit time, that is the current, is i = ev
2πr

 ⋅ The magnetic

field at the centre due to this circular current is

B = 
µ0 i
2r

 = 
µ0 ev

4πr 2 ⋅

From (iii) and (iv),

       B = 
µ0 e

4π
 

e 2

2ε0 h
 × 

π 2m 2e 4

ε0
 2 h 4

= 
µ0 e 7πm 2

8ε0
 3 h 5  ⋅

13. A lithium atom has three electrons. Assume the following
simple picture of the atom. Two electrons move close to
the nucleus making up a spherical cloud around it and
the third moves outside this cloud in a circular orbit.
Bohr’s model can be used for the motion of this third
electron but n = 1 states are not available to it. Calculate
the ionization energy of lithium in ground state using
the above picture.

Solution : In this picture, the third electron moves in the
field of a total charge + 3e – 2e = + e. Thus, the energies
are the same as that of hydrogen atoms. The lowest
energy is

         E2 = 
E1

4
 = 

−13.6 eV
4

 = −3.4 eV.

Thus, the ionization energy of the atom in this picture
is 3.4 eV.

14. A particle known as  µ-meson, has a charge equal to that
of an electron and mass 208 times the mass of the
electron. It moves in a circular orbit around a nucleus
of charge +3 e. Take the mass of the nucleus to be
infinite. Assuming that the Bohr’s model is applicable to
this system, (a) derive an expression for the radius of the
nth Bohr orbit, (b) find the value of n for which the
radius of the orbit is approximately the same as that of
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the first Bohr orbit for a hydrogen atom and (c) find the
wavelength of the radiation emitted when the µ-meson
jumps from the third orbit to the first orbit.

Solution : (a) We have,

           
mv 2

r
 = 

Ze 2

4πε0 r 2 

   or, v 2r = 
Ze 2

4πε0m
 ⋅ … (i)

The quantization rule is vr = 
nh

2πm
 ⋅

The radius is r = 
(vr) 2

v 2r
 = 

n 2h 2

4π 2m 2
 
4πε0 m

Ze 2  

= 
n 2h 2ε0

Zπme 2 ⋅ … (ii)

For the given system, Z = 3 and m =  208 me .

Thus rµ = 
n 2h 2ε0

624πme e 2
 ⋅

(b) From (ii), the radius of the first Bohr orbit for the
hydrogen atom is

            rh = 
h 2ε0

πme e 2 ⋅

For rµ = rh,

n 2h 2ε0

624πme e 2 = 
h 2ε0

πme e 2 

or, n 2 = 624

or,           n ≈ 25.

(c) From (i), the kinetic energy of the atom is

 
mv 2

2
 = 

Ze 2

8πε0 r

and the potential energy is − 
Ze 2

4πε0 r
 ⋅

The total energy is En = − 
Ze 2

8πε0 r
 ⋅

Using (ii),

    En = − 
Z 2πme 4

8πε0
 2 n 2h 2

 = − 
9 × 208 me e 4

8ε0
 2 n 2h 2

= 
1872
n 2  




− 

me e 4

8ε0
 2 h 2




 ⋅ … (iii)

But 



− 

me e 
4

8ε0

 2
 h 2




 is the ground state energy of hydrogen

atom and hence is equal to –13.6 eV.

From (iii), En = − 
1872
n 2  × 13.6 eV = 

− 25459.2 eV
n 2  ⋅

Thus, E1 = − 25459.2 eV  and  E3 = 
E1

9
 = − 2828.8 eV. The

energy difference is E3 – E1 = 22630.4 eV.

The wavelength emitted is

          λ = hc
∆E

          = 
1242 eV nm
22630.4 eV

 = 55 pm.

15. Find the wavelengths in a hydrogen spectrum between
the range 500 nm to 700 nm.

Solution : The energy of a photon of wavelength 500 nm is

         
hc
λ

 = 1242 eV nm
500 nm

 = 2.44 eV.

The energy of a photon of wavelength 700 nm is 

        
hc
λ

 = 
1242 eV nm

700 nm
 = 1.77 eV.

The energy difference between the states involved in the
transition should, therefore, be between 1.77 eV and
2.44 eV.

Figure (43-W1) shows some of the energies of hydrogen
states. It is clear that only those transitions which end
at n = 2 may emit photons of energy between 1.77 eV
and 2.44 eV. Out of these only n = 3 →  n = 2 falls in
the proper range.  The energy of the photon emitted in
the transition n = 3 to n = 2 is ∆E = (3.4 – 1.5) eV
= 1.9 eV. The wavelength is

         λ = hc
∆E

        = 
1242 eV nm

1.9 eV
 = 654 nm.

16. A beam of ultraviolet radiation having wavelength
between 100 nm and 200 nm is incident on a sample of
atomic hydrogen gas. Assuming that the atoms are in
ground state, which wavelengths will have low intensity
in the transmitted beam ? If the energy of a photon is
equal to the difference between the energies of an excited
state and the ground state, it has large probability of
being absorbed by an atom in the ground state.

Solution : The energy of a photon corresponding to
λ = 100 nm is

         1242 eV nm
100 nm

 = 12.42 eV

and that corresponding to λ = 200 nm is 6.21 eV.

The energy needed to take the atom from the ground
state to the first excited state is

      E2 − E1 = 13.6 eV − 3.4 eV = 10.2 eV,

to the second excited state is

E3 − E1 = 13.6 eV − 1.5 eV = 12.1 eV,
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to the third excited state is

    E4 − E1 = 13.6 eV − 0.85 eV = 12.75 eV, etc.

Thus, 10.2 eV photons and 12.1 eV photons have large
probability of being absorbed from the given range
6.21 eV to 12.42 eV. The corresponding wavelengths are

        λ1 = 
1242 eV nm

10.2 eV
 = 122 nm

and λ2 = 
1242 eV nm

12.1 eV
 = 103 nm.

These wavelengths will have low intensity in the
transmitted beam.

17. A neutron moving with speed v makes a head-on collision
with a hydrogen atom in ground state kept at rest. Find
the minimum kinetic energy of the neutron for which
inelastic (completely or partially) collision may take
place. The mass of neutron ≈ mass of hydrogen

= 1.67 × 10 − 27 kg.

Solution : Suppose the neutron and the hydrogen atom
move at speeds v1 and v2 after the collision. The collision
will be inelastic if a part of the kinetic energy is used
to excite the atom. Suppose an energy ∆E is used in this
way. Using conservation of linear momentum and
energy,

              mv = mv1 + mv2 … (i)

   and 
1
2

 mv 2 = 
1
2

 mv1
 2 + 

1
2

 mv2
 2 + ∆E. … (ii)

   From (i), v 2 = v1
 2 + v2

 2 + 2 v1v2.

   From (ii), v 2 = v1
 2 + v2

 2 + 
2∆E
m

 ⋅

   Thus,     2 v1v2 = 
2∆E
m

 ⋅

   Hence, (v1 − v2) 
2 = (v1 + v2) 

2 − 4 v1v2 = v 2 − 
4∆E
m

 ⋅

As v1 − v2 must be real, 

          v 2 − 
4∆E
m

 ≥ 0

or,         
1
2

 mv 2 > 2∆E.

The minimum energy that can be absorbed by the
hydrogen atom in ground state to go in an excited state

is 10.2 eV. Thus, the minimum kinetic energy of the
neutron needed for an inelastic collision is

        
1
2

 mvmin
 2  = 2 × 10.2 eV = 20.4 eV.

18. Light corresponding to the transition n = 4 to n = 2 in
hydrogen atoms falls on cesium metal (work function
= 1.9 eV). Find the maximum kinetic energy of the
photoelectrons emitted.

Solution : The energy of the photons emitted in transition
n = 4 to n = 2 is

       hν = 13.6 eV 




1
2 2 − 

1
4 2




 = 2.55 eV.

The maximum kinetic energy of the photoelectrons is

           = 2.55 eV – 1.9 eV = 0.65 eV.

19. A small particle of mass m moves in such a way that

the potential energy U = 1
2
 m 2ω 2 r 2 where ω is a constant

and r is the distance of the particle from the origin.
Assuming Bohr’s model of quantization of angular
momentum and circular orbits, show that radius of the
nth allowed orbit is proportional to √n.

Solution : The force at a distance r is

              F = − 
dU
dr

 = − mω 2 r. … (i)

Suppose the particle moves along a circle of radius r.
The net force on it should be mv 2/r along the radius.
Comparing with (i),

mv 2

r
 = mω 2 r

   or, v = ωr. … (ii)

The quantization of angular momentum gives

mvr = 
nh
2π

   or, v = 
nh

2πmr
 ⋅ … (iii)

From (ii) and (iii),

r = 


nh
2πmω





 1/2

⋅

Thus, the radius of the nth orbit is proportional to √n.

QUESTIONS FOR SHORT ANSWER

 1. How many wavelengths are emitted by atomic hydrogen
in visible range (380 nm–780 nm) ? In the range 50 nm
to 100 nm ?

 2. The first excited energy of a He + ion is the same as the
ground state energy of hydrogen. Is it always true that
one of the energies of any hydrogen-like ion will be the
same as the ground state energy of a hydrogen atom ?

 3. Which wavelengths will be emitted by a sample of
atomic hydrogen gas (in ground state) if electrons of
energy 12.2 eV collide with the atoms of the gas ?

 4. When white radiation is passed through a sample of
hydrogen gas at room temperature, absorption lines are
observed in Lyman series only. Explain.
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 5. Balmer series was observed and analysed before the
other series. Can you suggest a reason for such an
order ?

 6. What will be the energy corresponding to the first
excited state of a hydrogen atom if the potential energy
of the atom is taken to be 10 eV when the electron is
widely separated from the proton ? Can we still write
En = E1 /n 2, or rn = a0 n 2 ?

 7. The difference in the frequencies of series limit of Lyman
series and Balmer series is equal to the frequency of the
first line of the Lyman series. Explain.

 8. The numerical value of ionization energy in eV equals
the ionization potential in volts. Does the equality hold
if these quantities are measured in some other units ?

 9. We have stimulated emission and spontaneous emission.
Do we also have stimulated absorption and spontaneous
absorption ?

10. An atom is in its excited state. Does the probability of
its coming to ground state depend on whether the
radiation is already present or not ? If yes, does it also
depend on the wavelength of the radiation present ?

 OBJECTIVE I

 1. The minimum orbital angular momentum of the electron
in a hydrogen atom is
(a) h     (b) h/2     (c) h/2π     (d) h/λ.

 2. Three photons coming from excited atomic-hydrogen
sample are picked up. Their energies are 12.1 eV,
10.2 eV and 1.9 eV. These photons must come from
(a) a single atom  (b) two atoms
(c) three atoms    (d) either two atoms or three atoms.

 3. Suppose, the electron in a hydrogen atom makes
transition from n = 3 to n = 2 in 10 − 8 s. The order of the
torque acting on the electron in this period, using the
relation between torque and angular momentum as
discussed in the chapter on rotational mechanics is
(a) 10 − 34 N m               (b) 10 − 24 N m
(c) 10 − 42 N m                (d) 10 − 8 N m.

 4. In which of the following transitions will the wavelength
be minimum ?
(a) n = 5  to  n = 4            (b) n = 4  to  n = 3
(c) n = 3  to  n = 2            (d) n = 2  to  n = 1.

 5. In which of the following systems will the radius of the
first orbit (n = 1) be minimum ?
(a) Hydrogen atom      (b) Deuterium atom
(c) Singly ionized helium  (d) Doubly ionized lithium.

 6. In which of the following systems will the wavelength
corresponding to n = 2 to n = 1 be minimum ?
(a) Hydrogen atom      (b) Deuterium atom
(c) Singly ionized helium  (d) Doubly ionized lithium.

 7. Which of the following curves may represent the speed
of the electron in a hydrogen atom as a function of the
principal quantum number n ?

 8. As one considers orbits with higher values of n in a
hydrogen atom, the electric potential energy of the atom
(a) decreases           (b) increases
(c) remains the same      (d) does not increase.

 9. The energy of an atom (or ion) in its ground state is
–54.4 eV. It may be
(a) hydrogen   (b) deuterium   (c) He +   (d) Li ++.

10. The radius of the shortest orbit in a one-electron system
is 18 pm. It may be
(a) hydrogen   (b) deuterium   (c) He +   (d) Li ++.

11. A hydrogen atom in ground state absorbs 10.2 eV of
energy. The orbital angular momentum of the electron
is increased by

(a) 1.05 × 10 − 34 J s       (b) 2.11 × 10 − 34 J s

(c) 3.16 × 10 − 34 J s       (d) 4.22 × 10 − 34 J s.

12. Which of the following parameters are the same for all
hydrogen-like atoms and ions in their ground states ?
(a) Radius of the orbit    (b) Speed of the electron
(c) Energy of the atom
(d) Orbital angular momentum of the electron

13. In a laser tube, all the photons
(a) have same wavelength  (b) have same energy
(c) move in same direction  (d) move with same speed.

 OBJECTIVE II

 1. In a laboratory experiment on emission from atomic
hydrogen in a discharge tube, only a small number of
lines are observed whereas a large number of lines are
present in the hydrogen spectrum of a star. This is
because in a laboratory
(a) the amount of hydrogen taken is much smaller than
       that  present in the star

(b) the temperature of hydrogen is much smaller than

       that of  the star

(c) the pressure of hydrogen is much smaller than that
       of the star

(d) the gravitational pull is much smaller than that in

       the star.
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 2. An electron with kinetic energy 5 eV is incident on a
hydrogen atom in its ground state. The collision
(a) must be elastic     (b) may be partially elastic
(c) must be completely inelastic
(d) may be completely inelastic.

 3. Which of the following products in a hydrogen atom are
independent of the principal quantum number n ? The
symbols have their usual meanings.
(a) vn     (b) Er     (c) En    (d) vr

 4. Let An be the area enclosed by the nth orbit in a
hydrogen atom. The graph of ln (An /A1) against ln(n)
(a) will pass through the origin
(b) will be a straight line with slope 4

(c) will be a monotonically increasing nonlinear curve
(d) will be a circle.

 5. Ionization energy of a hydrogen-like ion A is greater
than that of another hydrogen-like ion B. Let r, u, E
and L represent the radius of the orbit, speed of the
electron, energy of the atom and orbital angular
momentum of the electron respectively. In ground state
(a) rA > rB  (b) uA > uB  (c) EA > EB  (d) LA > LB.

 6. When a photon stimulates the emission of another
photon, the two photons have
(a) same energy         (b) same direction
(c) same phase          (d) same wavelength.

EXERCISES

Planck constant h = 6.63 × 10 
− 34

 Js = 4.14 × 10 
− 15

 eVs, first
Bohr  radius of hydrogen a0 = 53 pm, energy of hydrogen
atom in ground state = –13.6 eV, Rydberg’s constant

= 1.097 × 10 
7
 m 

− 1
.

                                                                                                                                                                                 

 1. The Bohr radius is given by a0 = 
ε0 h 

2

πme 2 ⋅ Verify that the

RHS has dimensions of length.

 2. Find the wavelength of the radiation emitted by
hydrogen in the transitions (a) n = 3 to n = 2, (b) n = 5
to n = 4 and (c) n = 10 to n = 9.

 3. Calculate the smallest wavelength of radiation that may
be emitted by (a) hydrogen, (b) He + and (c) Li ++.

 4. Evaluate Rydberg constant by putting the values of the
fundamental constants in its expression.

 5. Find the binding energy of a hydrogen atom in the state
n = 2.

 6. Find the radius and energy of a He + ion in the states
(a) n = 1, (b) n = 4 and (c) n = 10.

 7. A hydrogen atom emits ultraviolet radiation of
wavelength 102.5 nm. What are the quantum numbers
of the states involved in the transition ?

 8. (a) Find the first excitation potential of He + ion. (b) Find
the ionization potential of Li ++ ion.

 9. A group of hydrogen atoms are prepared in n = 4 states.
List the wavelengths that are emitted as the atoms
make transitions and return to n = 2 states.

10. A positive ion having just one electron ejects it if a
photon of wavelength 228 Å or less is absorbed by it.
Identify the ion.

11. Find the maximum Coulomb force that can act on the
electron due to the nucleus in a hydrogen atom.

12. A hydrogen atom in a state having a binding energy of
0.85 eV makes transition to a state with excitation
energy 10.2 eV. (a) Identify the quantum numbers n of
the upper and the lower energy states involved in the
transition. (b) Find the wavelength of the emitted
radiation.

13. Whenever a photon is emitted by hydrogen in Balmer
series, it is followed by another photon in Lyman series.
What wavelength does this latter photon correspond to ?

14. A hydrogen atom in state n = 6 makes two successive
transitions and reaches the ground state. In the first
transition a photon of 1.13 eV is emitted. (a) Find the
energy of the photon emitted in the second transition.
(b) What is the value of n in the intermediate state ?

15. What is the energy of a hydrogen atom in the first
excited state if the potential energy is taken to be zero
in the ground state ?

16. A hot gas emits radiation of wavelengths 46.0 nm,
82.8 nm and 103.5 nm only. Assume that the atoms have
only two excited states and the difference between
consecutive energy levels decreases as energy is
increased. Taking the energy of the highest energy state
to be zero, find the energies of the ground state and the
first excited state.

17. A gas of hydrogen-like ions is prepared in a particular
excited state A. It emits photons having wavelength
equal to the wavelength of the first line of the Lyman
series together with photons of five other wavelengths.
Identify the gas and find the principal quantum number
of the state A.

18. Find the maximum angular speed of the electron of a
hydrogen atom in a stationary orbit. 

19. A spectroscopic instrument can resolve two nearby
wavelengths λ and λ + ∆λ if λ/∆λ is smaller than 8000.
This is used to study the spectral lines of the Balmer
series of hydrogen. Approximately how many lines will
be resolved by the instrument ?

20. Suppose, in certain conditions only those transitions are
allowed to hydrogen atoms in which the principal
quantum number n changes by 2. (a) Find the smallest
wavelength emitted by hydrogen. (b) List the
wavelengths emitted by hydrogen in the visible range
(380 nm to 780 nm).

21. According to Maxwell’s theory of electrodynamics, an
electron going in a circle should emit radiation of
frequency equal to its frequency of revolution. What
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should be the wavelength of the radiation emitted by a
hydrogen atom in ground state if this rule is followed ?

22. The average kinetic energy of molecules in a gas at
temperature T is 1.5 kT. Find the temperature at which
the average kinetic energy of the molecules of hydrogen
equals the binding energy of its atoms. Will hydrogen
remain in molecular form at this temperature ? Take

k = 8.62 × 10 − 5 eV K −1.

23. Find the temperature at which the average thermal
kinetic energy is equal to the energy needed to take a
hydrogen atom from its ground state to n = 3 state.
Hydrogen can now emit red light of wavelength
653.1 nm. Because of Maxwellian distribution of speeds,
a hydrogen sample emits red light at temperatures much
lower than that obtained from this problem. Assume
that hydrogen molecules dissociate into atoms.

24. Average lifetime of a hydrogen atom excited to n = 2
state is 10 − 8 s. Find the number of revolutions made by
the electron on the average before it jumps to the ground
state.

25. Calculate the magnetic dipole moment corresponding to
the motion of the electron in the ground state of a
hydrogen atom.

26. Show that the ratio of the magnetic dipole moment to
the angular momentum (l = mvr) is a universal constant
for hydrogen-like atoms and ions. Find its value.

27. A beam of light having wavelengths distributed
uniformly between 450 nm to 550 nm passes through a
sample of hydrogen gas. Which wavelength will have the
least intensity in the transmitted beam ?

28. Radiation coming from transitions n = 2 to n = 1 of
hydrogen atoms falls on helium ions in n = 1 and n = 2
states. What are the possible transitions of helium ions
as they absorb energy from the radiation ?

29. A hydrogen atom in ground state absorbs a photon of
ultraviolet radiation of wavelength 50 nm. Assuming
that the entire photon energy is taken up by the
electron, with what kinetic energy will the electron be
ejected ?

30. A parallel beam of light of wavelength 100 nm passes
through a sample of atomic hydrogen gas in ground
state. (a) Assume that when a photon supplies some of
its energy to a hydrogen atom, the rest of the energy
appears as another photon moving in the same direction
as the incident photon. Neglecting the light emitted by
the excited hydrogen atoms in the direction of the
incident beam, what wavelengths may be observed in
the transmitted beam ? (b) A radiation detector is placed
near the gas to detect radiation coming perpendicular to
the incident beam. Find the wavelengths of radiation
that may be detected by the detector.

31. A beam of monochromatic light of wavelength λ ejects
photoelectrons from a cesium surface (Φ = 1.9 eV). These
photoelectrons are made to collide with hydrogen atoms
in ground state. Find the maximum value of λ for which
(a) hydrogen atoms may be ionized, (b) hydrogen atoms
may get excited from the ground state to the first excited
state and (c) the excited hydrogen atoms may emit
visible light.

32. Electrons are emitted from an electron gun at almost
zero velocity and are accelerated by an electric field E
through a distance of 1.0 m. The electrons are now
scattered by an atomic hydrogen sample in ground state.
What should be the minimum value of E so that red
light of wavelength 656.3 nm may be emitted by the
hydrogen ?

33. A neutron having kinetic energy 12.5 eV collides with a
hydrogen atom at rest. Nelgect the difference in mass
between the neutron and the hydrogen atom and assume
that the neutron does not leave its line of motion. Find the
possible kinetic energies of the neutron after the event.

34. A hydrogen atom moving at speed v collides with
another hydrogen atom kept at rest. Find the minimum
value of v for which one of the atoms may get ionized.
The mass of a hydrogen atom = 1.67 × 10 − 27 kg.

35. A neutron moving with a speed v strikes a hydrogen
atom in ground state moving towards it with the same
speed. Find the minimum speed of the neutron for which
inelastic (completely or partially) collision may take
place. The mass of neutron ≈ mass of hydrogen

= 1.67 × 10 − 27 kg.

36. When a photon is emitted by a hydrogen atom, the
photon carries a momentum with it. (a) Calculate the
momentum carried by the photon when a hydrogen atom
emits light of wavelength 656.3 nm. (b) With what speed
does the atom recoil during this transition ? Take the
mass of the hydrogen atom = 1.67 × 10 − 27 kg. (c) Find
the kinetic energy of recoil of the atom.

37. When a photon is emitted from an atom, the atom
recoils. The kinetic energy of recoil and the energy of
the photon come from the difference in energies between
the states involved in the transition. Suppose, a
hydrogen atom changes its state from n = 3 to n = 2.
Calculate the fractional change in the wavelength of
light emitted, due to the recoil.

38. The light emitted in the transition n = 3 to n = 2 in
hydrogen is called Hα light. Find the maximum work
function a metal can have so that Hα light can emit
photoelectrons from it.

39. Light from Balmer series of hydrogen is able to eject
photoelectrons from a metal. What can be the maximum
work function of the metal ?

40. Radiation from hydrogen discharge tube falls on a
cesium plate. Find the maximum possible kinetic energy
of the photoelectrons. Work function of cesium is 1.9 eV.

41. A filter transmits only the radiation of wavelength
greater than 440 nm. Radiation from a hydrogen-
discharge tube goes through such a filter and is incident
on a metal of work function 2.0 eV. Find the stopping
potential which can stop the photoelectrons.

42. The earth revolves round the sun due to gravitational
attraction. Suppose that the sun and the earth are point
particles with their existing masses and that Bohr’s
quantization rule for angular momentum is valid in the
case of gravitation. (a) Calculate the minimum radius
the earth can have for its orbit. (b) What is the value
of the principal quantum number n for the present
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radius ? Mass of the earth = 6.0 × 10 24 kg, mass of the

sun = 2.0 × 10 30 kg, earth–sun distance = 1.5 × 10 11 m.

43. Consider a neutron and an electron bound to each other
due to gravitational force. Assuming Bohr’s quantization
rule for angular momentum to be valid in this case,
derive an expression for the energy of the
neutron–electron system.

44. A uniform magnetic field B exists in a region. An
electron projected perpendicular to the field goes in a
circle. Assuming Bohr’s quantization rule for angular
momentum, calculate (a) the smallest possible radius of
the electron (b) the radius of the nth orbit and (c) the
minimum possible speed of the electron.

45. Suppose in an imaginary world the angular momentum
is quantized to be even integral multiples of h/2π. What
is the longest possible wavelength emitted by hydrogen
atoms in visible range in such a world according to
Bohr’s model ?

46. Consider an excited hydrogen atom in state n moving
with a velocity v(v << c). It emits a photon in the
direction of its motion and changes its state to a lower
state m. Apply momentum and energy conservation
principles to calculate the frequency ν of the emitted

radiation. Compare this with the frequency ν0 emitted

if the atom were at rest.

ANSWERS

OBJECTIVE I

 1. (c)  2. (d)  3. (b)  4. (d)  5. (d)  6. (d)
 7. (c)  8. (b)  9. (c) 10. (d) 11. (a) 12. (d)
13. (d)

OBJECTIVE II

 1. (b)  2. (a)  3. (a), (b)  4. (a), (b)
 5. (b)  6. all

EXERCISES

 2. (a) 654 nm (b) 4050 nm (c) 38860 nm
 3. (a) 91 nm (b) 23 nm (c) 10 nm

 4. 1.097 × 10 7 m – 1

 5. 3.4 eV

 6. (a) 0.265 A,  −54.4 eV (b) 4.24 A,  −3.4 eV

   (c) 26.5 A,  −0.544 eV

 7. 1 and 3

 8. (a) 40.8 V (b)  122.4 V
 9. 487 nm, 654 nm, 1910 nm

10. He +

11. 8.2 × 10 – 8 N

12. (a) 4, 2 (b) 487 nm
13. 122 nm

14. 12.1 eV, 3

15. 23.8 eV

16. −27 eV, −12 eV

17. He +, 4

18. 4.1 × 10 16 rad s −1

19. 38

20. (a) 103 nm (b) 487 nm

21. 45.7 nm

22. 1.05 × 10 5 K

23. 9.4 × 10 4 K

24. 8.2 × 10 6

25. 9.2 × 10 – 24 A m –2

26. 
e

2m
 = 8.8 × 10 10 C kg −1

27. 487 nm

28. n = 2  to  n = 3  and  n = 2  to  n = 4

29. 11.24 eV

30. (a) 100 nm, 560 nm, 3880 nm
   (b) 103 nm, 121 nm, 654 nm

31. (a) 80 nm (b) 102 nm (c) 89 nm

32. 12.1 Vm −1

33. zero

34. 7.2 × 10 4 m s −1

35. 3.13 × 10 4 m s −1
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36. (a) 1.0 × 10  27 kg m s −1 (b) 0.6 m s −1

   (c) 1.9 × 10 – 9 eV

37. 10 – 9

38. 1.9 eV

39. 3.4 eV

40. 11.7 eV

41. 0.55 V

42. (a) 2.3 × 10 – 138 m (b) 2.5 × 10 74

43. − 
2π 2G 2mn

 2me
 3

2h 2n 2  

44. (a) √h
2πeB

 (b) √nh
2πeB

 (c) √heB
2πm 2

45. 487 nm

46. ν = ν0 



1 + 

v
c
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CHAPTER 44

X-RAYS

44.1 PRODUCTION OF X-RAYS

When highly energetic electrons are made to strike
a metal target, electromagnetic radiation comes out. A
large part of this radiation has wavelength of the order
of 0.1 nm (≈ 1 Å) and is known as X-ray.

X-ray was discovered by the German physicist
W C Roentgen in 1895. He found that photographic
film wrapped light-tight in black paper became
exposed when placed near a cathode-ray tube. He
concluded that some invisible radiation was coming
from the cathode-ray tube which penetrated the black
paper to affect the photographic plate. He named this
radiation as X-ray because its nature and properties
could not be known at that time. In mathematics, we
generally use the symbol x for unknown quantities.
However, after some calculation we finally get the
value of this unknown x. Similarly, we now know about
the nature and properties of X-rays.

A device used to produce X-rays is generally called
an X-ray tube. Figure (41.1) shows a schematic
diagram of such a device. This was originally designed
by Coolidge and is known as Coolidge tube to produce
X-rays.

A filament F and a metallic target T are fixed in
an evacuated glass chamber C. The filament is heated
electrically and emits electrons by thermionic
emission. A constant potential difference of several
kilovolts is maintained between the filament and the
target using a DC power supply so that the target is
at a higher potential than the filament. The electrons

emitted by the filament are, therefore, accelerated by
the electric field set up between the filament and the
target and hit the target with a very high speed. These
electrons are stopped by the target and in the process
X-rays are emitted. These X-rays are brought out of
the tube through a window W made of thin mica or
mylar or some such material which does not absorb
X-rays appreciably.

In the process, large amount of heat is developed,
and thus an arrangement is provided to cool down the
tube continuously by running water.

The exact design of the X-ray tube depends on the
type of use for which these X-rays are required.

44.2 CONTINUOUS AND CHARACTERISTIC X-RAYS

If the X-rays coming from a Coolidge tube are
examined for the wavelengths present, and the
intensity of different wavelength components are
measured, we obtain a plot of the nature shown in
figure (44.2). We see that there is a minimum
wavelength below which no X-ray is emitted. This is
called the cutoff wavelength or the threshold
wavelength. The X-rays emitted can be clearly divided
in two categories. At certain sharply defined
wavelengths, the intensity of X-rays is very large as
marked Kα, Kβ in figure (44.2). These X-rays are
known as characteristic X-rays. At other wavelengths
the intensity varies gradually and these X-rays are
called  continuous X-rays. Let us examine the origin
of these two types of X-rays.

Suppose, the potential difference applied between
the target and the filament is V and electrons are
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emitted by the filament with negligible speed. The
electrons are accelerated in their journey from the
filament to the target. The kinetic energy of an
electron when it hits the target is
             K = eV. … (44.1)

As the electron enters into the target material, it
readily loses its kinetic energy and is brought to rest
inside the metal. The electron before finally being
stopped, makes several collisions with the atoms in the
target. At each collision, one of the following two
processes may occur:

(a) The kinetic energy of the electron is reduced.
A part of this lost kinetic energy is converted into a
photon of electromagnetic radiation and the remaining
part increases the kinetic energy of the colliding
particle of the target. The energy received by the
colliding particle goes into heating the target. The
electron makes another collision with its reduced
energy.

(b) The electron knocks out an inner electron of
the atom with which it collides.

The fraction of kinetic energy appearing as the
energy of a photon varies from collision to collision. In
a certain collision, the electron may lose its entire
kinetic energy to bring out a photon or it may not
create a photon at all. Thus, the energy of the photon
created can be anything between 0 and eV depending
on how much energy has already been lost to the target
and what fraction of the available energy is converted
into the photon. The maximum energy of such a photon
can be E = eV when the electron converts all its kinetic
energy into a photon in the first encounter itself.

The wavelength of the X-ray and the energy of the
corresponding photon are related through the equation

              λ = 
hc
E

 ⋅ … (44.2)

As E can take any value between zero and eV, the
wavelength λ can take any value between infinity and
hc/eV. This explains the origin of continuous X-rays
and the cutoff wavelength. We have,

λmin = 
hc
eV

 ⋅ … (44.3)

We see that the cutoff wavelength λmin depends
only on the accelerating voltage V applied between the
target and the filament. It does not depend on the
material of the target.

We shall now discuss what happens if the electron
knocks out an inner electron from the atom with which
it collides.  The electrons in an atom occupy different
quantum states characterized by the quantum
numbers n, l, ml, ms . The energy primarily depends
on the principal quantum number n. The two electrons

corresponding to n = 1 are said to be in K shell, those
corresponding to n = 2 are in L shell, etc. Suppose, the
incident electron knocks out an electron from the
K shell. This will create a vacancy in the K shell in
the sense that now there is only one electron with
n = 1, whereas two could be accommodated by Pauli
exclusion principle. An electron from a higher energy
state may make a transition to this vacant state. When
such a transition takes place, the difference of energy
∆E is converted into an X-ray photon of wavelength
λ = hc/∆E. X-rays emitted due to electronic transition
from a higher energy state to a vacancy created in the
K shell are called K X-rays.

Figure (44.3) shows the process schematically. If
an electron from the L shell (i.e., with n = 2) makes
transition to the vacant state in the K shell, the X-ray
emitted is called Kα X-ray. If an electron from the M
shell makes transition to the K shell, a Kβ X-ray is
emitted. Similarly one defines Kγ X-ray. If a photon of
Kα X-ray is emitted, the vacancy in the K shell is filled
up but a vacancy is created in the L shell. This vacancy
can be filled up by a transition of electron from higher
shells giving L X-ray. If an electron jumps from the
M shell to the vacant state in the L shell, we obtain
Lα X-ray. If the vacancy in L shell is filled up by
an electron of N shell (n = 4), Lβ X-ray is emitted, and
so on.

Figure (44.4) shows the energy levels of the atom
when one electron is knocked out. The lowest line
corresponds to the atom with all its electrons intact.
This has been taken as zero energy. The energy level
with label EK is the energy of the atom when an
electron from the K shell is knocked out. Similar is
the interpretation for EL, EM, EN, etc. Note the
convention of choosing E = 0 in the ground state. In
hydrogen atom we had chosen E = 0 when the electron
was knocked out. The ground state of hydrogen atom
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then had an energy of –13.6 eV. Here the convention
is opposite and the energy in the ground state is
chosen to be zero. The energy in the ionized state is
then positive. As the electrons in K shell are most
tightly bound, maximum energy is to be given to the
atom to knock out an electron from the K shell. That
is why, in figure (44.4), the energy level of the atom
with a vacancy in the K shell is shown highest.

The energies EK, EL, …, etc., are characteristic
properties of the material. For different materials, the
values of these energies will be different. The values
of EK – EL, EL – EM, etc., also have definite values for
a given material. The wavelengths of the X-rays
emitted corresponding to these transitions are

        λ = 
hc

EK − EL

  for  Kα,

λ = 
hc

EK − EM

  for  Kβ,

λ = 
hc

EL − EM

  for  Lα,

etc. These wavelengths, therefore, have definite values
for a particular material.  The X-rays emitted in this
way are the characteristic X-rays shown in figure
(44.2). They are so named because their wavelengths
may be used to identify the element from which they
originate.

44.3 SOFT AND HARD X-RAYS

If the accelerating voltage applied between the
filament and the target is increased, the cutoff
wavelength λmin decreases further (equation 44.3). The
X-rays of low wavelengths are called hard X-rays and
those of large wavelength are called soft X-rays. Hard
and soft are simply relative terms. In terms of energy,
harder X-rays means more energy in each photon. So,
if the voltage between the filament and the target is
increased, we get harder X-rays. If the filament
current in a Coolidge tube is increased by increasing
the voltage in the filament circuit, more electrons are
emitted per unit time. This results in an increase in
the number of X-ray photons emitted per unit time
and hence the intensity of X-rays is increased. The
cutoff wavelength λmin remains unchanged as the
maximum kinetic energy of the electrons reaching the
target is not affected by the filament current.

44.4 MOSELEY’S LAW

Moseley’s experiments (1913–1914) on charac-
teristic X-rays played a very important role in
developing the concept of atomic number. In those
days, the elements were arranged in periodic table in
the increasing order of atomic weight. The periodicity

in chemical properties of elements was brought out
from such arrangement, though some anomalies were
present. Bohr had proposed his model in the same year
and there was no concept of distribution of electrons
in different energy levels. During those days, Moseley
measured the frequencies of characteristic X-rays from
a large number of elements and plotted the square root
of the frequency against its position number in the
periodic table. He discovered that the plot is very close
to a straight line. A portion of Moseley’s plot is shown
in figure (44.5) where √ν  of Kα X-rays is plotted against
the position number. From this linear relation,
Moseley concluded that there must be a fundamental
property of the atom which increases by regular steps
as one moves from one element to the other. This
quantity was later identified to be the number of
protons in the nucleus and was referred to as the
atomic number.

Thus, elements should be arranged in the
ascending order of atomic number and not of atomic
weight. This removed several discrepancies existing in
the periodic table. For example, nickel has atomic
weight 58.7 whereas the atomic weight of cobalt is
58.9. However, the frequency of Kα X-ray from cobalt
is less than the frequency of Kα X-ray from nickel.
Thus, Moseley rearranged the sequence as Co, Ni
instead of Ni, Co. Similarly, several other
rearrangements were made.

Moseley’s observations can be mathematically
expressed as

            √ν = a(Z − b) … (44.4)

where a and b are constants. This relation is known
as Moseley’s law. We can understand Moseley’s law
qualitatively from Bohr’s atomic model.

Consider an atom from which an electron from the
K shell has been knocked out. Consider an electron
from the L shell which is about to make a transition
to the vacant site. It finds the nucleus of charge Ze
screened by the spherical cloud of the remaining one
electron in the K shell (figure 44.6). If we neglect the
effect of the outer electrons and the other L electrons,
the electron making the transition finds a charge
(Z − 1)e at the centre. One, therefore, may expect
Bohr’s model to give reasonable results if Z is replaced
by Z – b with b ≈ 1.
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According to Bohr’s model, the energy released
during the transition from n = 2 to n = 1 is given by

     ∆E = hν = Rhc(Z − b) 2 


1
1 2

 − 
1

2 2




so that √ν = √3Rc
4

 (Z − b)

which is the same as equation (44.4) with
a = √3Rc /4.

Moseley was killed in the First World War at an
early age of 27 years.

44.5 BRAGG’S LAW

X-rays are electromagnetic waves of short
wavelengths and may be diffracted by suitable
diffracting centres. However, the diffraction effects are
appreciable only when the diffracting apertures are of
the order of the wavelength, i.e., of the order of 0.1 nm.
This is almost the size of an atom and it is difficult to
construct slits with such small gaps so that X-rays can
be appreciably diffracted.

In solid crystals, atoms are arranged in fairly regular
pattern with interatomic gaps of the order of 0.1 nm.
Common salt is an example of such a crystalline solid.
Almost all the metals at ordinary temperature are
crystalline. These metals may act as natural
three-dimensional gratings for the diffraction of X-rays.

The structure of a solid can be viewed as a series
of parallel planes of atoms separated by a distance d
(figure 44.7). Suppose, an X-ray beam is incident on a
solid, making an angle θ with the planes of the atoms.
These X-rays are diffracted by different atoms and the
diffracted rays interfere. In certain directions, the
interference is constructive and we obtain strong
reflected X-rays. The analysis shows that there will be
a strong reflected X-ray beam only if

            2d sinθ = nλ … (44.5)

where n is an integer. For monochromatic X-rays, λ is
fixed and there are some specific angles θ1, θ2, θ3,
…, etc., corresponding to n = 1, 2, 3, …, etc., in
equation (44.5). Thus, if the X-rays are incident at one
of these angles, they are reflected; otherwise they are
absorbed. When they are reflected, the laws of
reflection are obeyed, i.e., (a) the angle of incidence is
equal to the angle of reflection and (b) the incident
ray, the reflected ray and the normal to the reflecting
plane are coplanar.

Equation (44.5) is known as Bragg’s law.

By using a monochromatic X-ray beam and noting
the angles of strong reflection, the interplanar spacing
d and several informations about the structure of the
solid can be obtained.

44.6 PROPERTIES AND USES OF X-RAYS

As discussed earlier, X-rays are electromagnetic
waves of short wavelengths. Accordingly, it has many
properties common with light. Here are some of the
properties of X-rays.

(a) X-rays travel in straight lines in vacuum at a
speed equal to that of light (3 × 10 8 m/s).

(b) X-rays are diffracted by crystals in accordance
with Bragg’s law.

(c) X-rays are not deflected by electric or magnetic
field as it contains no charged particles.

(d) X-rays affect a photographic plate more
strongly than visible light.

(e) When incident on certain materials such as
barium platinocyanide, X-rays cause fluorescence (light
is emitted from the material).

(f) When passed through a gas, X-rays ionize the
molecules of the gas.

(g) X-rays can penetrate into several metals and
other materials. Thus, they can pass through small
thicknesses of aluminium, woods, plastics, human flesh
etc. They are stopped by materials of high density and
high atomic number.

The penetrating power of X-ray has made it
popular and familiar to the general public. It is used
extensively to detect diseases inside the body. It passes
quite freely through the flesh but is stopped by the
bones. So it can photograph the bones inside the body
on a photographic film. Such a photograph is called a
radiograph. This is used to detect and study bone
fractures due to an accident. Chest radiographs are
used to study diseases in lungs. Dentists also use X-ray
to study teeth-decay. X-ray is also used in cancer
therapy.
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X-ray is used in industry and material science
research. It can detect structural defects, fault of
joints, welding etc. X-ray machines are used to inspect
suitcases, wooden boxes etc. without opening them and
can be typically found at the custom, security counters
at airports etc.

X-ray can be used to detect diseases and to cure
them. At the same time, random and excess exposure
to X-ray may induce diseases. X-ray has a damaging

effect on the living cells of a body which may lead to
cell-death. High exposure for a long period (say for
years) may lead to cancer or genetic defects.

TV, computer terminals, oscilloscopes etc. use a
cathode-ray tube in which a highly energetic electron
beam strikes the screen. A fraction of kinetic energy
is converted into X-rays which may come out. Screens
of these equipments are generally designed to absorb
these X-rays.

Worked Out Examples

 1. Find the maximum frequency of the X-rays emitted by
an X-ray tube operating at 30 kV.

Solution : For maximum frequency, the total kinetic
energy (eV) should be converted into an X-ray photon.
Thus,
        hν = eV

or, ν = 
e
h

 V

          = 
e × 30 × 10 3 V

4.14 × 10 − 15 eV−s

= 
30

4.14
 × 10 18 Hz ≈ 7.2 × 10 18 Hz.

 2. An X-ray tube operates at 20 kV. A particular electron
loses 5% of its kinetic energy to emit an X-ray photon at
the first collision. Find the wavelength corresponding to
this photon.

Solution : Kinetic energy acquired by the electron is
        K = eV = 20 × 10 3 eV.

The energy of the photon

= 0.05 × 20 × 10 3 eV = 10 3 eV.

Thus, 
hc
λ

 = 10 3 eV

or,    λ = 
hc

10 3 eV

= 
(4.14 × 10 − 15 eVs) × (3 × 10 8 m s −1)

10 3 eV

        = 
1242 eV nm

10 3 eV
 = 1.24 nm.

 3. An X-ray tube is operated at 20 kV and the current
through the tube is 0.5 mA. Find (a) the number of
electrons hitting the target per second, (b) the energy
falling on the target per second as the kinetic energy of
the electrons and (c) the cutoff wavelength of the X-rays
emitted.

Solution : (a)   i = ne = 0.5 × 10 − 3 A

or, n = 
0.5 × 10 − 3 A

1.6 × 10 − 19 C
 = 3.1 × 10 15.

(b) The kinetic energy of an electron reaching the target
is K = eV. The energy falling on the target per second

    = n eV = iV = (0.5 × 10 − 3 A) × (20 × 10 3 V)
= 10 J s −1.

(c)       
hc
λmin

 = eV

or,       λmin = 
hc
eV

    = 
1242 eV nm
e(20 × 10 3 V)

 = 0.062 nm.

 4. Find the constants a and b in Moseley’s equation
√ν = a(Z − b) from the following data.

Element Z Wavelength of
Kα X-ray

Mo 42  71 pm

Co 27 178.5 pm

Solution : Moseley’s equation is

           √ν = a(Z − b).

   Thus, √ c
λ1

 = a(Z1 − b) … (i)

   and √ c
λ2

 = a(Z2 − b). … (ii)

From (i) and (ii),

   √c 


1
√λ1

 − 
1

√λ2




 = a(Z1 − Z2)

or,   a = 
√c

(Z1 − Z2)
 


1
√λ1

 − 
1

√λ2





= 
(3 × 10 8 m s −1) 1/2

42 − 27
 


1

(71 × 10 − 12 m) 1/2
 − 

1

(178.5 × 10 − 12 m) 1/2





       = 5.0 × 10 7 (Hz) 1/2.

Dividing (i) by (ii),

           √λ2

λ1

 = 
Z1 − b
Z2 − b

or,        √178.5
71

 = 
42 − b
27 − b

or, b = 1.37.
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 5. The Kα X-ray of molybdenum has wavelength 71 pm. If

the energy of a molybdenum atom with a K electron
knocked out is 23.32 keV, what will be the energy of this
atom when an L electron is knocked out ?

Solution : Kα X-ray results from the transition of an

electron from L shell to K shell. If the energy of the
atom with a vacancy in the K shell is EK and the energy
with a vacancy in the L shell is EL , the energy of the
photon emitted is EK – EL. The energy of the 71 pm
photon is

         E = 
hc
λ

= 
1242 eV nm

71 × 10 − 3 nm
 = 17.5 keV.

Thus,      EK − EL = 17.5 keV

or,        EL = EK − 17.5 keV

     = 23.32 keV − 17.5 keV = 5.82 keV.

 6. Show that the frequency of Kβ X-ray of a material equals
the sum of the frequencies of Kα  and  Lα X-rays of the
same material.

Solution :

The energy level diagram of an atom with one electron
knocked out is shown in figure (44-W1).

Energy of Kα X-ray is EKα
 = EK − EL

     of Kβ X-ray is EKβ
 = EK − EM,

and   of Lα X-ray is ELα
 = EL − EM.

Thus, EKβ
 = EKα

 + ELα

or, hνKβ
 = hνKα

 + hνLα

or, νKβ
 = νKα

 + νLα
.

QUESTIONS FOR SHORT ANSWER

 1. When a Coolidge tube is operated for some time it
becomes hot. Where does the heat come from ?

 2. In a Coolidge tube, electrons strike the target and stop
inside it. Does the target get more and more negatively
charged as time passes ?

 3. Can X-rays be used for photoelectric effect ?

 4. Can X-rays be polarized ?

 5. X-ray and visible light travel at the same speed in
vacuum. Do they travel at the same speed in glass ?

 6. Characteristic X-rays may be used to identify the
element from which they are coming. Can continuous
X-rays be used for this purpose ?

 7. Is it possible that in a Coolidge tube characterstic
Lα X-rays are emitted but not Kα X-rays ? 

 8. Can Lα X-ray of one material have shorter wavelength
than Kα X-ray of another ?

 9. Can a hydrogen atom emit characteristic X-ray ?

10. Why is exposure to X-ray injurious to health but
exposure to visible light is not, when both are
electromagnetic waves ?

OBJECTIVE I

 1. X-ray beam can be deflected
(a) by an electric field       (b) by a magnetic field
(c) by an electric field as well as by a magnetic field
(d) neither by an electric field nor by a magnetic field.

 2. Consider a photon of continuous X-ray coming from a
Coolidge tube. Its energy comes from
(a) the kinetic energy of the striking electron
(b) the kinetic energy of the free electrons of the target
(c) the kinetic energy of the ions of the target
(d) an atomic transition in the target.

 3. The energy of a photon of characteristic X-ray from a
Coolidge tube comes from
(a) the kinetic energy of the striking electron
(b) the kinetic energy of the free electrons of the target
(c) the kinetic energy of the ions of the target
(d) an atomic transition in the target.

 4. If the potential difference applied to the tube is doubled
and the separation between the filament and the target
is also doubled, the cutoff wavelength
(a) will remain unchanged      (b) will be doubled
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(c) will be halved
(d) will become four times the original.

 5. If the current in the circuit for heating the filament is
increased, the cutoff wavelength
(a) will increase             (b) will decrease
(c) will remain unchanged      (d) will change.

 6. Moseley’s law for characteristic X-rays is √ν = a(Z − b).
In this,
(a) both a and b are independent of the material
(b) a is independent but b depends on the material
(c) b is independent but a depends on the material
(d) both a and b depend on the material.

 7. Frequencies of Kα X-rays of different materials are
measured. Which one of the graphs in figure (44-Q1)
may represent the relation between the frequency ν and
the atomic number Z.

 8. The X-ray beam coming from an X-ray tube
(a) is monochromatic
(b) has all wavelengths smaller than a certain
      maximum wavelength
(c) has all wavelengths greater than a certain minimum
      wavelength
(d) has all wavelengths lying between a minimum and
      a maximum wavelength.

 9. One of the following wavelengths is absent and the rest
are present in the X-rays coming from a Coolidge tube.
Which one is the absent wavelength ?
(a) 25 pm   (b) 50 pm   (c) 75 pm   (d) 100 pm.

10. Figure (44-Q2) shows the intensity–wavelength relations
of X-rays coming from two different Coolidge tubes. The
solid curve represents the relation for the tube A in
which the potential difference between the target and

the filament is VA and the atomic number of the target
material is ZA . These quantities are VB  and  ZB for the
other tube. Then,
(a) VA > VB, ZA > ZB       (b) VA > VB, ZA < ZB

(c) VA < VB, ZA > ZB       (d) VA < VB, ZA < ZB.

11. 50% of the X-ray coming from a Coolidge tube is able
to pass through a 0.1 mm thick aluminium foil. If the
potential difference between the target and the filament
is increased, the fraction of the X-ray passing through
the same foil will be
(a) 0%    (b) < 50%    (c) 50%    (d) > 50%.

12. 50% of the X-ray coming from a Coolidge tube is able
to pass through a 0.1 mm thick aluminium foil. The
potential difference between the target and the filament
is increased. The thickness of aluminium foil, which will
allow 50% of the X-ray to pass through, will be

(a) zero  (b) < 0.1 mm  (c) 0.1 mm  (d) > 0.1 mm.

13. X-ray from a Coolidge tube is incident on a thin
aluminium foil. The intensity of the X-ray transmitted
by the foil is found to be I0. The heating current is
increased so as to increase the temperature of the
filament. The intensity of the X-ray transmitted by the
foil will be
(a) zero     (b) < I0     (c) I0     (d) > I0.

14. Visible light passing through a circular hole forms a
diffraction disc of radius 0.1 mm on a screen. If X-ray is
passed through the same set-up, the radius of the
diffraction disc will be
(a) zero  (b) < 0.1 mm  (c) 0.1 mm  (d) > 0.1 mm.

 OBJECTIVE II

 1. For harder X-rays,
(a) the wavelength is higher
(b) the intensity is higher
(c) the frequency is higher
(d) the photon energy is higher.

 2. Cutoff wavelength of X-rays coming from a Coolidge tube
depends on the
(a) target material       (b) accelerating voltage
(c) separation between the target and the filament
(d) temperature of the filament.

 3. Mark the correct options.
(a) An atom with a vacancy has smaller energy than a
       neutral atom.
(b) K X-ray is emitted when a hole makes a jump from
       the K shell to some other shell.
(c) The wavelength of K X-ray is smaller than the

       wavelength of L X-ray of the same material.
(d) The wavelength of Kα X-ray is smaller than the
       wavelength of Kβ X-ray of the same material.

 4. For a given material, the energy and wavelength of
characterstic X-rays satisfy
(a) E(Kα) > E(Kβ) > E(Kγ)    (b) E(Mα) > E(Lα) > E(Kα)
(c) λ(Kα) > λ(Kβ) > λ(Kγ)      (d) λ(Mα) > λ(Lα) > λ(Kα).

 5. The potential difference applied to an X-ray tube is
increased. As a result, in the emitted radiation,
(a) the intensity increases
(b) the minimum wavelength increases
(c) the intensity remains unchanged
(d) the minimum wavelength decreases.

 6. When an electron strikes the target in a Coolidge tube,
its entire kinetic energy
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(a) is converted into a photon
(b) may be converted into a photon
(c) is converted into heat
(d) may be converted into heat.

 7. X-ray incident on a material
(a) exerts a force on it     (b) transfers energy to it

(c) transfers momentum to it
(d) transfers impulse to it.

 8. Consider a photon of continuous X-ray and a photon of
characteristic X-ray of the same wavelength. Which of
the following is/are different for the two photons ?
(a) Frequency           (b) Energy
(c) Penetrating power      (d) Method of creation

EXERCISES

Planck constant h = 4.14 × 10 
– 15

 eV s
 −1

, speed of light

c = 3 × 10 
8
 m s

 −1
.

                                                                                                                                                                                 

 1. Find the energy, the frequency and the momentum of
an X-ray photon of wavelength 0.10 nm.

 2. Iron emits Kα X-ray of energy 6.4 keV and calcium emits
Kα X-ray of energy 3.69 keV. Calculate the times taken
by an iron Kα photon and a calcium Kα photon to cross
through a distance of 3 km.

 3. Find the cutoff wavelength for the continuous X-rays
coming from an X-ray tube operating at 30 kV.

 4. What potential difference should be applied across an
X-ray tube to get X-ray of wavelength not less than
0.10 nm ? What is the maximum energy of a photon of
this X-ray in joule ?

 5. The X-ray coming from a Coolidge tube has a cutoff
wavelength of 80 pm. Find the kinetic energy of the
electrons hitting the target.

 6. If the operating potential in an X-ray tube is increased
by 1%, by what percentage does the cutoff wavelength
decrease ? 

 7. The distance between the cathode (filament) and the
target in an X-ray tube is 1.5 m. If the cutoff wavelength
is 30 pm, find the electric field between the cathode and
the target.

 8. The short-wavelength limit shifts by 26 pm when the
operating voltage in an X-ray tube is increased to 1.5
times the original value. What was the original value of
the operating voltage ?

 9. The electron beam in a colour TV is accelerated through
32 kV and then strikes the screen. What is the
wavelength of the most energetic X-ray photon ? 

10. When 40 kV is applied across an X-ray tube, X-ray is
obtained with a maximum frequency of 9.7 × 10 18 Hz.
Calculate the value of Planck constant from these data.

11. An X-ray tube operates at 40 kV. Suppose the electron
converts 70% of its energy into a photon at each collision.
Find the lowest three wavelengths emitted from the
tube. Neglect the energy imparted to the atom with
which the electron collides.

12. The wavelength of Kα X-ray of tungsten is 21.3 pm. It
takes 11.3 keV to knock out an electron from the L shell
of a tungsten atom. What should be the minimum
accelerating voltage across an X-ray tube having
tungsten target which allows production of Kα X-ray ?

13. The Kβ X-ray of argon has a wavelength of 0.36 nm. The
minimum energy needed to ionize an argon atom is
16 eV. Find the energy needed to knock out an electron
from the K shell of an argon atom.

14. The Kα X-rays of aluminium (Z = 13) and zinc (Z = 30)
have wavelengths 887 pm and 146 pm respectively. Use
Moseley’s law √ν = a(Z − b) to find the wavelength of the
Kα X-ray of iron (Z = 26).

15. A certain element emits Kα X-ray of energy 3.69 keV.
Use the data from the previous problem to identify the
element.

16. The Kβ X-rays from certain elements are given below.
Draw a Moseley-type plot of √ν versus Z for Kβ radiation.

Element Ne P Ca Mn Zn Br
Energy (keV) 0.858 2.14 4.02 6.51 9.57 13.3.

17. Use Moseley’s law with b = 1 to find the frequency of
the Kα X-ray of La(Z = 57) if the frequency of the Kα

X-ray of Cu(Z = 29) is known to be 1.88 × 10 18 Hz.
18. The Kα and Kβ X-rays of molybdenum have wavelengths

0.71 Å and 0.63 Å respectively. Find the wavelength of
Lα X-ray of molybdenum.

19. The wavelengths of Kα and Lα X-rays of a material are
21.3 pm and 141 pm respectively. Find the wavelength
of Kβ X-ray of the material.

20. The energy of a silver atom with a vacancy in K shell is
25.31 keV, in L shell is 3.56 keV and in M shell is 0.530
keV higher than the energy of the atom with no vacancy.
Find the frequency of Kα, Kβ  and  Lα X-rays of silver.

21. Find the maximum potential difference which may be
applied across an X-ray tube with tungsten target
without emitting any characteristic K or L X-ray. The
energy levels of the tungsten atom with an electron
knocked out are as follows.

  Cell containing vacancy K L M

  Energy in keV 69.5 11.3 2.3 

22. The electric current in an X-ray tube (from the target
to the filament) operating at 40 kV is 10 mA. Assume
that on an average, 1% of the total kinetic energy of the
electrons hitting the target are converted into X-rays.
(a) What is the total power emitted as X-rays and (b)
how much heat is produced in the target every second ?

23. Heat at the rate of 200 W is produced in an X-ray tube
operating at 20 kV. Find the current in the circuit.
Assume that only a small fraction of the kinetic energy
of electrons is converted into X-rays.
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24. Continuous X-rays are made to strike a tissue paper
soaked with polluted water. The incoming X-rays excite
the atoms of the sample by knocking out the electrons
from the inner shells. Characteristic X-rays are
subsequently emitted. The emitted X-rays are analysed
and the intensity is plotted against the wavelength
(figure 44-E1). Assuming that only Kα intensities are
detected, list the elements present in the sample from
the plot. Use Moseley’s equation
         ν = (25 × 10 14 Hz) (Z − 1) 2.

25. A free atom of iron emits Kα X-rays of energy 6.4 keV.
Calculate the recoil kinetic energy of the atom. Mass of
an iron atom = 9.3 × 10 – 26 kg.

26. The stopping potential in a photoelectric experiment is
linearly related to the inverse of the wavelength (1/λ) of
the light falling on the cathode. The potential difference
applied across an X-ray tube is linearly related to the
inverse of the cutoff wavelength (1/λ) of the X-ray
emitted. Show that the slopes of the lines in the two
cases are equal and find its value.

27. Suppose a monochromatic X-ray beam of wavelength
100 pm is sent through a Young’s double slit and the
interference pattern is observed on a photographic plate
placed 40 cm away from the slit. What should be the
separation between the slits so that the successive
maxima on the screen are separated by a distance of
0.1 mm ?

OBJECTIVE I

 1. (d)  2. (a)  3. (d)  4. (c)  5. (c)  6. (a)
 7. (d)  8. (c)  9. (a) 10. (b) 11. (d) 12. (d)
13. (d) 14. (b)

OBJECTIVE II

 1. (c), (d)  2. (b)  3. (b), (c)
 4. (c), (d)  5. (c), (d)  6. (b), (d)
 7. all  8. (d)

EXERCISES

 1. 12.4 keV, 3 × 10 18 Hz, 6.62 × 10 – 24  kg m s −1

 2. 10 µs by both

 3. 41.4 pm

 4. 12.4 kV, 2.0 × 10 – 15 J

 5. 15.5 keV
 6. approximately 1%

 7. 27.7 kV m −1

 8. 15.9 kV

 9. 38⋅8 pm

10. 4.12 × 10 – 15 eVs

11. 44.3 pm, 148 pm, 493 pm

12. 69.5 kV

13. 3.47 keV
14. 198 pm
15. calcium

17. 7.52 × 10 18 Hz

18. 5.64 Å
19. 18.5 pm

20. 5.25 × 10 18 Hz, 5.98 × 10 18 Hz, 7.32 × 10 17 Hz

21. less than 11.3 kV
22. (a) 4 W (b) 396 J
23. 10 mA
24. Zr, Zn, Cu, Fe

25. 3.9 × 10 – 4 eV

26. hc
e

 = 1.242 × 10 – 6 Vm

27. 4 × 10 – 7 m
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CHAPTER 45

SEMICONDUCTORS
AND SEMICONDUCTOR DEVICES

45.1 INTRODUCTION

We have discussed some of the properties of
conductors and insulators in earlier chapters. We
assumed that there is a large number of almost free
electrons in a conductor which wander randomly in the
whole of the body, whereas, all the electrons in an
insulator are tightly bound to some nucleus or the
other. If an electric field E

→
 is established inside a

conductor, the free electrons experience force due to
the field and acquire a drift speed. This results in an
electric current. The conductivity σ is defined in terms
of the electric field E

→
 existing in the conductor and the

resulting current density j
→
. The relation between these

quantities is

            j
→
 = σE

→
.

Larger the conductivity σ, better is the material as a
conductor.

The conductivity σ of a conductor, such as copper,
is fairly independent of the electric field applied and
decreases as the temperature is increased. This is
because as the temperature is increased, the random
collisions of the free electrons with the particles in the
conductor become more frequent. The electrons get less
time to gain energy from the applied electric field. This
results in a decrease in the drift speed and hence the
conductivity decreases. The resistivity ρ = 1/σ of a
conductor increases as the temperature increases.

Almost zero electric current is obtained in
insulators unless a very high electric field is applied.

We now introduce another kind of solid known as
semiconductor. These solids do conduct electricity
when an electric field is applied, but the conductivity
is very small as compared to the usual metallic
conductors. Silicon is an example of a semiconductor,
its conductivity is about 1011 times smaller than that
of copper and is about 1013 times larger than that of

fused quartz. Another distinguishing feature about a
semiconductor is that its conductivity increases as the
temperature is increased. To understand the
mechanism of conduction in solids, let us discuss
qualitatively, formation of energy bands in solids.

45.2 ENERGY BANDS IN SOLIDS

The electrons of an isolated atom can have certain
definite energies labelled as 1s, 2s, 2p, 3s, etc. Pauli
exclusion principle determines the maximum number
of electrons which can be accommodated in each
energy level. An energy level consists of several
quantum states and no quantum state can contain
more than one electron. Consider a sodium atom in its
lowest energy state. It has 11 electrons. The electronic
configuration is (1s)2 (2s)2 (2p)6 (3s)1. The levels 1s, 2s
and 2p are completely filled and the level 3s contains
only one electron although it has a capacity to
accommodate 2. The next allowed energy level is 3p
which can contain 6 electrons but is empty. All the
energy levels above 3s are empty.

Now consider a group of N sodium atoms separated
from each other by large distances such as in sodium
vapour. There are altogether 11N electrons. Assuming
that each atom is in its ground state, what are the
energies of these 11N electrons ? For each atom, there
are two states in energy level 1s. There are 2N such
states which have identical energy and are filled by
2N electrons. Similarly, there are 2N states having
identical energy labelled 2s, 6N states having identical
energy labelled 2p and 2N states having identical
energy labelled 3s. The 2N states of 1s, 2N states of
2s and 6N states of 2p are completely filled whereas
only N of the 2N states of 3s are filled by the electrons
and the remaining N states are empty. These ideas
are shown in table (45.1) and figure (45.1).



Table 45.1 : Quantum states in sodium vapour

Energy level Total states
available

Total states
occupied

1s 2N 2N
2s 2N 2N
2p 6N 6N
3s 2N  N
3p 6N  0

The value of energy in a particular state of an
isolated sodium atom is determined by the mutual
interactions among the nucleus and the 11 electrons.
In the collection of the N sodium atoms that we have
considered, it is assumed that the atoms are widely
separated from each other and hence the electrons of
one atom do not interact with those of the others to
any appreciable extent. As a result, the energy of 1s
states of each atom is the same as that for an isolated
atom. All the 1s states, therefore, have identical
energy. Similarly, all the 2s, 2p, 3s states have
identical energies, respectively. Now suppose, the
atoms are drawn closer to one another to the extent
that the outer 3s electron of one atom starts
interacting with the 3s electrons of the neighbouring
atoms. Because of these interactions, the energy of the
3s states will change. It turns out that the changes in
energy in all the 2N states of 3s level are not identical.
Some of the states are shifted up in energy and some
are pushed down. The magnitude of change is also
different for different states of the 3s level. As a result,
what was a sharply defined 3s energy, now becomes a
combination of several closely spaced energies. We say
that these 2N states have formed an energy band. We
label this band as 3s band. The inner electrons interact
weakly with each other so that this splitting of sharp
energy levels into bands is less for inner electrons.

Figure (45.2) shows schematically this splitting of
energy levels in bands. We have a 3s band which
contains 2N states with slightly different energies, N
of them are occupied by the N electrons of sodium
atoms and the remaining N states are empty.
Similarly, we talk of the 2p band which contains 6N
states with slightly different energies and all these

states are filled. Similar is the case for other inner
bands. The difference between the highest energy in a
band and the lowest energy in the next higher band
is called the band gap between the two bands.

Sodium was taken only as an example. We have
energy bands separated by band gaps in all solids. At
0 K, the energy is the lowest and the electrons fill the
bands from the bottom according to the Pauli exclusion
principle till all the electrons are accommodated. As
the temperature is raised, the electrons may collide
with each other and with ions to exchange energy. At
an absolute temperature T, the order of energy
exchanged is kT where k is the Boltzmann constant.
This is known as thermal energy. At room temperature
(300 K), kT is about 0.026 eV. Suppose the band gaps
are much larger than kT. An electron in a completely
filled band does not find an empty state with a slightly
higher or a slightly lower energy. It, therefore, cannot
accept or donate energy of the order of kT and hence
does not take part in processes involving energy
exchange. This is the case with inner bands which are,
in general, completely filled. The outermost electrons
which are in the highest occupied energy band, may
take up this energy ≈ kT if empty states are available
in the same band. For example, a 3s electron in sodium
can take up thermal energy and go to an empty state
at a slightly more energy.

Similar is the scenario when an electric field is
applied by connecting the sodium metal to a battery.
The electric field, in general, can supply only a small
amount of energy to the electrons. Only the electrons
in the highest occupied band can accept this energy.
These electrons can acquire kinetic energy and move
according to the electric field. This results in electric
current. The electrons in the inner bands cannot accept
small amounts of energy from the electric field and
hence do not take part in conduction.

The energy band structure in solids may be
classified in four broad types as shown in figure (45.3).
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(a) The highest occupied energy band is only
partially filled at 0 K (figure 45.3a). Sodium is an
example of this kind. If the electronic configuration is
such that the outermost subshell contains odd number
of electrons, we get this type of band structure. They
are good conductors of electricity because as an electric
field is applied, the electrons in the partially filled
band can receive energy from the field and drift
accordingly.

(b) The highest occupied energy level is completely
filled at 0 K and the next higher level is completely
empty when the atoms are well-separated. But as the
atoms come closer and these levels split into bands,
the bands overlap with each other (figure 45.3b). Zinc
is an example of this kind. The electronic configuration
of zinc is (1s)2 (2s) 2 (2p)6 (3s) 2 (3p)6 (3d) 10 (4s) 2. The
highest energy level—that contains any electron when
the zinc atoms are well-separated—is the 4s level and
all the 2N states in it are occupied by electrons.
However, in solid zinc, the 4p band overlaps with the
4s band. In this case also, there are empty states at
energies close to the occupied states and hence these
solids are also good conductors.

(c) The highest occupied energy band is completely
filled and the next higher band, which is empty, is well
above it (figure 45.3c). The band gap between these
two bands is large. The electrons do not have empty
states at an energy slightly above or below their
existing energies. If an electric field is applied by
connecting the two ends of such a solid to a battery,
the electrons will refuse to receive energy from the
field. This is because they do not find an empty state
at a slightly higher energy. Diamond is an example of
this kind. The gap between the lowest empty band and
the highest filled band is about 6 eV. The electric field
needed to supply 6 eV energy to an electron is of the
order of 10 7 V m –1 in copper (see example 45.1).
Assuming the same value for diamond; if we take a
10 cm slab of diamond, we will have to use a battery
of 10 6 volts to get response from an electron. These
solids are, therefore, insulators.

(d) The highest occupied band is completely filled at
0 K but the next higher band, which is empty, is only
slightly above the filled band (figure 45.3d). The band
structure is very similar to that of an insulator but the
band gap between these two bands is small. An example
is silicon in which the band gap is 1.1 eV. It is still
difficult for an ordinary battery to supply an energy of
the order of 1.1 eV to an electron. However, at
temperatures well above 0 K, thermal collisions may
push some of the electrons from the highest occupied
band to the next empty band. These few electrons, in the
otherwise empty band, can respond to even a weak
battery because they have a large number of empty

states just above their existing energy. As electrons
from a filled band are pushed up in energy to land
into a higher energy band, empty states are created
in this filled band. These empty states allow some
movement of electrons in that band and thus promote
conduction. As the total number of electrons that can
receive energy from the electric field is small, the
conductivity is quite small as compared to common
conductors. Such solids are called semiconductors.

The energy bands which are completely filled at
0 K are called valence bands. The bands with higher
energies are called conduction bands. We are generally
concerned with only the highest valence band and the
lowest conduction band. So when we say valence band,
it means the highest valence band. Similarly, when we
say conduction band, it means the lowest conduction
band. Study the labels ‘conduction band (CB)’ and
‘valence band (VB)’ in figure (45.3).

Example 45.1

   The mean free path of conduction electrons in copper is

about 4 × 10 − 8 m. For a copper block, find the electric
field which can give, on an average, 1 eV energy to a
conduction electron.

Solution : Let the electric field be E. The force on an
electron is eE. As the electron moves through a distance
d, the work done on it is eEd. This is equal to the energy
transferred to the electron. As the electron travels an

average distance of 4 × 10 − 8 m before a collision, the

energy transferred is eE(4 × 10 − 8 m). To get 1 eV energy
from the electric field,

         eE(4 × 10 − 8 m) = 1 eV

or,        E = 2.5 × 10 7 V m −1.

Let us now consider the physical picture of
conductors, insulators and semiconductors in a Bohr-
type model. The inner electrons are tightly bound to
the nuclei and move in their well-defined orbits. In a
conductor, the outermost subshell is not completely
filled and the electrons moving around one nucleus can
jump to a similar orbit around some other nucleus
(figure 45.4a). This is possible because there is an
empty state there to accommodate the electron. For
example, a 3s electron of one sodium atom can jump
to the 3s orbit of some other sodium atom because out
of the two 3s states only one, in general, is filled.
Similar is the case with zinc-type metals. The 4p orbits
in zinc atoms are, in general, empty. As the 4p band
overlaps with the 4s band, the energy of a 4p state is
not too different from a 4s state. Thus, without
demanding for excessive energy, a 4s electron can jump

Semiconductors and Semiconductor Devices 399



into the 4p orbit of its own atom or of some other atom
(figure 45.4b).

In insulators, even the outermost electrons are
tightly bound to their respective nuclei. The subshell
in which they lie is completely filled and the next
higher orbit is at a much higher energy. No drift is
then possible (figure 45.4c).

In semiconductors at room temperature or above,
some electrons move around the nuclei with a much
larger radius. These large orbits are nearly empty and
so the electrons in these orbits may jump from one
atom to the other easily. These are the electrons in
conduction band and are called conduction electrons
(figure 45.4d).

45.3 THE SEMICONDUCTOR 

As discussed above, in semiconductors the
conduction band and the valence band are separated
by a relatively small energy gap. For silicon, this gap
is 1.1 eV. For another common semiconductor
germanium, the gap is 0.68 eV.

Silicon has an atomic number of 14 and electronic
configuration (1s) 2(2s) 2(2p) 6(3s) 2(3p) 2. The chemistry
of silicon tells us that each silicon atom makes covalent
bonds with the four neighbouring silicon atoms. To
form a covalent bond, two silicon atoms contribute one
electron each and the two electrons are shared by the
two atoms. Both of these electrons are in the valence
band. Due to collision, one of these valence electrons
may acquire additional energy and it may start
orbiting the silicon nucleus at a larger radius. Thus,
the bond is broken. One electron has gone into the
conduction band, it is moving in an orbit of large
radius and is frequently jumping from one nucleus to
another.

Figure (45.5a) represents a model of solid silicon.
The four outer electrons of each atom form bonds with
the four neighbouring atoms. Each bond consists of two
electrons. Figure (45.5b) shows a broken bond

represented by the dashed line. The electron
corresponding to this bond has acquired sufficient
energy and has jumped into the conduction band. So
there is a vacancy for an electron at the site of the
broken bond. In a semiconductor, a number of such
broken bonds and conduction electrons exist. Now
consider the situation shown in figure (45.5c). The
bond between the atoms A and B is broken. A bonding
electron between A and C can make a jump towards
the left and fill the broken bond between A and B. Not
much energy is needed to induce such a transfer. This
is because, the electron makes transition from one
bond to other only and all bond electrons have roughly
the same energy.

As the broken bond AB is filled, the bond AC is
broken (figure 45.5d). Thus, the vacancy has shifted
towards the right. Any movement of a valence electron
from one bond to a nearby broken bond may be
described as the movement of vacancy in the opposite
direction. It is customary in semiconductor physics to
treat a vacancy in valence band as a particle having
positive charge +e. Movement of electrons in valence
band is then described in terms of movement of
vacancies in the opposite directions. Such vacancies
are also called holes. 

Whenever a valence electron is shifted to
conduction band, a hole is created. Thus, in a pure
semiconductor, the number of conduction electrons
equals the number of holes. When an electric field is
applied, conduction electrons drift opposite to the field
and holes drift along the field. That is why, holes are
assumed to have positive charge. Conduction takes
place due to the drift of conduction electrons as well
as of holes. Such pure semiconductors are also called
intrinsic semiconductors. The chemical structure of
germanium is the same as that of silicon and hence
the above discussion is equally applicable to it.

45.4 p-TYPE AND n-TYPE SEMICONDUCTORS

In an intrinsic semiconductor, like pure silicon,
only a small fraction of the valence electrons are able

Figure 45.5
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to reach the conduction band. The conduction
properties of a semiconductor can be drastically
changed by diffusing a small amount of impurity in it.
The process of diffusing an impurity is also known as
doping. Suppose a small amount of phosphorus
(Z = 15) is diffused into a silicon crystal. Each
phosphorus atom has five outer electrons in the
valence band. Some of the phosphorus atoms displace
the silicon atoms and occupy their place. A silicon atom
has four valence electrons locked in covalent bonds
with neighbouring four silicon atoms. Phosphorus
comes in with five valence electrons. Four electrons
are shared with the neighbouring four silicon atoms.
The fifth one moves with a large radius (≈ 30 Å) round
the phosphorus ion. The energy of this extra electron
is much higher than the valence electrons locked in
covalent bonds. In fact, the energy levels for these
extra electrons—known as impurity levels—are only
slightly below the conduction band (0.045 eV for
phosphorus in silicon). This small gap is easily covered
by the electrons during thermal collisions and hence a
large fraction of them are found in the conduction
band. Figure (45.6) shows qualitatively the situation
in such a doped semiconductor.

When a phosphorus atom with five outer electrons
is substituted for a silicon atom, an extra electron is
made available for conduction. Thus, the number of
conduction electrons increases due to the introduction
of a pentavalent impurity in silicon. The conduction
properties are, therefore, very sensitive to the amount
of the impurity. The introduction of phosphorus in the
proportion of 1 in 10 6 increases the conductivity by a
factor of about 10 6. Interesting desired results may be
obtained by controlling the amount and distribution of
impurity in a semiconductor.

Such impurities, which donate electrons for
conduction, are called donor impurities. As the number
of negative charge carriers is much larger than the
number of positive charge carriers, these semi-
conductors are called n-type semiconductors. What
happens if a trivalent impurity— such as aluminium—
is doped into silicon ? Silicon atom with four valence
electrons is substituted by an aluminium atom with
three valence electrons. These three electrons are used

to form covalent bonds with the neighbouring three
silicon atoms but the bond with the fourth neighbour
is not complete. The broken bond between the
aluminium atom and its fourth neighbour can be filled
by another valence electron if this electron obtains an
extra energy of about 0.057 eV. A hole is then created
in the valence band. We say that impurity levels are
created a little above the valence band (0.057 eV for
aluminium in silicon). The valence electrons can cross
over to these levels leaving behind the holes, which
are responsible for conduction (figure 45.7). As the
energy gap ∆E between the valence band and the
impurity levels is comparable to kT, large number of
holes are created. The number of holes in such a doped
semiconductor is much larger than the number of
conduction electrons. As the majority charge carriers
are holes, i.e., positive charges, these semiconductors
are called p-type semiconductors. The impurity of this
kind creates new levels which can accept valence
electrons, hence these impurities are called acceptor
impurities.

Semiconductors with an impurity doped into it are
called extrinsic semiconductor. Figure (45.8) shows a
schematic representation of intrinsic and extrinsic
semiconductors.

45.5 DENSITY OF CHARGE CARRIERS
    AND CONDUCTIVITY

Due to thermal collisions, an electron can take up
or release energy. Thus, occasionally a valence electron
takes up energy and the bond is broken. The electron
goes to the conduction band and a hole is created. And
occasionally, an electron from the conduction band
loses some energy, comes to the valence band and fills
up a hole. Thus, new electron–hole pairs are formed
as well as old electron–hole pairs disappear. A
steady-state situation is reached and the number of
electron–hole pairs takes a nearly constant value. For
silicon at room temperature (300 K), the number of
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these pairs is about 7 × 10 15 m –3. For germanium,
this number is about 6 × 10 1 m −3.

Table (45.2) gives a rough estimate of the
densities of charge carriers in a typical conductor
and in some of the semiconductors. Note that the
product of density of conduction electrons and
density of holes is constant for a semiconductor when
it is doped with impurities.

Table 45.2 : Densities of charge carriers

Material Type Density of
conduction
electrons
(m – 3)

Density of
holes
(m – 3)

Copper Conductor 9 × 10 28 0

Silicon Intrinsic
semiconductor

7 × 10 15 7 × 10 15

Silicon doped
with
phosphorus
(1 part in 106)

n-type
semiconductor

5 × 10 22 1 × 10 9

Silicon doped
with
aluminium
(1 part in 106)

p-type
semiconductor

1 × 10 9 5 × 10 22

The conductivity of a metal is given as

            σ = 
j
E

= ne



v
E





where n is the density of conduction electrons and v
is the drift speed when an electric field E is applied.
The quantity v/E is known as the mobility of the
electrons. Writing the mobility as µ,

         σ = neµ.

This equation is slightly modified for
semiconductors. Here conduction is due to the
conduction electrons as well as due to the holes.
Electron mobility and hole mobility are also, in
general, different. The conductivity of a semiconductor
is, therefore, written as

         σ = nee µe + nhe µh

where ne, nh are the densities of conduction electrons
and the holes respectively and µe, µh are their
mobilities.

Example 45.2

   Calculate the resistivity of an n-type semiconductor from
the following data: density of conduction electrons
= 8 × 10 13 cm − 3, density of holes = 5 × 10 12 cm − 3,
mobility of conduction electron = 2.3 × 10 4 cm 2 V −1s −1

and mobility of holes = 100 cm 2 V −1s −1.

Solution : The conductivity of the semiconductor is
   σ = e(ne µe + nhµh)

= (1.6 × 10 − 19 C) [(8 × 10 19 m − 3) × (2.3 m 2 V −1s −1)

             + (5 × 10 18 m − 3) × (10 − 2 m − 2 V −1s −1)]

≈ 2.94 Cm −1 V −1 s −1 ⋅

The resistivity is ρ = 
1
σ

 = 
1

2.94
 m Vs C −1 ≈ 0.34 Ωm.

Temperature Dependence of Conductivity
of a Semiconductor

If temperature is increased, the average energy
exchanged in a collision increases. More valence
electrons cross the gap and the number of
electron–hole pairs increases. It can be shown that the
number of such pairs is proportional to the factor
T 3/2 e − ∆E/2kT, where ∆E is the band gap. The increase
in the number of electron–hole pairs results in an
increase in the conductivity, i.e., a decrease in the
resistivity of the material.

There is a small opposing behaviour due to the
increase in thermal collisions. The drift speed and
hence the mobility decreases and this contributes
towards increasing the resistivity just like a conductor.
However, the effect of increasing the number of charge
carriers is much more prominent than the effect of the
decrease in drift speed. The resultant effect is that the
resistivity decreases as the temperature increases. The
temperature coefficient of resistivity is, therefore,
negative. Its average value for silicon is –0.07 K − 1.
This behaviour is opposite to that of a conductor where
resistivity increases with increasing temperature.

45.6 p-n JUNCTION

When a semiconducting material such as silicon or
germanium is doped with impurity in such a way that
one side has a large number of acceptor impurities and
the other side has a large number of donor impurities,
we obtain a p-n junction. To construct a p-n junction,
one may diffuse a donor impurity to a pure
semiconductor so that the entire sample becomes
n-type. The acceptor impurity may then be diffused in
higher concentration from one side to make that side
p-type. Figure (45.9) shows the physical structure of a
typical p-n junction.

Consider the idealized situation of a p-n junction
at the time of its formation shown in figure (45.10).

metalized film metal contact

p-type

n-type region~0.01

 ~0.05 

metal 
contact

Figure 45.9
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The symbol e represents a conduction electron and h
represents a hole. Suppose that at the time of
formation, the left-half is made p-type and the right-
half n-type semiconductor. These two portions may be
called p-side and n-side respectively.

This cannot be the equilibrium situation. As there
is a large concentration of holes in the left-half and
only a small concentration of holes in the right-half,
there will be diffusion of holes towards the right.
Physically, this means that some of the valence
electrons just to the right of the junction may fill up
the vacancies just to the left of the junction. Similarly,
because of the concentration difference, conduction
electrons diffuse from the right to the left. The ions as
such do not move because of their heavy masses. As
the two halves (left-half and right-half) were
electrically neutral in the  beginning, diffusion of holes
towards the right and diffusion of electrons towards
the left make the right-half positively charged and the
left-half negatively charged. This creates an electric
field near the junction from the right to the left. Any
hole near the junction is pushed by the electric field
into the left-half. Similarly, any conduction electron
near the junction is pushed by the electric field into
the right-half. Thus, no charge carrier can remain in
a small region near the junction. This region is called
the depletion layer (figure 45.11).

Diffusion Current

Because of the concentration difference, holes try
to diffuse from the p-side to the n-side. In figure
(45.11), this is from the left to the right. However, the
electric field at the junction exerts a force on the holes
towards the left as they come to the depletion layer.
Only those holes which start moving towards the right
with a high kinetic energy are able to cross the
junction. Similarly, diffusion of electrons from the right
to the left is opposed by the field and only those
electrons which start towards the left with high kinetic
energy are able to cross the junction. The electric
potential of the n-side is higher than that of the p-side,
the variation in potential is sketched in figure (45.12).

We say that there is a potential barrier at the junction
which allows only a small amount of diffusion.
Nevertheless, there are some energetic holes and
electrons which surmount the barrier and some
diffusion does take place. This diffusion results in an
electric current from the p-side to the n-side known as
diffusion current.

Drift Current

Because of thermal collisions, occasionally a
covalent bond is broken and the electron jumps to the
conduction band. An electron–hole pair is thus created.
Also, occasionally a conduction electron fills up a
vacant bond so that an electron–hole pair is destroyed.
These processes continue in every part of the material.
However, if an electron–hole pair is created in the
depletion region, the electron is quickly pushed by the
electric field towards the n-side and the hole towards
the p-side. There is almost no chance of recombination
of a hole with an electron in the depletion region. As
electron–hole pairs are continuously created in the
depletion region, there is a regular flow of electrons
towards the n-side and of holes towards the p-side.
This makes a current from the n-side to the p-side.
This current is called the drift current.

The drift current and the diffusion current are in
opposite directions. In steady state, the diffusion
current equals the drift current in magnitude and
there is no net transfer of charge at any cross-section.
This is the case with a p-n junction kept in a cupboard.

45.7 p-n JUNCTION DIODE

Let us now discuss what happens if a battery is
connected to the ends of a p-n junction. Figure (45.13)
shows situations when (a) no battery is connected to
the junction, (b) a battery is connected with its positive
terminal connected to the p-side and the negative
terminal connected to the n-side and (c) a battery is
connected with its positive terminal connected to the
n-side and the negative terminal connected to the
p-side. If the positive terminal of the battery is
connected to the p-side and the negative terminal to
the n-side, we say that the junction is forward-biased
(figure 45.13b). The potential of the n-side is higher
than that of the p-side when no battery is connected
to the junction. Due to the forward-bias connection, the
potential of the p-side is raised and hence the height
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of the potential barrier decreases. The width of the
depletion region is also reduced in forward bias (figure
45.13b).

This allows more diffusion to take place. The
diffusion current thus increases by connecting a battery
in forward bias. The drift current remains almost
unchanged because the rate of formation of new
electron–hole pairs is fairly independent of the electric
field unless the field is too large. Thus, the diffusion
current exceeds the drift current and there is a net
current from the p-side to the n-side. The diffusion
increases as the applied potential difference is increased
and the barrier height is decreased. When the applied
potential difference is so high that the potential barrier
is reduced to zero or is reversed, the diffusion increases
very rapidly. The current i in the circuit thus changes
nonlinearly with the applied potential difference. A p-n
junction does not obey Ohm’s law.

If the p-side of the junction is connected to the
negative terminal and the n-side to the positive
terminal of a battery, the junction is said to be
reverse-biased. In this case, the potential barrier
becomes higher as the battery further raises the
potential of the n-side  (figure 41.13c). The width of
the depletion region is increased. Diffusion becomes
more difficult and hence the diffusion current
decreases. The drift current is not appreciably affected
and hence it exceeds the diffusion current. So, there
is a net current from the n-side to the p-side. However,
this current is small as the drift current itself is small
(typically in microamperes) and the net current is even
smaller. Thus, during reverse bias, only a small
current is allowed by the junction. We say that the
junction offers a large resistance when reverse-biased.

Figure (45.14) shows a qualitative plot of current
versus potential difference for a p-n junction. This is
known as an i–V characteristic of the p-n junction.
Note that the scales for the current are different for
positive and negative current.

We see that the junction offers a little resistance if
we try to pass an electric current from the p-side to the
n-side and offers a large resistance if the current is
passed from the n-side to the p-side. Any device which
freely allows electric current in one direction but does
not allow it in the opposite direction is called a diode.
Thus, a p-n junction acts as a diode. An ideal diode
should not allow any current in the reverse direction. A
p-n junction diode is close to an ideal diode because the
current in reverse bias is very small (few microamperes).
The diode is symbolised as            , the arrow pointing
in the direction in which the current can pass freely. For
a p-n junction diode, the arrow points from the p-side to
the n-side. We have already studied a vacuum-tube diode
based on thermionic emission in an earlier chapter.

Dynamic Resistance

The dynamic resistance of a p-n junction diode is
defined as

             R  
V
i

where V denotes a small change in the applied
potential difference and i denotes the corresponding
small change in the current. The dynamic resistance
is a function of the operating potential difference. It is
equal to the reciprocal of the slope of the i–V
characteristic shown in figure (45.14).

Example 45.3

   The i–V characteristic of a p-n junction diode is shown
in figure (45.15). Find the approximate dynamic
resistance of the p-n junction when (a) a forward bias of
1 volt is applied, (b) a forward bias of 2 volt is applied.

Figure 45.15
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Solution : (a) The current at 1 volt is 10 mA and at 1.2 volt
it is 15 mA. The dynamic resistance in this region is

        R  
V
i

  
0.2 volt
5 mA

  40 .

(b) The current at 2 volt is 400 mA and at 2.1 volt it is
800 mA. The dynamic resistance in this region is

       R  
V
i

  
0.1 volt
400 mA

  0.25 .

Photodiode

Photodiode is a p-n junction whose function is
controlled by the light allowed to fall on it. Suppose, the
wavelength is such that the energy of a photon, hc/, is
sufficient to break a valence bond. When such light falls
on the junction, new hole–electron pairs are created. The
number of charge carriers increases and hence the
conductivity of the junction increases. If the junction is
connected in some circuit, the current in the circuit is
controlled by the intensity of the incident light.

Light-emitting Diode (LED)

When a conduction electron makes a transition to
the valence band to fill up a hole in a p-n junction, the
extra energy may be emitted as a photon. If the
wavelength of this photon is in the visible range
(380 nm–780 nm), one can see the emitted light. Such a
p-n junction is known as light-emitting diode abbreviated
as LED. For silicon or germanium, the wavelength falls
in the infrared region. LEDs may be made from
semiconducting compounds like gallium such as,
arsenide or indium phosphide. LEDs are very commonly
used in electronic gadgets as indicator lights.

Zener Diode

If the reverse-bias voltage across a p-n junction
diode is increased, at a particular voltage the reverse
current suddenly increases to a large value. This
phenomenon is called breakdown of the diode and the
voltage at which it occurs is called the breakdown
voltage. At this voltage, the rate of creation of
hole–electron pairs is increased leading to the
increased current.

There are two main processes by which breakdown
may occur. The holes in the n-side and the conduction
electrons in the p-side are accelerated due to the
reverse-bias voltage. If these minority carriers acquire
sufficient kinetic energy from the electric field and
collide with a valence electron, the bond will be broken
and the valence electron will be taken to the
conduction band. Thus a hole–electron pair will be
created. Breakdown occurring in this manner is called
avalanche breakdown. Breakdown may also be
produced by direct breaking of valence bonds due to

high electric field. When breakdown occurs in this
manner it is called zener breakdown.

A diode meant to operate in the breakdown region
is called an avalanche diode or a zener diode depending
on the mechanism of breakdown. Once the breakdown
occurs, the potential difference across the diode does
not increase even if the applied battery potential is
increased. Such diodes are used to obtain constant
voltage output. Figure (45.16) shows the i–V
characteristic of a zener diode including the breakdown
region and a typical circuit which gives constant
voltage V0 across the load resistance RL. Even if there
is a small change in the input voltage Vi, the current
through RL remains almost the same. The current
through the diode changes but the voltage across it
remains essentially the same. Note the symbol used
for the zener diode.

45.8 p-n JUNCTION AS A RECTIFIER

A rectifier is a device which converts an
alternating voltage into a direct voltage. A p-n

R

V
i

RL

+

–

V0

(b)

(a)

i

Vidr

10 A

Figure 45.16

�

�

��

�

��	

 �

� �

�	




Figure 45.17

Semiconductors and Semiconductor Devices 405



junction can be used as a rectifier because it permits
current in one direction only. Figure (45.17a) shows an
AC source connected to a load resistance through a p-n
junction. The potential at the point A is taken to be
zero. The potential at B varies with time as
V = V0 sin(ωt + ϕ). During the positive half-cycle, V > 0
and B is at a higher potential than A. In this case, the
junction is forward-biased and a current i is
established in the resistance in the direction C to A.

The current through the resistance during this
half-cycle is given by

           i = 
V0 sin(ωt + ϕ)
R + Rjunction

and the potential difference across it is

           
RV0 sin(ωt + ϕ)

R + Rjunction
 ⋅

Here Rjunction is the resistance offered by the p-n
junction.

In forward bias, Rjunction << R so that

           i ≈ 
V0

R
 sin(ωt + ϕ).

During the next half-cycle, V < 0 and the potential
at the point B becomes smaller than that at A. The
junction is thus reverse-biased and offers a large
resistance during this half-cycle and there is only a
negligible current in the circuit. The current in the
resistance is thus unidirectional. The variations in
voltage and current with time are sketched in figure
(45.17b).

This is called half-wave rectification because there
is practically no current during alternate half-cycles.
A full-wave rectification can be achieved by using two
diodes as shown in figure (45.18). The AC potential
difference is obtained across the secondary of a
transfomer and is connected in the circuit. In one
half-cycle, VA > VC > VB so that the junction D1 conducts
but D2 does not. The current is from A to D1 to E to
C. In the next half-cycle, VB > VC > VA so that D2

conducts whereas D1 does not. The current is from B
to D2 to E to C. In both the half-cycles, the current in
the load resistance is from E to C.

45.9 JUNCTION TRANSISTORS

A junction transistor is formed by sandwiching a
thin layer of a p-type semiconductor between two
layers of n-type semiconductors or by sandwiching a
thin layer of an n-type semiconductor between two
layers of p-type semiconductors. In  figure (45-19a), we
show a transistor in which a thin layer of a p-type
semiconductor is sandwiched between two n-type
semiconductors. The resulting structure is called an
n-p-n transistor. In figure (45.19b), we show a p-n-p
transistor, where an n-type thin layer is sandwiched
between two p-type layers. In actual design, the middle
layer is very thin (≈ 1 µm) as compared to the widths
of the two layers at the sides. The middle layer is
called the base and is very lightly doped with impurity.
One of the outer layers is heavily doped and is called
emitter. The other outer layer is moderately doped and
is called collector. Usually, the emitter–base contact
area is smaller than the collector–base contact area.
Terminals come out from the emitter, the base and the
collector for external connections. Thus, a transistor is
a three-terminal device.

Figure (45.20) shows the symbols used for a
junction transistor. In normal operation of a transistor,
the emitter–base junction is always forward-biased
whereas the collector–base junction is reverse-biased.
The arrow on the emitter line shows the direction of
the current through the emitter–base junction. In an
n-p-n transistor, there are a large number of
conduction electrons in the emitter and a large number
of holes in the base. If the junction is forward-biased,
the electrons will diffuse from the emitter to the base
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and holes will diffuse from the base to the emitter.
The direction of electric current at this junction is,
therefore, from the base to the emitter. This is
indicated by the outward arrow on the emitter line in
figure (45.20a). Similarly, for a p-n-p transistor the
current is from the emitter to the base when this
junction is forward-biased which is indicated by the
inward arrow in figure (45.20b).

Biasing

Suitable potential differences should be applied
across the two junctions to operate the transitor. This
is called biasing the transistor. A transistor can be
operated in three different modes: common-emitter (or
grounded-emitter), common-collector (or grounded-
collector) and common-base (or grounded-base). In
common-emitter mode, the emitter is kept at zero
potential and the other two terminals are given
appropriate potentials (figure 45.21a). Similarly, in
common-base mode, the base is kept at zero potential
(figure 45-21b) whereas in common-collector mode, the
collector is kept at zero potential (figure 45-21c).

Working of a Transistor

Let us consider an n-p-n transistor connected to
the proper biasing batteries as shown in figure (45.22).
In part (a) of the figure, a physical picture of the
transistor is used whereas in part (b), its symbol is
used. Let us look at the current due to electrons. The
emitter–base junction is forward-biased, so electrons
are injected by the emitter into the base. The thickness
of the base region is so small that most of the electrons
diffusing into the base region cross over into the
collector region. The reverse bias at the base–collector
junction helps this process, because, as the electrons
appear near this junction they are attracted by the

collector. These electrons go through the batteries VCC

and VEE and are then back to the emitter.
The electrons going from the battery VEE to the

emitter constitute the electric current IE in the opposite
direction. This is known as emitter current. Similarly,
the electrons going from the collector to the battery
VCC constitute the collector current IC.

We have considered only the current due to the
electrons. Similar is the story of the holes which move
in the opposite direction but result in current in the
same direction. Currents IE and IC refer to the net
currents. However, since the base is only lightly doped,
the hole concentration is very low and the current in
an n-p-n transistor is mostly due to the electrons. As
almost all the electrons injected into the emitter go
through the collector, the collector current IC is almost
equal to the emitter current. In fact, IC is slightly
smaller than IE because some of the electrons coming
to the base from the emitter may find a path directly
from the base to the battery VEE. This constitutes a
base current IB. The physical design of the transistor
ensures that such events are small and hence IB is
small. Typically, IB may be 1% to 5% of IE.

Using Kirchhoff ’s law, we can write
           IE  IB  IC.  (45.1)

 and  Parameters

 and  parameters of a transistor are defined as

             
IC

IE
  and    

IC

IB
   (45.2)

Using equation (45.1),

              
IE

IC
  

IB

IC
  1  (i)

   or,          
1


  
1


  1

   or,   


1  
   (45.3)

As IB is about 1–5% of IE ,  is about 0.95 to 0.99
and  is about 20 to 100.

Transistor Used in an Amplifier Circuit

Figure (45.23) shows an amplifier circuit using an
n-p-n transistor in common-emitter mode. The battery
EB provides the biasing voltage VBE for the�
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base–emitter junction. A potential difference VCE is
maintained between the collector and the emitter by
the battery EC. The base–emitter junction is forward-
biased and so the electrons of the emitter flow towards
the base. As the base region is very thin—of the order
of a micrometre—and the collector is also maintained
at a positive potential, most of the electrons cross the
base region and move into the collector. As discussed
earlier, the current IC is about 0.95 IE to 0.99 IE.

The holes in the base region may diffuse into the
emitter due to the forward biasing of the base–emitter
junction. Also, the electrons coming from the emitter
may recombine with some of the holes in the base. If
the holes are lost in this way, the base will become
negatively charged and will obstruct the incoming
electrons from the emitter. If the base current IB is
increased by a small amount, the effect of
hole-diffusion and hole–electron recombination may be
neutralised and the collector current will be increased.
Thus, a small change in the current IB in the base
circuit controls the larger current IC in the collector
circuit. This is the basis of amplification with the help
of a transistor.

The input signal, to be amplified, is connected in
series with the biasing battery EB in the base circuit.
A load resistor having a large resistance RL is
connected in the collector circuit and the output
voltage is taken across this resistor. As the potential
difference VBE changes with time due to the input
signal, the base current IB changes. This results in a
change ∆IC in the collector current. The current gain,
defined as ∆IC /∆IB, is typically of the order of 50. The
change in the voltage across RL is, accordingly,
             ∆V = RL∆IC.
Thus, an amplified output is obtained across RL.

Voltage gain, current gain and power gain

When a signal voltage vi is added in the base
circuit, the voltage across the load resistance changes

by vo. The ratio 
vo
vi

 is called the voltage gain of the

amplifier.

Suppose the input signal has a voltage vi at an
instant. This produces a change in the base current
IB. As the base–emitter junction is forward-biased, it
offers a small dynamic resistance RBE. The change in
the current in the base circuit is

        ∆IB = 
vi

RBE
 ⋅

The resistance RBE is also called the input-
resistance of the circuit.

The collector current Ic is related to IB as
Ic = βIB.

Thus, the change in current IC due to the signal
voltage is,

          ∆IC = β∆IB = β 
vi

RBE
 ⋅

The output voltage, i.e., the change in the voltage
across the load resistance is

         vo = ∆V = RL ∆IC = 
βviRL

RBE
 ⋅

   The voltage gain is

             
vo

vi
 = β 

RL

RBE
 ⋅

As β is of the order of 50 and RL may be much
larger than RBE, the voltage gain is high.

As mentioned earlier, the current gain is defined
as the change in the collector current divided by the
change in the base current when the signal is added
in the base circuit.

Thus, the current gain is

            
∆IC

∆IB
 = β.

Power gain = voltage gain × current gain

= 
β 2 RL

RBE
 ⋅

Transfer conductance

To have a large amplification, a small change in
VBE should result in a large change in the collector
current IC. This property is measured by a quantity
transfer conductance gm defined as

           gm = 
∆IC

∆VBE

 ⋅

It is also known as transconductance.

Transistor Used in an Oscillator Circuit

The function of an oscillator circuit is to produce
an alternating voltage of desired frequency when only
DC batteries are available. Figure (45.24) shows a
schematic representation of an oscillator circuit. The
basic parts in this circuit are (a) an amplifier and (b)
an LC network.

The amplifier section is just a transistor used in
common-emitter mode. The LC network consists of an
inductor and a capacitance. This network resonates at
a frequency

Amplifier

LC Network

Output

Figure 45.24
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Batteries are used to bias the transistor and no
external input signal is fed to the amplifying section.
A part of the output signal is fed back to the input
section after going through the LC network. This
signal is amplified by the transistor and a part is again
fed back to its input section. Thus, it is a self-
sustaining device. The component with the proper
frequency 0 gets resonantly amplified and the output
acts as a source of alternating voltage of that
frequency. The frequency can be varied by varying L
or C.

Transistor Characteristics

Let us consider an n-p-n transistor in common-
emitter configuration as in figure (45.23). We can view
this circuit as made of an input section and an output
section. The input section contains the base–emitter
junction and the voltage source there whereas the
output section contains the base–colletcor junction and
the voltage source there. The current IB may then be
called the input current and the current IC the output
current. The voltage applied to the base–emitter
junction, i.e., in the input section is VBE and that
applied to the base–collector junction, i.e., in the
output section, is VCE. When the input current IB is
plotted against the voltage VBE between the base and
the emitter, we get the input characteristics. Similarly,
when the output current IC is plotted against the
voltage VCE, we get the output characteristics.

These characteristics are shown in figure (45.25).
The input characteristics shown in figure (45.25a) are
like those of a forward-biased p-n junction. If the
biasing voltage is small as compared to the height of
the potential barrier at the junction, the current IB is
very small. Once the voltage is more than the barrier
height, the current rapidly increases. However, since
most of the electrons diffused across the junction go to
the collector, the net base current is very small (in
microamperes) even at large values of VBE.

The output characteristics are shown in figure
(45.25b). For small values of the collector voltage, the
collector–base junction is reverse–biased because the
base is at a more positive potential. The current IC is
then small. As the electrons are forced from the emitter
side, the current IC is still quite large as compared to a
single reverse-biased p-n junction. As the voltage VC is
increased, the current rapidly increases and becomes
roughly constant once the junction is forward-biased. For
higher base currents, the collector current is also high
and increases more rapidly, even in forward bias.

45.10 LOGIC GATES

Logical Variables and Logical Operations

There are a number of questions which have only
two answers, either YES or NO. There are a number
of objects which can remain in either of two states
only. An electric bulb can either be ON or OFF. A diode
can either be conducting or nonconducting. A person
can either be alive or dead. A statement may either
be true or false. It is interesting to imagine a world
in which each variable is allowed to take only two
values. These values may be represented by two
symbols, 0 and 1. The living state of a person is 0 if
he/she is dead and is 1 if he/she is alive. The electric
state of a diode is 0 if it is nonconducting and is 1 if
it is conducting. Such a world may be very small
because in the real world we do have quantities which
assume more than two values. But let us concentrate
on this small world where everything can either be
answered in YES or in NO and so only two symbols 0
and 1 are needed to represent any variable.

Here is an example. A bulb, two switches and a
power source are connected as shown in figure (45.26).
We have three variables,

       A  state of switch S1

         B  state of switch S2 
         C  state of the bulb.

Let us assume that the variable A is 0 if the switch
S1 is open and is 1 if the switch S1 is closed. Similar
is the case for B. The variable C is 0 if the bulb is off
and is 1 if it is on. Will the bulb be off or on will
depend on the states of S1 and S2. Table (45.3) shows
the dependence.
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Table 45.3

Switch S1 Switch S2 Bulb A B C

open open off 0 0 0

open closed off 0 1 0

closed open off 1 0 0

closed closed on 1 1 1

Thus, C is a function of A and B. If we give the
value of C for all possible combinations of A and B,
the function is completely specified. Thus, a function
may be specified by writing a table in which the value
of the function is given for all possible combinations
of the values of the independent variables. Such a table
is known as the truth table for that function.

The particular function defined by table (45.3) is
written as A AND B. We say that A and B are ANDed
to get C. It is also denoted by the symbol of dot. Thus
C = A⋅B is the same as C = A AND B. Quite often, the
dot is omitted and we write just AB to mean A AND
B. The function C = A AND B is 1 if each of A and B
is 1. If any of A and B is zero or both are zero, C is 0.

Let us take another example of a function of two
variables. Figure (45.27) shows another circuit
containing a power source, two switches S1, S2 and a
bulb. Table (45.4) gives the state of the bulb for all
possible combinations of the switches and the truth
table for such a function.

Table 45.4

Switch S1 Switch S2 Bulb A B C

open open off 0 0 0

open closed on 0 1 1

closed open on 1 0 1

closed closed on 1 1 1

The function of A and B defined by the truth table
given in table (45.4) is written as A OR B. We say that
A and B are ORed to get C. It is also represented by
the symbol of plus. Thus C = A + B is the same as
C = A OR B. The function A + B is 0 if each of A and
B is 0. If one of the two is 1 or both of them are 1,
the function is 1.

Let us now take an example of a function of a
single variable. A bulb is short-circuited by a switch
(figure 45.28). If the switch is open, the current goes
through the bulb and it is on. If the switch is closed,

the current goes through the switch and the bulb is
off (we assume ideally zero resistance in the switch).
Let A be the variable showing the state of the switch
and B be the variable showing the state of the bulb.
Then B is a function of A. Table (45.5) describes the
function and its truth table.

Table 45.5

Switch Bulb A B

open on 0 1

closed off 1 0

The function of A described by this truth table is
written as NOT A. The function NOT A is also written
as A

__
. Thus, B = NOT A is the same as B = A

__
.

A variable which can assume only two values is
called a logical variable. A function of logical variables
is called a logical function. AND, OR and NOT represent
three basic operations on logical variables. The first
two are operations between two logical variables. The
third one is an operation on a single variable. A
number of functions may be generated by using these
operations. 

Example 45.4

   Write the truth table for the logical function Z = (X AND
Y) OR X.

Solution : Z is a function of two variables X and Y. The
truth table is constructed in table (45.6). The third
column gives the value of W = X AND Y. It is 1 when
X = Y = 1 and is 0 otherwise. The fourth column of this
table gives the value of Z = W OR X.

Table 45.6

X Y    W
= X AND Y

    Z
= W OR X

X Y Z

0 0     0     0 0 0 0

0 1     0     0 0 1 0

1 0     0     1 1 0 1

1 1     1     1 1 1 1

In the first two rows, W = 0 and X = 0. Thus W OR X = 0.
In the third row, W = 0 and X = 1. Thus W OR X = 1. In
the fourth row, W = X = 1. Thus W OR X = 1. The last
three columns of the table collect the values of X, Y and
Z which is the required truth table.

This function may also be written as

        Z = (X⋅Y) + X = XY + X.
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Logic Gates

A logic gate is an electronic circuit which evaluates
a particular logical function. The circuit has one or more
input terminals and an output terminal. A potential of
zero (equal to the earth’s potential in general) denotes
the logical value 0 and a fixed positive potential V (say,
+ 5 V) denotes the logical value 1. Each input terminal
denotes an independent variable. If zero potential is
applied to an input terminal, the corresponding
independent variable takes the value 0. If the positive
potential V is applied to the terminal, the corresponding
variable takes the value 1. The potential appearing at
the output terminal denotes the value of the function. If
the potential is zero, the value of the function is 0. If it
is V, the value of the function is 1.

A gate may have more than one output terminals.
Each output terminal then represents a separate
function and the same circuit may be used to evaluate
more than one functions.

Figure (45.29) shows the symbols for the logic
gates to evaluate the functions AND, OR and NOT.
They are known as AND gate, OR gate and NOT gate
respectively. The terminals shown on the left are the
input terminals and the terminal on the right is the
output terminal in each case.

Realisation of AND and OR gates with diodes

An AND gate and an OR gate may be constructed
with two p-n junction diodes. Figure (45.30) shows the
construction for an AND gate. The circuit evaluates the
function X = A AND B, i.e., X = AB. A potential of 5 V
at A denotes the logical value A = 1 and a potential of
zero at A denotes A = 0, similarly for B and X.

Suppose A = 0 and B = 0. The potentials at A and
B are both zero so that both the diodes are forward-
biased and offer no resistance. The potential at X is
equal to the potential at A or B.  Thus, X = 0. Now
suppose, A = 0 and B = 1. The potential is zero at A
and 5 V at B so that the diode D1 is forward-biased.

The potential at X is equal to the potential at A which
is zero. Thus, if A = 0 and B = 1 then X = 0. Similarly,
when A = 1 and B = 0 then X = 0. Finally, suppose
A = B = 1. The potentials at both A and B are 5 V so
that neither of the diodes is conducting. This is because
if either of the diodes conducts, a current will go
through the resistance R and the potential at X will
become less than 5 V making the diode reverse-biased.
As the diodes are not conducting, there will be no
current through R and the potential at X will be equal
to 5 V, i.e., X = 1.

Thus, the output is X = 1 if both the inputs A and
B are 1. If any of the inputs is 0, the output is X = 0.
Hence X = AB and the circuit evaluates the AND
function.

Figure (45.31) shows the construction of an OR
gate using two diodes. The circuit evaluates X OR A,
i.e., X = A + B. If A = B = 0, there is no potential
difference anywhere in the circuit so that X = 0. If A =
1 and B = 0, the potential is 5 V at A and zero at B.
The diode D1 is forward-biased and offers no
resistance. Thus, the potential at X is equal to the
potential at A, i.e., 5 V. Thus X = 1. Similarly, if A = 0
and B = 1, X = 1. Also, if both A and B are 1, both the
diodes are forward-biased and the potential at X is the
same as the common potential at A and B which is
5 V. This also gives X = 1. Hence the circuit evaluates
X = A OR B = A + B.

Realisation of NOT gate with a transistor 

A NOT gate cannot be constructed with diodes.
Figure (45.32) shows a circuit using an n-p-n transistor
to evaluate the NOT function.

If A = 0, the emitter–base junction is unbiased and
there is no current through it. Correspondingly, there
is no current through the resistance RC. The potential
at X is equal to the potential at the positive terminal
of the battery which is 5 V. Thus, if A = 0, X = 1. Note
that the collector–base junction is also reverse-biased
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which is consistent with the fact that there is no
current in the circuit.

On the other hand if the potential at A is 5 V, the
base–emitter junction is forward-biased and there is a
large current in the circuit. The direction of the current
in the resistance RC is from right to left in figure
(45.33). The potential drops across R and its value at
X becomes zero. Thus, if A = 1, X = 0.

NAND and NOR gates

The function X = NOT (A AND B) of two logical
variables A and B is called NAND function. It is written
as X = A NAND B. It is also written as X = A⋅B or
simply  X = AB.

Tables (45.7) shows the evaluation of AB and its
truth table. A NAND gate can be made by an AND gate
followed by a NOT gate. Figure (45.33) shows the
combination and the symbol used for a NAND gate.

Table 45.7

A B    AB
= A AND B

   AB =
 NOT(A AND B)

 A  B  AB

0 0     0     1  0  0  1

0 1     0     1  0  1  1

1 0     0     1  1  0  1

1 1     1     0  1  1  0

The function X = NOT (A OR B) is called a NOR
function and is written as X = A NOR B. It is also
written as X = A + B.

Table (45.8) shows the evaluation of A + B and its
truth table. A NOR gate can be made by an OR gate
followed by a NOT gate. Figure (45.34) shows the
combination and the symbol used for a NOR gate.

Table 45.8

  A   B A + B  A + B  A B A + B

  0   0  0   1  0 0  1

  0   1  1   0  0 1  0

  1   0  1   0  1 0  0

  1   1  1   0  1 1  0

XOR gate

XOR is a function of two logical variables A and B
which evaluates to 1 if one of the two variables is 0
and the other is 1. If both of the variables are 0 or
both are 1, the function is zero. It is also called the
exclusive OR function. The truth table for XOR function
is given in table (45.9). Verify that
         A XOR B = AB

__
 + A

__
B. … (i)

Table 45.9

   A  B A XOR B
   0  0    0
   0  1    1
   1  0    1
   1  1    0

An XOR gate can be constructed with AND, OR and
NOT gates as shown in figure (45.35a). The symbol for
an XOR gate is shown in figure (45.35b). We have made
use of equation (i) in constructing this circuit.

NAND and NOR as the basic building blocks

Any logical gate can be constructed by using only
NAND gates or only NOR gates. In this sense, a NAND
gate or a NOR gate is called a basic building block of
logic circuits.

Figure (45.36) shows the construction of NOT, AND
and OR gates using NAND gates. A NAND gate can be
used as a NOT gate by simply connecting the two input
terminals (figure 45.36a). In other words, the value of
the independent variable A is fed to both the input
terminals. As A AND A is A,

           X = AA = A.

To construct an AND gate, the output of a NAND
gate should be fed to a NOT gate. This is because, the
output of the NAND gate is AB, i.e., NOT of AB. If we
pass it through a NOT gate, it is again inverted and
becomes AB. Figure (45.36b) does exactly the same.

Figure (45.36c) shows the construction of an OR
gate. The two input variables are first inverted by
passing them through two NOT gates. The inverted

X

A
B X = NOT (A AND B)

A
B

NAND gate

Figure 45.33

A
B

A
B

X = NOT(A OR B)

NOR gate

X

Figure 45.34

A
B

AB

AB

X = AB + AB

(a)

XOR gate

(b)

Figure 45.35

(a) NOT (b) AND

(c) OR

Figure 45.36
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signals are NANDed. Let us construct the truth table
of this combination and verify that it represents an OR
gate. This is done in table (45.10).

Table 45.10

A B A
__

B
__

A B A
__

 B
______

0 0 1 1  1  0

0 1 1 0  0  1

1 0 0 1  0  1

1 1 0 0  0  1

Thus, A
__

 B
______

 is 1 if either of A and B is 1 or both are
1. It is zero only if both A and B are zero. Thus,  A

__
 B
______

 = A + B.

Binary Mathematics : Half Adder and Full Adder

Logic gates are the basic elements in the electronic
circuits used to perform mathematical calculations
such as that in a computer or in a calculator. The
numbers are converted into binary system where only
two digits 0 and 1 are used. In this system, the natural
numbers (1, 2, 3, 4, … in the decimal system) are
represented as 1, 10, 11, 100, 101, 110, 111, …, etc.
The mathematical operation of addition is governed by
the following basic rules:

           0 + 0 = 0

0 + 1 = 1
1 + 0 = 1

1 + 1 = 10.
The plus sign here represents addition of

arithmetic and not the logical operation OR. When 1
is added to 1 in binary system, we get a two digit
number 10. It is read as one zero and not as ten. It is
equivalent to ‘two’ in decimal system. When two
one-digit numbers are added and the result is a two
digit number, the more significant digit (that on left)
is called the carry digit and the less significant digit
(that on right) is called the sum digit. The word sum
is often used for the sum digit and carry for the carry
digit. One should be careful about the word ‘sum’
because it is also used to mean the net result of
addition. Table (45.11) shows the carry digit and the
sum digit for the addition of one-digit binary numbers.
If we treat A, B, C and S as logical variables (they can
take only two values 0 and 1), each of C and S is a
logical function of A and B.

Table 45.11

First
number A

Second
number B

Carry digit C Sum digit S

  0   0   0   0

  0   1   0   1

  1   0   0   1

  1   1   1   0

It can be easily verified that the carry digit C is
A AND B and the sum digit S is A XOR B, i.e.,

           C = AB
and S = AB

__
 + A

__
B.

Figure (45.37) shows the circuit which takes A and
B as inputs and gives C and S as outputs. Note that
A and B are passed through an XOR gate to get S. The
circuit described above is called a half adder. The
symbol for a half adder is also shown in the figure.

If two numbers of more than one digit are to be
added, one needs to know the addition rules for three
one-digit numbers. Here are two examples, one with
decimal numbers and one with binary numbers.

      

  11 
   768

+   353
   1121

        

  111
       101
+     111
     1100

In the first example, one has to evaluate 1 + 6 + 5
to get the sum digit as 2 and the carry digit as 1 for
the second place from right. Similarly, one needs
1 + 7 + 3. In the second example, one needs the sum
1 + 0 + 1 to get the sum digit as 0 and the carry digit
as 1 for the second place from right. Similarly, one
needs 1 + 1 + 1 to get the sum digit as 1 and the carry
digit as 1. Thus, we need a circuit which can take three
inputs A1, A2 and A3 and produce two outputs C and
S. There are eight possible combinations of A1, A2 and
A3 and table (45.12) gives the values of C and S for
all these combinations.

Table 45.12

 A1 A2 A3 C S

 0 0 0 0 0

 0 0 1 0 1

 0 1 0 0 1

 0 1 1 1 0

 1 0 0 0 1

 1 0 1 1 0

 1 1 0 1 0

 1 1 1 1 1

One can add the digits A1, A2 and A3 as follows.
First add A1 and A2 to get the sum digit S1 and the
carry digit C1. Now add A3 and S1 to get the sum digit
S and the carry digit C2. The sum digit S is the final
sum digit. Now consider the two carry digits C1 and
C2. Verify that both of C1 and C2 cannot be 1. If both
are 0, the final carry digit is 0. If one of them is 1 and

A
B

S

C A

B

C

S

Half
adder

Figure 45.37
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the other is 0, the final carry digit is 1. Thus, the final
carry digit may be obtained as C = C1 OR C2. The
circuit shown in figure (45.38) is constructed on these
lines to perform the three-digit addition. Such a circuit
is called a full adder. The symbol of full adder is also
shown in figure (45.38).

Worked Out Examples

 1. A doped semiconductor has impurity levels 30 meV below
the conduction band. (a) Is the material n-type or p-type ?
(b) In a thermal collision, an amount kT of energy is
given to the extra electron loosely bound to the impurity
ion and this electron is just able to jump into the
conduction band. Calculate the temperature T. 

Solution : (a) The impurity provides impurity levels close
to the conduction band and a number of electrons from
the impurity level will populate the conduction band.
Thus, the majority carriers are electrons and the
material is n-type.
(b) According to the question, kT = 30 meV

or,          T = 
30 meV

k

= 
0.03 eV

8.62 × 10 − 5 eV K −1
 = 348 K.

 2. The energy of a photon of sodium light (λ = 589 nm)
equals the band gap of a semiconducting material.
(a) Find the minimum energy E required to create a
hole–electron pair. (b) Find the value of E/kT at a
temperature of 300 K.

Solution : (a) The energy of the photon is E = 
hc
λ

= 
1242 eV nm

589 nm
 = 2.1 eV.

Thus the band gap is 2.1 eV. This is also the minimum
energy E required to push an electron from the valence
band into the conduction band. Hence, the minimum
energy required to create a hole–electron pair is 2.1 eV.

(b) At     T = 300 K,

       kT = (8.62 × 10 − 5 eV K −1) (300 K)

         = 25.86 × 10 − 3 eV.

Thus,
E
kT

 = 
2.1 eV

25.86 × 10 − 3 eV
 = 81.

So it is difficult for the thermal energy to create the
hole–electron pair but a photon of light can do it easily.

 3. A p-type semiconductor has acceptor levels 57 meV above
the valence band. Find the maximum wavelength of light
which can create a hole.

Solution : To create a hole, an electron from the valence
band should be given sufficient energy to go into one of
the acceptor levels. Since the acceptor levels are 57 meV
above the valence band, at least 57 meV is needed to
create a hole.
If λ be the wavelength of light, its photon will have an
energy hc/λ. To create a hole,

         
hc
λ

 ≥ 57 meV

or,      λ ≤ 
hc

57 meV

= 
1242 eV nm

57 × 10 − 3 eV
 = 2.18 × 10 − 5 m.

 4. The band gap in germanium is ∆E = 0.68 eV. Assuming
that the number of hole–electron pairs is proportional to

e − ∆E/2kT, find the percentage increase in the number of
charge carriers in pure germanium as the temperature is
increased from 300 K to 320 K.

Solution : The number of charge carriers in an intrinsic
semiconductor is double the number of hole–electron
pairs. If N1 be the number of charge carriers at
temperature T1 and N2 at T2, we have

      N1 = N0 e − ∆E/2kT1

and N2 = N0 e − ∆E/2kT2.

The percentage increase as the temperature is raised
from T1 to T2 is

f = 
N2 − N1

N1

 × 100 = 




N2

N1

 − 1



 × 100

= 100 


e 

∆E
2 k

 




1
T1

 − 
1

T2



 − 1



 .

Now       
∆E
2 k

 


1
T1

 − 
1
T2





= 
0.68 eV

2 × 8.62 × 10 − 5 eV K −1
 


1
300 K

 − 
1

320 K




= 0.82.

Thus, f = 100 × [e 0.82 − 1] ≈ 127.

Thus, the number of charge carriers increases by about
127%.
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 5. The concentration of hole–electron pairs in pure silicon
at T = 300 K is 7 × 10 15 per cubic metre. Antimony is
doped into silicon in a proportion of 1 atom in
10 7 atoms. Assuming that half of the impurity atoms
contribute electrons in the conduction band, calculate the
factor by which the number of charge carriers increases
due to doping. The number of silicon atoms per cubic
metre is 5 × 10 28.

Solution : The number of charge carriers before doping is
equal to the number of holes plus the number of
conduction electrons. Thus, the number of charge
carriers per cubic metre before doping
         = 2 × 7 × 10 15 = 14 × 10 15.

Since antimony is doped in a proportion of 1 in 10 7, the
number of antimony atoms per cubic metre is

10 − 7 × 5 × 10 28 = 5 × 10 21. As half of these atoms
contribute electrons to the conduction band, the number
of extra conduction electrons produced is 2.5 × 10 21 per
cubic metre. Thus, the number of charge carriers per
cubic metre after the doping is

          2.5 × 10 21 + 14 × 10 15

         ≈ 2.5 × 10 21.

The factor by which the number of charge carriers is
increased

         = 
2.5 × 10 21

14 × 10 15  = 1.8 × 10 5.

In fact, as the n-type impurity is doped, the number of
holes will decrease. This is because the product of the
concentrations of holes and conduction electrons remains
almost the same. However, this does not affect our result
as the number of holes is anyway too small as compared
to the number of conduction electrons.

 6. A potential barrier of 0.50 V exists across a p-n junction.
(a) If the depletion region is 5.0 × 10 − 7 m wide, what is
the intensity of the electric field in this region ? (b) An
electron with speed 5.0 × 10 5 m s −1 approaches the p-n
junction from the n-side. With what speed will it enter
the p-side ?

Solution : (a) The electric field is E = V/d

        = 
0.50 V

5.0 × 10 − 7 m
 = 1.0 × 10 6 V m −1.

(b)

Suppose the electron has a speed v1 when it enters the
depletion layer and v2 when it comes out of it (figure
45-W1). As the potential energy increases by e × 0.50 V,

from the principle of conservation of energy,

      
1
2

 mv1
 2 = e × 0.50 V + 

1
2

 mv2
 2

or,    
1
2

 × (9.1 × 10 − 31 kg) × (5.0 × 10 5 m s −2) 2

= 1.6 × 10 − 19 × 0.5 J + 
1
2

 (9.1 × 10 − 31 kg) v2
 2

or,     1.13 × 10 − 19 J = 0.8 × 10 − 19 J

                   + (4.55 × 10 − 31 kg) v2
 2.

Solving this, v2 = 2.7 × 10 5 m s −1.

 7. The reverse-biased current of a particular p-n junction
diode increases when it is exposed to light of wavelength
less than or equal to 600 nm. Assume that the increase
in carrier concentration takes place due to the creation
of new hole–electron pairs by the light. Find the band
gap.

Solution : The reverse-biased current is caused mainly due
to the drift current. The drift current in a p-n junction
is caused by the formation of new hole–electron pairs
and their subsequent motions in the depletion layer.
When the junction is exposed to light, it may absorb
energy from the light photons. If this energy supplied
by a photon is greater than (or equal to) the band gap,
a hole–electron pair may be formed. Thus, the
reverse-biased current will increase if the light photons
have energy greater than (or equal to) the band gap.
Hence the band gap is equal to the energy of a photon
of 600 nm light which is

        
hc
λ

 = 
1242 eV nm

600 nm
 = 2.07 eV.

 8. A 2 V battery may be connected across the points A and
B as shown in figure (45-W2). Assume that the resistance
of each diode is zero in forward bias and infinity in
reverse bias. Find the current supplied by the battery if
the positive terminal of the battery is connected to (a) the
point A (b) the point B.

Solution : (a) When the positive terminal of the battery is
connected to the point A, the diode D1 is forward-biased
and D2 is reverse-biased. The resistance of the diode D1

is zero, and it can be replaced by a resistanceless wire.
Similarly, the resistance of the diode D2 is infinity, and
it can be replaced by a broken wire. The equivalent
circuit is shown in figure (45-W3a). The current supplied
by the battery is 2 V/10 Ω = 0.2 A.

�

�

� �

� ��

Figure 45-W1

��

��

�	
�

�	
�

� �

Figure 45-W2

Semiconductors and Semiconductor Devices 415



(b) When the positive terminal of the battery is
connected to the point B, the diode D2 is forward-biased
and D1 is reverse biased. The equivalent circuit is shown
in figure (45-W3b). The current through the battery is
2 V/20 Ω = 0.1 A.

 9. A change of 8.0 mA in the emitter current brings a change
of 7.9 mA in the collector current. How much change in
the base current is required to have the same change
7.9 mA in the collector current ? Find the values of α
and β.

Solution : We have,
           IE = IB + IC

or, ΔIE = ΔIB + ΔIC.

From the question, when ΔIE = 8.0 mA, ΔIC = 7.9 mA.

Thus,

        ΔIB = 8.0 mA − 7.9 mA = 0.1 mA.

So a change of 0.1 mA in the base current is required
to have a change of 7.9 mA in the collector current.

α = 
IC

IE

 = 
ΔIC

ΔIE

          = 
7.9 mA
8.0 mA

 ≈ 0.99.

         β = 
IC

IB

 = 
ΔIC

ΔIB

           = 
7.9 mA
0.1 mA

 = 79.

Check if these values of α and β satisfy the equation

       β = 
α

1 − α
 ⋅

10. A transistor is used in common-emitter mode in an
amplifier circuit. When a signal of 20 mV is added to
the base–emitter voltage, the base current changes by

20 μA and the collector current changes by 2 mA. The
load resistance is 5 kΩ.  Calculate (a) the factor β, (b)
the input resistance RBE, (c) the transconductance and (d)
the voltage gain.

Solution : (a) β = 
ΔIC

ΔIB

 = 
2 mA
20 μA

 = 100.

(b) The input resistance RBE = 
ΔVBE

ΔIB

 

= 
20 mV
20 μA

 = 1 kΩ.

(c) Transconductance = 
ΔIC

ΔVBE

 

        = 
2 mA
20 mV

 = 0.1 mho.

(d) The change in output voltage is RL ΔIc

         = (5 kΩ) (2 mA) = 10 V.

The applied signal voltage = 20 mV.

Thus, the voltage gain is,

          
10 V

20 mV
 = 500.

11. Construct the truth table for the function X of A and B
represented by figure (45-W4).

Solution : Here an AND gate and an OR gate are used. Let
the output of the OR gate be Y. Clearly, Y = A + B. The

AND gate receives A and A + B as input. The output of

this gate is X. So X = A(A + B). The following table

evaluates X for all combinations of A and B. The last
three columns give  the truth table.

A  B  Y = A + B X = A(A + B)  A  B  X

0  0     0    0  0  0  0

0  1     1    0  0  1  0

1  0     1    1  1  0  1

1  1     1    1  1  1  1

QUESTIONS FOR SHORT ANSWER

 1. How many 1s energy states are present in one mole of
sodium vapour ? Are they all filled in normal conditions ?
How many 3s energy states are present in one mole of
sodium vapour ? Are they all filled in normal conditions ?

 2. There are energy bands in a solid. Do we have really
continuous energy variation in a band or do we have
very closely spaced but still discrete energy levels ?

 3. The conduction band of a solid is partially filled at 0 K.
Will it be a conductor, a semiconductor or an insulator ?

 4. In semiconductors, thermal collisions are responsible for
taking a valence electron to the conduction band. Why
does the number of conduction electrons not go on
increasing with time as thermal collisions continuously
take place ?
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 5. When an electron goes from the valence band to the
conduction band in silicon, its energy is increased by
1.1 eV. The average energy exchanged in a thermal
collision is of the order of kT which is only 0.026 eV at
room temperature. How is a thermal collision able to
take some of the electrons from the valence band to the
conduction band ?

 6. What is the resistance of an intrinsic semiconductor at
0 K ?

 7. We have valence electrons and conduction electrons in
a semiconductor. Do we also have ‘valence holes’ and
‘conduction holes’ ?

 8. When a p-type impurity is doped in a semiconductor, a
large number of holes are created. This does not make

the semiconductor charged. But when holes diffuse from
the p-side to the n-side in a p-n junction, the n-side gets
positively charged. Explain.

 9. The drift current in a reverse-biased p-n junction
increases in magnitude if the temperature of the
junction is increased. Explain this on the basis of
creation of hole–electron pairs.

10. An ideal diode should pass a current freely in one
direction and should stop it completely in the opposite
direction. Which is closer to ideal—vacuum diode or a
p-n junction diode ?

11. Consider an amplifier circuit using a transistor. The
output power is several times greater than the input
power. Where does the extra power come from ?

OBJECTIVE I

 1. Electric conduction in a semiconductor takes place due
to
(a) electrons only            (b) holes only
(c) both electrons and holes
(d) neither electrons nor holes.

 2. An electric field is applied to a semiconductor. Let the
number of charge carriers be n and the average drift
speed be v. If the temperature is increased,
(a) both n and v will increase
(b) n will increase but v will decrease
(c) v will increase but n will decrease
(d) both n and v will decrease.

 3. Let np  and  ne be the numbers of holes and conduction
electrons in an intrinsic semiconductor.
(a) np > ne   (b) np = ne   (c) np < ne   (d) np ≠ ne

 4. Let np and ne  be the numbers of holes and conduction
electrons in an extrinsic semiconductor.
(a) np > ne   (b) np = ne   (c) np < ne   (d) np ≠ ne

 5. A p-type semiconductor is
(a) positively charged       (b) negatively charged
(c) uncharged
(d) uncharged at 0 K but charged at higher tempe-
       ratures.

 6. When an impurity is doped into an intrinsic
semiconductor, the conductivity of the semiconductor
(a) increases              (b) decreases
(c) remains the same        (d) becomes zero.

 7. If the two ends of a p-n junction are joined by a wire,
(a) there will not be a steady current in the circuit
(b) there will be a steady current from the n-side to the
       p-side
(c) there will a steady current from the p-side to the
       n-side
(d) there may or may not be a current depending upon
       the resistance of the connecting wire.

 8. The drift current in a p-n junction is
(a) from the n-side to the p-side
(b) from the p-side to  the n-side
(c) from the n-side to the p-side if the junction is
       forward-biased and in the opposite direction if it is

       reverse-biased
(d) from the p-side to the n-side if the junction is
       forward-biased and in the opposite direction if it is
       reverse-biased.

 9. The diffusion current in a p-n junction is
(a) from the n-side to the p-side
(b) from the p-side to the n-side
(c) from the n-side to the p-side if the junction is
       forward-biased and in the opposite direction if it is
       reverse-biased
(d) from the p-side to the n-side if the junction is
       forward-biased  and in the opposite direction if it is
       reverse-biased.

10. Diffusion current in a p-n junction is greater than the
drift current in magnitude
(a) if the junction is forward-biased
(b) if the junction is reverse-biased
(c) if the junction is unbiased
(d) in no case.

11. Two identical p-n junctions may be connected in series
with a battery in three ways (figure 45-Q1). The
potential difference across the two p-n junctions are
equal in
(a) circuit 1 and circuit 2   (b) circuit 2 and circuit 3
(c) circuit 3 and circuit 1     (d) circuit 1 only.

12. Two identical capacitors A and B are charged to the
same potential V and are connected in two circuits at
t = 0 as shown in figure (45-Q2). The charges on the

� � � �

�������
�

� � �� �� � �

�������
� �������
�

Figure 45-Q1

� �
�

�

�

� �
�

�

�

�� ��

Figure 45-Q2

Semiconductors and Semiconductor Devices 417



capacitors at a time t = CR are, respectively,
(a) VC, VC  (b) VC/e, VC  (c) VC, VC/e  (d) VC/e, VC/e.

13. A hole diffuses from the p-side to the n-side in a p-n
junction. This means that
(a) a bond is broken on the n-side and the electron freed
       from the bond jumps to the conduction band
(b) a conduction electron on the p-side jumps to a broken
       bond to complete it
(c) a bond is broken on the n-side and the electron freed
       from the bond jumps to a broken bond on the p-side
       to complete it
(d) a bond is broken on the p-side and the electron freed
       from the bond jumps to a broken bond on the n-side
       to complete it.

14. In a transistor,
(a) the emitter has the least concentration of impurity
(b) the collector has the least concentration of impurity
(c) the base has the least concentration of impurity
(d) all the three regions have equal concentrations of
       impurity.

15. An incomplete sentence about transistors is given below:
The emitter–…… junction is ___ and the collector– ……
junction is ___. The appropriate words for the dotted
empty positions are, respectively,
(a) ‘collector’ and ‘base’    (b) ‘base’ and ‘emitter’
(c) ‘collector’ and ‘emitter’  (d) ‘base’ and ‘base’.

OBJECTIVE II

 1. In a semiconductor,
(a) there are no free electrons at 0 K
(b) there are no free electrons at any temperature
(c) the number of free electrons increases with
       temperature
(d) the number of free electrons is less than that in a
       conductor.

 2. In a p-n junction with open ends,
(a) there is no systematic motion of charge carriers
(b) holes and conduction electrons systematically go
       from the p-side to the n-side and from the n-side to
       the p-side respectively
(c) there is no net charge transfer between the two sides
(d) there is a constant electric field near the junction.

 3. In a p-n junction,
(a) new holes and conduction electrons are produced
       continuously throughout the material
(b) new holes and conduction electrons are produced
       continuously throughout the material except in the
       depletion region
(c) holes and conduction electrons recombine
       continuously throughout the material
(d) holes and conduction electrons recombine
       continuously  throughout the material except in the
       depletion region.

 4. The impurity atoms with which pure silicon may be
doped to make it a p-type semiconductor are those of
(a) phosphorus (b) boron (c) antimony (d) aluminium.

 5. The electrical conductivity of pure germanium can be
increased by

    (a) increasing the temperature
(b) doping acceptor impurities

(c) doping donor impurities
(d) irradiating ultraviolet light on it.

 6. A semiconducting device is connected in a series circuit
with a battery and a resistance. A current is found to
pass through the circuit. If the polarity of the battery is
reversed, the current drops to almost zero. The device
may be
(a) an intrinsic semiconductor
(b) a p-type semiconductor
(c) an n-type semiconductor
(d) a p-n junction.

 7. A semiconductor is doped with a donor impurity.
(a) The hole concentration increases.
(b) The hole concentration decreases.
(c) The electron concentration increases.
(d) The electron concentration decreases.

 8. Let iE, iC  and  iB represent the emitter current, the
collector current and the base current respectively in a
transistor. Then
(a) iC is slightly smaller than iE

(b) iC is slightly greater than iE

(c) iB is much smaller than iE

(d) iB is much greater than iE.

 9. In a normal operation of a transistor,
(a) the base–emitter junction is forward-biased
(b) the base–collector junction is forward-biased
(c) the base–emitter junction is reverse-biased
(d) the base–collector junction is reverse-biased.

10. An AND gate can be prepared by repetitive use of
   (a) NOT gate             (b) OR gate

(c) NAND gate             (d) NOR gate.
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EXERCISES

      Planck constant = 4.14 × 10 − 15  eV s,

   Boltzmann constant = 8.62 × 10 − 5 eV K −1. 
                                                                                                                                                                                 

 1. Calculate the number of states per cubic metre of sodium
in 3s band. The density of sodium is 1013 kgm –3. How
many of them are empty ?

 2. In a pure semiconductor, the number of conduction
electrons is 6 × 10 19 per cubic metre. How many holes
are there in a sample of size 1 cm × 1 cm × 1 mm ?

 3. Indium antimonide has a band gap of 0.23 eV between
the valence and the conduction band. Find the
temperature at which kT equals the band gap.

 4. The band gap for silicon is 1.1 eV. (a) Find the ratio of
the band gap to kT for silicon at room temperature
300 K. (b) At what temperature does this ratio become
one tenth of the value at 300 K ? (Silicon will not retain
its structure at these high temperatures.)

 5. When a semiconducting material is doped with an
impurity, new acceptor levels are created. In a particular
thermal collision, a valence electron receives an energy
equal to 2kT and just reaches one of the acceptor levels.
Assuming that the energy of the electron was at the top
edge of the valence band and that the temperature T is
equal to 300 K, find the energy of the acceptor levels
above the valence band.

 6. The band gap between the valence and the conduction
bands in zinc oxide (ZnO) is 3.2 eV. Suppose an electron
in the conduction band combines with a hole in the
valence band and the excess energy is released in the
form of electromagnetic radiation. Find the maximum
wavelength that can be emitted in this process.

 7. Suppose the energy liberated in the recombination of a
hole–electron pair is converted into electromagnetic
radiation. If the maximum wavelength emitted is
820 nm, what is the band gap ?

 8. Find the maximum wavelength of electromagnetic
radiation which can create a hole–electron pair in
germanium. The band gap in germanium is 0.65 eV.

 9. In a photodiode, the conductivity increases when the
material is exposed to light. It is found that the
conductivity changes only if the wavelength is less than
620 nm. What is the band gap ?

10. Let ΔE denote the energy gap between the valence band
and the conduction band. The population of conduction
electrons (and of the holes) is roughly proportional to
e − ΔE/2kT. Find the ratio of the concentration of
conduction electrons in diamond to that in silicon at
room temperature 300 K. ΔE for silicon is 1.1 eV and for
diamond is 6.0 eV. How many conduction electrons are
likely to be in one cubic metre of diamond ?

11. The conductivity of a pure semiconductor is roughly
proportional to T 3/2 e − ΔE/2kT where ΔE is the band gap.
The band gap for germanium is 0.74 eV at 4 K and
0.67 eV at 300 K. By what factor does the conductivity
of pure germanium increase as the temperature is raised
from 4 K to 300 K ?

12. Estimate the proportion of boron impurity which will
increase the conductivity of a pure silicon sample by a
factor of 100. Assume that each boron atom creates a
hole and the concentration of holes in pure silicon at the
same temperature is 7 × 10 15 holes per cubic metre.
Density of silicon is 5 × 10 28 atoms per cubic metre.

13. The product of the hole concentration and the conduction
electron concentration turns out to be independent of the
amount of any impurity doped. The concentration of
conduction electrons in germanium is 6 × 10 19 per cubic
metre. When some phosphorus impurity is doped into a
germanium sample, the concentration of conduction
electrons increases to 2 × 10 23 per cubic metre. Find the
concentration of the holes in the doped germanium.

14. The conductivity of an intrinsic semiconductor depends
on temperature as σ = σ0 e − ΔE/2kT, where σ0 is a constant.
Find the temperature at which the conductivity of an
intrinsic germanium semiconductor will be double of its
value at T = 300 K. Assume that the gap for germanium
is 0.650 eV and remains constant as the temperature is
increased.

15. A semiconducting material has a band gap of 1 eV.
Acceptor impurities are doped into it which create
acceptor levels 1 meV above the valence band. Assume
that the transition from one energy level to the other is
almost forbidden if kT is less than 1/50 of the energy
gap. Also, if kT is more than twice the gap, the upper
levels have maximum population. The temperature of
the semiconductor is increased from 0 K. The
concentration of the holes increases with temperature
and after a certain temperature it becomes
approximately constant. As the temperature is further
increased, the hole concentration again starts increasing
at a certain temperature. Find the order of the
temperature range in which the hole concentration
remains approximately constant.

16. In a p-n junction, the depletion region is 400 nm wide
and an electric field of 5 × 10 5 V m −1 exists in it. (a) Find
the height of the potential barrier. (b) What should be
the minimum kinetic energy of a conduction electron
which can diffuse from the n-side to the p-side ?

17. The potential barrier existing across an unbiased p-n
junction is 0.2 volt. What minimum kinetic energy a hole
should have to diffuse from the p-side to the n-side if
(a) the junction is unbiased, (b) the junction is forward-
biased at 0.1 volt and (c) the junction is reverse-biased
at 0.1 volt ?

18. In a p-n junction, a potential barrier of 250 meV exists
across the junction. A hole with a kinetic energy of
300 meV approaches the junction. Find the kinetic
energy of the hole when it crosses the junction if the
hole approached the junction (a) from the p-side and
(b) from the n-side.

19. When a p-n junction is reverse-biased, the current
becomes almost constant at 25 μA. When it is forward-
biased at 200 mV, a current of 75 μA is obtained. Find
the magnitude of diffusion current when the diode is
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(a) unbiased, (b) reverse-biased at 200 mV and
(c) forward-biased at 200 mV.

20. The drift current in a p-n junction is 20.0 μA. Estimate
the number of electrons crossing a cross section per
second in the depletion region.

21. The current–voltage characteristic of an ideal p-n
junction diode is given by

            i = i0 (e eV/kT − 1)
   where the drift current i0 equals 10 μA. Take the

temperature T to be 300 K. (a) Find the voltage V0 for

which e eV/kT = 100. One can neglect the term 1 for
voltages greater than this value. (b) Find an expression
for the dynamic resistance of the diode as a function of
V for V > V0. (c) Find the voltage for which the dynamic
resistance is 0.2 Ω.

22. Consider a p-n junction diode having the characteristic
i = i 0(e eV/kT − 1) where i0 = 20 μA. The diode is operated
at T = 300 K. (a) Find the current through the diode
when a voltage of 300 mV is applied across it in forward
bias. (b) At what voltage does the current double ?

23. Calculate the current through the circuit and the
potential difference across the diode shown in figure
(45-E1). The drift current for the diode is 20 μA.

24. Each of the resistances shown in figure (45-E2) has a
value of 20 Ω. Find the equivalent resistance between A
and B. Does it depend on whether the point A or B is
at higher potential ?

   In problems 25 to 30, assume that the resistance of each
diode is zero in forward bias and is infinity in reverse
bias.

25. Find the currents through the resistances in the circuits
shown in figure (45-E3).

26. What are the readings of the ammeters A1 and A2 shown
in figure (45-E4). Neglect the resistances of the meters.

27. Find the current through the battery in each of the
circuits shown in figure (45-E5).

28. Find the current through the resistance R in figure
(45-E6) if (a) R = 12 Ω (b) R = 48 Ω. 

29. Draw the current–voltage characteristics for the device
shown in figure (45-E7) between the terminals A and B.

30. Find the equivalent resistance of the network shown in
figure (45-E8) between the points A and B.

31. When the base current in a transistor is changed from
30 μA to 80 μA, the collector current is changed from
1.0 mA to 3.5 mA. Find the current gain β.

32. A load resistor of 2 kΩ is connected in the collector
branch of an amplifier circuit using a transistor in
common-emitter mode. The current gain β = 50. The
input resistance of the transistor is 0.50 kΩ. If the input
current is changed by 50 μA, (a) by what amount does
the output voltage change, (b) by what amount does the
input voltage change and (c) what is the power gain ?

33. Let X = ABC + BCA + CAB. Evaluate X for
(a) A = 1, B = 0, C = 1,    (b) A = B = C = 1, and
(c) A = B = C = 0.
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34. Design a logical circuit using AND, OR and NOT gates to
evaluate ABC + BCA.

35. Show that AB + AB
___

 is always 1.

ANSWERS

OBJECTIVE I

 1. (c)  2. (b)  3. (b)  4. (d)  5. (c)  6. (a)
 7. (a)  8. (a)  9. (b) 10. (a) 11. (b) 12. (b)
13. (c) 14. (c) 15. (d)

OBJECTIVE II

 1. (a), (c), (d)  2. (b), (c), (d)  3. (a), (d)
 4. (b), (d)  5. all  6. (d)
 7. (b), (c)  8. (a), (c)  9. (a), (d)
10. (c), (d)

EXERCISES

 1. 5.3 × 10 28,  2.65 × 10 28

 2. 6 × 10 12

 3. 2670 K
 4. (a) 43 (b) 3000 K
 5. 50 meV
 6. 390 nm

 7. 1.5 eV

 8. 1.9 × 10 − 6 m

 9. 2.0 eV

10. 2.3 × 10 − 33, almost zero

11. approximately 10 463

12. 1 in about 3.5 × 10 10

13. 1.8 × 10 16 per cubic metre

14. 318 K
15. 20 to 230 K

16. (a) 0.2 V (b) 0.2 eV

17. (a) 0.2 eV (b) 0.1 eV (c) 0.3 eV
18. (a) 50 meV (b) 550 meV
19. (a) 25 μA (b) zero (c) 100 μA

20. 3.1 × 10 13

21. (a) 0.12 V (b) 
kT
ei0

 e − eV/kT (c) 0.25 V

22. (a) 2 A (b) 318 mV

23. 20 μA,  4.996 V ≅ 5 V

24. 20 Ω
25. (a) 1 A (b) zero (c) 1 A (d) 1 A

26. zero, 0.2 A

27. (a) 1A (b) 0.5 A

28. (a) 0.42 A, 0.13 A
30. 5 Ω  if  VA > VB  and  10 Ω  if  VA < VB

31. 50

32. (a) 5.0 V (b) 25 mV (c) 10 4

33. (a) 1 (b) 0 (c) 0
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CHAPTER 46

THE NUCLEUS

At the centre of an atom exists the nucleus which
contains protons and neutrons. The electrons surround
this nucleus to form the atom. As discussed earlier,
this structure of atom was revealed by the experiments
of Rutherford in which a beam of alpha particles was
made to strike a thin gold foil. Most of the alpha
particles crossed the foil without being appreciably
deviated, but there were some alpha particles which
suffered large deviation from their original lines of
motion. The data suggested that positive charges in an
atom are concentrated in a small volume which we call
nucleus and this nucleus is responsible for the large
deviation of alpha particles. Later on, the existence of
protons and neutrons in the nucleus was established.
In this chapter, we shall discuss the physics of the
nucleus.

46.1 PROPERTIES OF A NUCLEUS

Nuclear Constituents

A nucleus is made of protons and neutrons. A
proton has a positive charge of magnitude equal to that
of an electron and has a mass of about 1840 times the
mass of an electron. A neutron has a mass slightly
greater than that of a proton. The masses of a proton
and a neutron are

      mp = 1.6726231 × 10 − 27 kg

and mn = 1.6749286 × 10 − 27 kg.

It is customary in nuclear physics and high energy
physics to represent mass in energy units according to
the conversion formula E = mc 2. (Matter can be viewed
as a condensed form of energy. Theory of relativity
reveals that a mass m is equivalent to an energy E
where E = mc 2.) For example, the mass of an electron

is me = 9.1093897 × 10 − 31 kg and the equivalent energy
is

         me c 2 = 510.99 keV.

Thus, the mass of an electron is 510.99 keV c–2.
Similarly, the mass of a proton is 938.27231 MeV c–2

and the mass of a neutron is 939.56563 MeV c–2. The
energy corresponding to the mass of a particle when
it is at rest is called its rest mass energy. 

Another unit which is widely used in describing
mass in nuclear physics as well as in atomic physics
is unified atomic mass unit denoted by the symbol u.
It is 1/12 of the mass of a neutral carbon atom in its
lowest energy state which contains six protons, six
neutrons and six electrons. We have

 1 u = 1.6605402 × 10 − 27 kg = 931.478 MeV c–2.

Protons and neutrons are fermions and obey the
Pauli exclusion principle like electrons. No two protons
or two neutrons can have the same quantum state.
But one proton and one neutron can exist in the same
quantum state. Protons and neutrons are collectively
called nucleons.

The number of protons in a nucleus is denoted by
Z, the number of neutrons by N and the total number
of nucleons by A. Thus, A = Z + N. The total number
of nucleons A is also called the  mass number of the
nucleus. The number of protons Z is called the atomic
number. A nucleus is symbolically expressed as Z

A
X in

which X is the chemical symbol of the element. Thus,

2
4He represents helium nucleus which contains 2
protons and a total of 4 nucleons. So it contains 2
neutrons. Similarly,   92

238U represents a uranium nucleus
which contains 92 protons and 146 neutrons.

The distribution of electrons around the nucleus is
determined by the number of protons Z and hence the
chemical properties of an element are also determined
by Z. The nuclei having the same number of protons
but different number of neutrons are called  isotopes.
Nuclei with the same neutron number N but different
atomic number Z are called  isotones and the nuclei
with the same mass number A are called  isobars. All
nuclei with a given Z and N are collectively called a
nuclide. Thus, all the 26

56Fe nuclei taken together is one

nuclide and all the 16
32S nuclei taken together is another

nuclide.
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Nuclear Stability

More than 1000 nuclides have been identified but
not all are stable. An unstable nucleus emits some kind
of particle and changes its constitution. A stable
nucleus maintains its constitution all the time. Figure
(46.1) shows a plot of neutron number N versus proton
number Z for the nuclides observed. The black circles
represent the stable nuclides. For light stable nuclides,
the neutron number is equal to the proton number so
that the ratio N/Z is equal to 1. The ratio N/Z increases
for the heavier nuclides and becomes about 1.6 for
heaviest stable nuclides.

The points (Z, N) for stable nuclides fall in a rather
well-defined narrow region. There are nuclides to the
left of the stability region as well as to the right of it.
They are represented in figure (46.1) by white circles.
The nuclides to the left of the stability region have
excess neutrons, whereas, those to the right of the
stability region have excess protons. These nuclides
are unstable and decay with time according to the laws
of radioactive disintegration discussed later in this
chapter. They are called radioactive nuclide.

Nuclear Radius

The nucleus is so small a particle that we cannot
define a sharp boundary for it. For such small
particles, the description must be given in terms of the
wave functions only. The magnitude of the wave
function becomes very small as one moves some
distance away from the centre of the nucleus. A rough
estimate of nuclear size may be made by finding the
region where the wave function has appreciable
magnitude. Experiments show that the average radius
R of a nucleus may be written as

             R = R0 A 1
/3 … (46.1)

where R0 = 1.1 × 10 − 15 m = 1.1 fm and A is the mass
number.

The volume of a nucleus is

         V = 
4
3

 πR 3 = 
4
3

 πR0
 3 A. … (i)

As the masses of a proton and a neutron are
roughly equal, say m, the mass of a nucleus M is also
roughly proportional to the mass number A.
   We have,       M = mA. … (ii)

From (i) and (ii), the density within a nucleus
(mass per unit volume) ρ = M/V is independent of A.

Example 46.1

   Calculate the radius of 70Ge.

Solution : We have,

      R = R0 A 1/3 = (1.1 fm) (70) 1/3

         = (1.1 fm) (4.12) = 4.53 fm.

Nuclear Spin

The protons and neutrons inside a nucleus move
in well-defined quantum states and thus have orbital
angular momenta. Apart from this, protons and
neutrons also have internal spin angular momentum.

The spin quantum number ms is + 1
2
 or − 1

2
 ⋅ The total

angular momentum of the nucleus is the resultant of
all the spin and orbital angular momenta of the
individual nucleons. This total angular momentum of
a nucleus is called the nuclear spin of that nucleus.

46.2 NUCLEAR FORCES

When nucleons are kept at a separation of the
order of a femtometre (10 − 15 m), a new kind of force,
called nuclear force starts acting. Nuclear force is
much stronger than gravitational and electromagnetic
forces if the separation between the interacting
nucleons is of the order of 1 fm. Nuclear forces are
basically attractive and are responsible for keeping the
nucleons bound in a nucleus. The protons exert
repulsive Coulomb forces on each other. The neutrons
take no part in electric interaction as they are
chargeless particles. The nuclear forces operate
between proton and proton, neutron and neutron as
well as between proton and neutron. The overall effect
of this attractive nuclear force is much stronger than
that of the repulsive Coulomb forces between the
protons and thus the nucleus stays bound.

Unlike gravitational or electromagnetic force,
nuclear force is not represented by a simple formula.
In fact, the nuclear force is not yet completely
understood and physicists are still working out the
details. Some of the qualitative properties of nuclear
forces are as follows:

(a) Nuclear forces are short-ranged. They are most
effective only up to a distance of the order of a
femtometre or less. The nuclear force between two
nucleons decreases rapidly as the separation between
them increases and becomes negligible at separations
more than, say, 10 fm. The range up to which the
nuclear force is effective is called nuclear range.

(b) Nuclear forces are, on an average, much
stronger than electromagnetic forces (≈ 50–60 times
stronger) in the nuclear range.

(c) Nuclear forces are independent of charge. The
nuclear force between two protons is the same as that
between two neutrons or between a proton and a
neutron. Remember, the Coulomb force between two
protons acts according to the well-defined Coulomb’s
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law, over and above the nuclear force. The nuclear
force itself is independent of charge.

(d) An important property of nuclear force is that
it is not a central force. The force between a pair of
nucleons is not solely determined by the distance
between the necleons. For example, the nuclear force
depends on the directions of the spins of the nucleons.
The force is stronger if the spins of the nucleons are
parallel (i.e., both nucleons have ms  1/2 or 1/2)
and is weaker if the spins are antiparallel (i.e., one
nucleon has ms  1/2 and the other has ms  1/2).

Many of the nuclear properties may be understood
on the basis of these qualitative properties of nuclear
forces.

Because of the short-range nature of nuclear force,
each nucleon in a nucleus interacts only with a small
number of neighbouring nucleons through the nuclear
force. This explains why the density of the nucleons is
roughly the same in all the nuclei.

Because of the Pauli exclusion principle, each
quantum state can contain at the most two protons
(with opposite spins) and two neutrons (again with
opposite spins). Thus, nuclear forces favour pairing of
two protons and two neutrons together. In light nuclei,
the nuclear forces between the nucleons are much
dominant over the Coulomb repulsion and hence the
neutron number N and the proton number Z tend to
be equal in light nuclei. In a heavier nucleus, the
radius is large and for many nucleon-pairs, the
interaction through nuclear force is not effective. On
the other hand, Coulomb force is a long-range force
and even the diametrically opposite protons repel each
other. Thus, Coulomb repulsion becomes more effective
for nuclei of larger mass number A. Stability is
achieved by having more neutrons than protons
because neutrons do not take part in Coulomb
interaction. That is why N/Z increases with A for
stable nuclides. However, one should not expect
greater stability with too many neutrons because then
many of these neutrons will not have pairing with
protons. This will increase the energy and hence,
decrease the stability. A very large nucleus cannot be
stable for any value of N/Z. The heaviest stable nuclide
is   83

209Bi.

46.3 BINDING ENERGY

We already know about the concept of binding
energy of a hydrogen atom. If the constituents of a
hydrogen atom (a proton and an electron) are brought
from infinity to form the atom, 13.6 eV of energy is
released. Thus, the binding energy of a hydrogen atom
in ground state is 13.6 eV. Also, 13.6 eV energy must
be supplied to the hydrogen atom in ground state to

separate the constituents to large distances. Similarly,
the nucleons are bound together in a nucleus and
energy must be supplied to the nucleus to separate the
constituent nucleons to large distances (figure 46.2a).
The amount of energy needed to do this is called the
binding energy of the nucleus. If the nucleons are
initially well-separated and are brought to form the
nucleus, this much energy is released (figure 46.2b).

Thus, the rest mass energy of a nucleus is smaller
than the rest mass energy of its constituent nucleons
in free state. The difference of the two energies is the
binding energy. The rest mass energy of a free proton
is mpc 2 and that of a free neutron is mnc 2. If the
nucleus has a mass M, its rest mass energy is Mc 2. If
it contains Z protons and N neutrons, the rest mass
energy of its nucleons in free state is Zmpc 2  Nmnc 2.
If the binding energy of the nucleus is B, we have,

          B  Zmp  Nmn  Mc 2.  (i)

We can also use the atomic masses in place of
nuclear masses. The above equation then becomes

     B  Zm 1
1H

  N mn  m       Z
Z  NX


 c 2.  (46.2)

Here, m 1
1H

 is the mass of a hydrogen atom  and

m       Z
Z  NX

 is the mass of an atom with Z protons and
N neutrons.  Verify that the masses of electrons cancel
out in this equation. There are Z electrons in Z
hydrogen atoms as well as in the atom       Z

Z  NX. Hence,
equation (46.2) is equivalent to (i) above. Such
cancellations often occur and atomic masses are rather
frequently used in place of nuclear masses. The small
difference due to binding energy of electrons with the
nucleus is neglected. As we shall see later, such
cancellations do not work in the case of -decays.
Unless stated otherwise, mass of Z

AX in this chapter
will refer to the atomic mass which includes the mass
of Z electrons.
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Example 46.2

   Calculate the binding energy of an alpha particle from
the following data:

      mass of 1
1H atom  =1.007825 u

      mass of neutron = 1.008665 u

      mass of 2
4He atom = 4.00260 u.

Take 1 u = 931 MeV c −2. 

Solution : The alpha particle contains 2 protons and 2
neutrons. The binding energy is

  B = (2 × 1.007825 u + 2 × 1.008665 u − 4.00260 u)c 2

= (0.03038 u)c 2

= 0.03038 × 931 MeV = 28.3 MeV.

If two protons and two neutrons combine to form an
alpha particle, 28.3 MeV of energy will be released.

A very useful quantity in nuclear physics is
binding energy per nucleon, i.e., binding energy
divided by the mass number. Figure (46.3) shows a
plot of binding energy per nucleon against the mass
number. The binding energy of deuteron (the nucleus
of heavy hydrogen containing a proton and a neutron)
is 2.22 MeV so that the binding energy per nucleon is
2.22 MeV

2
 = 1.11 MeV. As we consider nuclei with

increasing mass number, the binding energy per
nucleon increases on an average and reaches a
maximum of about 8.7 MeV for A ≈ 50−80. For still
heavier nuclei, the binding energy per nucleon slowly
decreases as A increases. For uranium, one of the
heaviest natural elements (A ≈ 238), the value drops
to about 7.5 MeV. It follows that the nuclei in the
intermediate region, A ≈ 50–80, are most stable as
maximum energy is needed to bring out any individual
nucleon from such a nucleus.

The behaviour of binding energy per nucleon
versus A can be roughly understood in terms of the
short-range nature of nuclear force. Because of the
short range, a nucleon inside the nucleus can interact

with a fixed number of nucleons surrounding it. If each
nucleon is visualised as a sphere and these spheres
are assumed to be closely packed, each nucelon has 12
neighbouring nucleons touching it. Thus, 12 pairs are
formed with each nucleon for nuclear interaction. If all
the A nucleons could be in the interior of the nucleus,
there would have been 6A pairs. The binding energy
resulting from these pairs will, therefore, be
proportional to A. This energy is called volume energy
and is written as bv = a1 A. However, all the nucleons
are not in the interior. A nucleon near the surface does
not interact with 12 nucleons. Thus, there is a decrease
in binding energy and this decrease will be
proportional to the surface area or to R 2. As
R = R0 A 1

/3, this surface energy is bs = −a2 A 2
/3. The

negative sign is used because the surface effect
decreases the binding energy whereas the volume
effect increases it. Another factor contributing to the
binding energy is the Coulomb repulsion between the
protons. As Coulomb force is a long-range force, all
proton-pairs participate in it. The Coulomb potential
energy is, therefore, proportional to Z(Z – 1)/2 and is
inversely proportional to the nuclear radius R as the
average separation between the protons will be
proportional to the nuclear radius. The Coulomb
contribution to the binding energy is, therefore, written
as bc = −a3 Z(Z − 1)/A 1

/3. The binding energy per
nucleon is, therefore,

       
B
A

 = a1 − 
a2

A 1
/3 − a3 

Z(Z − 1)
A 4

/3  ⋅ … (46.3)

With suitable choices of a1, a2 and a3, this equation
agrees well with the general nature of the plot shown
in figure (46.3). There are other effects such as that
due to Pauli exclusion principle which should be
included in (46.3) to make it more accurate.

Mass Excess

Consider a nucleus of mass number A. Let the
mass of the neutral atom containing this nucleus be
m atomic mass units. Also, let A′ represent the mass
A atomic mass units. Thus,
       mass of the atom = m u
   and     A′ = A u.

We define mass excess as

       (mass of the atom – A′) c 2 … (46.4)

       = (m u − A u)c 2

= (m − A) 


931 MeV
c 2




 c 2

= 931(m − A)MeV. … (46.5)
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Example 46.3

   The atomic mass of 1
1H is 1.00783 u. Calculate the mass

excess of hydrogen.

Solution : The mass excess of hydrogen is 931(m – A)MeV

     = 931(1.00783 − 1)MeV = 7.29 MeV.

46.4 RADIOACTIVE DECAY

Stable nuclides have definite Z, N combinations as
shown by the black circles in figure (46.1). Nuclides
with other Z, N combinations are also found in nature
or may be prepared in laboratory. However, these
nuclides are unstable and they decay into other
nuclides by various processes.  Two main processes by
which an unstable nucleus decays are alpha decay and
beta decay.

Alpha Decay

In alpha decay, the unstable nucleus emits an
alpha particle reducing its proton number Z as well as
its neutron number N by 2. The alpha decay process
may be represented as

          Z
A
X  →  Z − 2

A − 4Y + 2
4He. … (46.6)

As the proton number Z is changed, the element
itself is changed and hence the chemical symbol of the
residual nucleus is different from that of the original
nucleus. The nucleus before the decay is called the
parent nucleus and that resulting after the decay is
called the daughter nucleus. An example of alpha
decay is

          83
212Bi  →    81

208Tl + 2
4He.

The parent nucleus bismuth had 83 protons and
129 neutrons, the daughter nucleus is thallium with
81 protons and 127 neutrons.

Alpha decay occurs in all nuclei with mass number
A > 210. We have seen that too heavy a nucleus will
be unstable because of the Coulomb repulsive force. By
emitting alpha particle the nucleus decreases its mass
number to move towards stability.

The rest mass energy of   83
212Bi is larger than the

sum of the rest mass energies of the products   81
208Tl and

2
4He. The difference between the rest mass energy of
the initial constituents and that of the final products
is called the Q-value of the process. Thus, if Ui is the
rest mass energy of the initial constituents and Uf is
that of the final products,

           Q = Ui − Uf .

This definition is valid not only for alpha decay
but for any nuclear process. This much energy is made

available as the kinetic energy of the products. In an
α-decay given by equation (46.6), the Q-value is

    Q = m

Z

A
X

 − m
Z − 2

A − 4Y
 − m

2
4He



 c 2. … (46.7)

A stream of alpha particles coming from a bulk
material is called alpha ray.

Beta Decay

Beta decay is a process in which either a neutron
is converted into a proton or a proton is converted into
a neutron. Thus, the ratio N/Z is altered in beta decay.
If a nucleus is formed with more number of neutrons
than needed for stability, a neutron will convert itself
into a proton to move towards stability. Similarly, if a
nucleus is formed with more number of protons than
needed for stability, a proton will convert itself into a
neutron. Such transformations take place because of
weak forces operating within a neutron or a proton.
When a neutron is converted into a proton, an electron
and a new particle named antineutrino are created and
emitted from the nucleus,
           n  →  p + e + ν

__
. … (46.8)

The antineutrino is denoted by the symbol ν
__
. It is

supposed to have zero rest mass like photon, is
chargeless and has spin quantum number ± 1/2. The
electron emitted from the nucleus is called a beta
particle and is denoted by the symbol β −. A stream of
such beta particles coming from a bulk of unstable
nuclei is called beta ray. The beta decay process may
be represented by

      Z
A
X  →  Z + 1

      AY + e + ν
__

   or, Z
A
X  →  Z + 1

      AY + β − + ν
__
. … (46.9)

It is also called beta minus decay as negatively
charged beta particles are emitted. The rest mass
energy of the initial constituents is

     Ui = m

Z

A
X

 − Zme c 2

and that of the final constituents is

     Uf = m

Z + 1

      AY
 − (Z + 1)me + me c 2.

The kinetic energy available to the product
particles is,

     Q = Ui − Uf = m

Z

A
X

 − m
Z + 1

      AY


 c 2 … (46.10)

where atomic masses are used. It may be noted that
the rest mass energy of the electron created is not
explicitly subtracted in this equation. Because of the
large mass, the residual nucleus Z + 1

      AY does not share
appreciable kinetic energy. Thus, the energy Q is
shared by the antineutrino and the beta particle.
Depending on the fraction taken away by the
antineutrino, the kinetic energy of the beta particle can
be anything between zero and a maximum value Q.
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If the unstable nucleus has excess protons than
needed for stability, a proton converts itself into a
neutron.  In the process, a positron and a neutrino are
created and emitted from the nucleus,

           p    n  e   .  (46.11)

The positron  e + has a positive electric charge equal
in magnitude to the charge on an electron and has a
mass equal to the mass of an electron. Positron is
called the antiparticle of electron. When an electron
and a positron collide, both the particles are destroyed
and energy is made available. Similarly, neutrino and
antineutrino are antiparticles of each other. When a
proton in a nucleus converts itself into a neutron, the
decay process is represented as

Z
AX    Z  1

     A Y  e   

   or, Z
AX    Z  1

     A Y     .  (46.12)

This process is called beta plus decay. The positron
so emitted is called a beta plus particle.

Verify that the Q-value of this decay is given by

     Q  m

Z

AX  m
Z  1

     A Y  2me c 2.  (46.13)

Can an isolated proton decay to a neutron emitting
a positron and a neutrino as suggested by equation
(46.11) ? The mass of a neutron is larger than the mass
of a proton and hence the Q-value of such a process
would be negative. So, an isolated proton does not beta
decay to a neutron. On the other hand, an isolated
neutron decays to a proton as suggested by equation
(46.8).

A similar process, known as electron capture, takes
place in certain nuclides. In this process, the nucleus
captures one of the atomic electrons (most likely an
electron from the K shell). A proton in the nucleus
combines with this electron and converts itself into a
neutron. A neutrino is created in the process and
emitted from the nucleus,

         p  e    n  .

The process may be represented as

          Z
AX  e    Z  1

     A Y  .  (46.14)

The Q-value of the process is

     Q  m

Z

AX  m
Z  1

     A Y

 c 2.  (46.15)

When an atomic electron is captured, a vacancy is
created in the atomic shell and X-rays are emitted
following the capture.

The daughter nucleus formed as a result of an
alpha decay or a beta decay may not be stable and
undergo another alpha or beta decay. Thus, a series
of decays proceed till a stable nucleus is formed. An
example of such a series of decays starting from 238U
and ending at 206Pb is shown in figure (46.4).

Gamma Decay

The protons and neutrons inside a
nucleus move in discrete quantum
states with definite energies. In the
ground state, the nucleons occupy such
quantum states which minimise the
total energy of the nucleus. However,
higher energy states are also available
to the nucleons and if appropriate
energy is supplied, the nucleus may be
excited to higher energies. The energy
differences in the allowed energy levels
of a nucleus are generally large, of the
order of MeVs. It is, therefore, difficult
to excite the nucleus to higher energy
levels by usual methods of supplying
energy as heating. However, when an
alpha or a beta decay takes place, the
daughter nucleus is generally formed
in one of its excited states. Such a
nucleus in an excited state eventually
comes to its ground state by emitting
a photon or photons of electromagnetic
radiation. The process is similar to that
in a hydrogen atom when an electron
jumps from a higher energy orbit to a
lower energy orbit emitting a photon.
A typical situation is schematically
shown in figure (46.5). The parent
nucleus 57Co in its ground state decays
to the daughter nucleus 57Fe by
+-decay. The nucleus 57Fe is formed in
its second excited state with energy
136 keV above the ground state. This
nucleus in excited state may emit a
photon of 136 keV and reach its ground
state. Or, it may emit a photon of
122 keV and drop to its first excited
state and then drop to the ground state
by emitting another photon of energy
14 keV. If bulk 57Co is taken, many
57Fe nuclei will be formed; some will
drop directly to their ground states and
the rest will go via the first excited states. Thus, one
will observe a stream of  +-particles, 136 keV photons,
122 keV photons and 14 keV photons coming from the
57Co source.

57Co

+

136 keV

14 keV

057
Fe

Figure 46.5

Figure 46.4
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The electromagnetic radiation emitted in nuclear
transitions is called gamma ray. The wavelength of
this radiation is given by the usual relation

            λ = 
hc
E

where E is the energy of the photon. The process of a
nucleus coming down to a lower energy level by
emitting a photon is called gamma decay.

Note that in gamma decay neither the proton
number nor the neutron number changes. Only the
quantum states of the nucleons change.

 Alpha, beta and gamma decays are collectively
called radioactive decay and the materials capable of
undergoing radioactive decay are called radioactive
materials. The α-, β- and γ-rays are collectively called
nuclear radiation.

46.5 LAW OF RADIOACTIVE DECAY

A radioactive nucleus decays by emitting some
nuclear radiation (α, β or γ). Suppose an alpha-active
nucleus is prepared at t = 0. When will this nucleus
emit alpha particle ? The answer to this question is
that there is no fixed time at which it must decay. No
rule in physics predicts the time at which it will decay.
Only when it decays we know that it has done so.
Putting in another way, suppose several identical
active nuclei are prepared at the same instant and are
kept in identical environment. They will, in general,
not decay simultaneously. Some will decay quite early
and some will live longer, some might live for very
long periods. In classical physics of Newton, if all the
conditions at present are known, the equations of
motion completely determine the future course of all
particles. This is called a deterministic world in which
everything is predetermined. Radioactive decay cannot
be described by classical physics. One has to use
quantum mechanics to understand it. In quantum
mechanics, the equations of physics do not predict the
exact future of a system in terms of the present
conditions. The equations only give the probability of
a particular particle behaving in a particular fashion.
In fact, Einstein never wholeheartedly accepted this
indeterministic nature of the world.

Suppose there are N active nuclei at an instant t.
How many of these nuclei will decay in the next small
time interval dt ? The number will be proportional to
N and to dt. Each active nucleus has a chance to decay
in time interval dt. So, more the number of active
nuclei at time t, more will decay in the next dt.
Similarly, if you take dt slightly longer, more nuclei
will decay in dt because each nucleus will have an
increased chance of decaying. Thus,

          dN = − λ Ndt. … (46.16)

The minus sign is used because the number of
active nuclei is decreasing. The constant of
proportionality λ is called decay constant and is a
constant for a given decay scheme. From equation
(46.16),

         
dN
N

 = − λ dt

or,       ∫ 
N0

N
dN
N

 = − λ ∫ 
0

t

dt

or, ln 
N
N0

 = − λ t

   or, N = N0 e − λ t … (46.17)

where N0 is the number of active nuclei at t = 0. Also
from (46.16), the rate of decay is

− 
dN
dt

 = λN. … (46.18)

The quantity 



− dN

dt




 gives the number of decays per

unit time and is called the activity of the sample. Thus,
the activity of a radioactive sample is A = λN.

From equation (46.17), we have

        A = A0 e − λt. … (46.19)

Unit of Activity

The activity of a radioactive material is measured in
terms of the disintegrations per unit time. Its SI unit is
becquerel which is the same as 1 disintegration per
second. It is denoted by the symbol Bq. However, the
popular unit of activity is curie defined as

     1 curie = 3.7 × 10 10 disintegrations s −1.

The unit ‘curie’ is represented by the symbol Ci.
The activity per unit mass is called specific activity.

Example 46.4

   The decay constant for the radioactive nuclide 64Cu is

1.516 × 10 − 5 s − 1. Find the activity of a sample containing

1 µg of 64Cu. Atomic weight of copper = 63.5 g mole −1.
Neglect the mass difference between the given
radioisotope and normal copper.

Solution : 63.5 g of copper has 6 × 10 23 atoms. Thus, the
number of atoms in 1 µg of Cu is

       N = 
6 × 10 23 × 1 µg

63.5 g
 = 9.45 × 10 15.

The activity = λN

 = (1.516 × 10 − 5 s − 1) × (9.45 × 10 15)

= 1.43 × 10 11  disintegrations s −1

        = 
1.43 × 10 11

3.7 × 10 10  Ci = 3.86 Ci.
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Half-life

The time elapsed before half the active nuclei
decay is called half-life and is denoted by t1/2. Suppose
there are N0 active nuclei at t = 0. The half-life t1/2 is
the time elapsed before N0 /2 nuclei have decayed and
N0 /2 remain active. From equation (46.17),

          
N0

2
 = N0 e − λt1/2 

or, e λt1/2 = 2

or, λ t1/2 = ln 2

   or, t1/2 = 
ln 2

λ
 = 

0.693
λ

 ⋅ … (46.20)

Equation (46.20) relates the decay constant λ and

the half-life t1/2. As the activity 



− 

dN
dt




 is proportional

to N, the activity also reduces to half its value in one
half-life.

Using equation (46.20), equation (46.17) may be
rewritten as

      N = N0 e − (ln 2) t
t1/2 = 

N0


e ln 2


t/t1/2

= 
N0

2 t/t1/2
 ⋅ … (46.21)

Similarly, the activity at time t is

A = 
A0

2 t/t1/2
 ⋅ … (46.22)

Example 46.5

   The half-life of a radioactive nuclide is 20 hours. What
fraction of original activity will remain after 40 hours ?

Solution : We have

          
t

t1/2

 = 
40 hours
20 hours

 = 2.

Thus,

A = 
A0

2 t/t1/2
 = 

A0

2 2 = 
A0

4
 

or, 
A
A0

 = 
1
4

 ⋅

So one fourth of the original activity will remain after
40 hours.

Average-life

Consider a sample containing N0 radioactive nuclei
at time t = 0. The number of nuclei which decay
between the time t and t + dt is λN dt. The life of these
nuclei is approximately t each. The sum of the lives of
these dN nuclei is t λN dt. The sum of all the lives of
all the N nuclei that were active at t = 0 will be

         S = ∫ 
0

∞

t λN dt

        = λ N0 ∫ 
0

∞

t e − λt dt

      = λ N0 










t 

e − λt

− λ




0

 ∞

 − ∫ 
0

∞
e − λt

− λ
 dt








= − λ N0 




e − λt

λ 2


0

 ∞

 = 
N0

λ
 ⋅

Thus, the average-life of the nuclei is

tav = 
S
N0

 = 
1
λ

 ⋅ … (46.23)

Using equation (46.20),

tav = 
t1/2

0.693
 ⋅ … (46.24)

All the equations derived above are statistical in
nature. They do not predict the exact behaviour of each
radioactive nucleus, they only predict the total
numbers. In one half-life, half of the active particles
will decay. But which of these particles will decay in
one half-life is never predicted. Suppose a traffic
controller is stationed at the junction of three roads A,
B and C. He counts the total number of vehicles
coming towards the junction from the side A and the
number turning towards B and towards C. From his
observations over a long period, he can formulate a
statistical law that out of the vehicles coming from the
side A, 60% turn towards B and 40% turn towards C.
This rule is statistical and will work well on a normal
day (it will not work, say, on the Independence Day
when a procession of hundreds of vehicles on road A
may turn towards B). But the traffic controller will not
be able to predict whether a particular vehicle coming
from the side A will turn towards B or towards C. Also,
the rule works only when a large number of vehicles
are considered. If he considers just 5 vehicles, 4 may
turn towards B, and only 1 towards C and the rule
may be a total failure. Similarly, the equations
developed for radioactive decay work well only when
N is large.

No description of radioactivity can be complete
without mentioning the Curie couple. Marie Curie and

Figure 46.6
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her teacher-turned-husband Pierre Curie worked hard
to separate the radioactive material radium chloride
(RaCl2) from uranium ore. They succeeded in 1902
when about 0.19 g of RaCl2 was separated and its
radioactivity was studied. They shared the Nobel Prize
in physics for 1903 with Henri Becquerel for this work.
The unit Ci is in their honour.

46.6 PROPERTIES AND USES OF
    NUCLEAR RADIATION

Alpha ray

(a) It is a stream of alpha particles, each particle
containing two protons and two neutrons. An alpha
particle is nothing but a helium nucleus.

(b) Being made of positively charged particles,
alpha ray can be deflected by an electric field as well
as by a magnetic field.

(c) Its penetrating power is low. Even in air, its
intensity falls down to very small values within a few
centimetres.

(d) Alpha rays coming from radioactive materials
travel at large speeds of the order of 10 6 m s –1.

(e) All the alpha particles coming from a particular
decay scheme have the same energy.

(f) Alpha ray produces scintillation (flashes of
light) when it strikes certain fluorescent materials,
such as barium platinocyanide.

(g) It causes ionization in gases.

Beta ray

(a) It is a stream of electrons coming from the
nuclei. Thus, the properties of beta ray, cathode ray,
thermions, photoelectrons, etc., are all identical except
for their origin. Beta particles are created at the time
of nuclear transformation, whereas, in cathode ray,
thermions, etc., the electrons are already present and
get ejected.

(b) Being made of negatively charged particles,
beta ray can be deflected by an electric field as well
as by a magnetic field.

(c) Its penetrating power is greater than that of
alpha ray. Typically, it can travel several metres in
air before its intensity drops to small values.

(d) The ionizing power is less than that of alpha
rays.

(e) Beta ray also produces scintillation in
fluorescent materials, but the scintillation is weak.

(f) The energy of the beta particles coming from
the same decay scheme are not equal. This is because
the available energy is shared by antineutrinos. The
energy of beta particles thus varies between zero and
a maximum.

Beta-plus ray

Beta-plus ray has all the properties of beta ray,
except that it is made of positively charged particles.

Gamma ray

(a) Gamma ray is an electromagnetic radiation of
short wavelength. Its wavelength is, in general,
smaller than X-rays. Many of its properties are the
same as those of X-rays.

(b) Being chargeless, it is not deflected by electric
or magnetic field.

(c) It has the least ionizing power and the largest
penetrating power among different types of nuclear
radiation.

(d) All the photons coming from a particular
gamma decay scheme have the same energy.

(e) Being an electromagnetic wave, gamma ray
travels in vacuum with the velocity c.

Nuclear radiation, specially gamma ray, is used in
medicine for cancer therapy and other treatments. The
ionizing power of nuclear radiation is used in factories
to avoid accumulation of charge on moving parts due
to friction. Presence of radioactive material ionizes the
air and any charge accumulated leaks away. Carbon
dating, which is based on radioactive decay of 14C, is
a reliable technique to estimate the ‘age’ of
archeological samples which have carbon contents.
Excess exposure to nuclear radiation is harmful for
human body.

46.7 ENERGY FROM THE NUCLEUS

Energy in various forms is available around us.
Matter itself is a concentrate of energy. All atoms,
molecules, nuclei, etc., are in continuous motion and
have large amount of kinetic energy. But the energy
that we need for our daily tasks is required in specific
forms. We require energy in the form of heat to cook
our food. We require energy in the form of electric
current for our fans and electric lamps. Cooking gas
and oxygen in air contain energy but this internal
energy is not in the form required to cook our food.
When the two are engaged in a chemical reaction, heat
is produced which is in usable form. Sources of usable
energy is something not in plenty and man is now
concerned about energy conservation. Traditional
sources of usable energy are wood, coal, petroleum,
etc., and they are only in limited amounts and might
be exhausted in a few hundred years. We are getting
a large amount of energy from the sun but to use an
appreciable fraction of it has been a challenging task.
Several centres throughout the world are working hard
to develop efficient solar cells which can convert the
energy from the sun to usable forms. Satellites and
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spaceships receive energy from the sun through such
solar cells.

A solution to the energy crisis has been presented
by nuclear energy. Nuclear energy may be obtained
either by breaking a heavy nucleus into two nuclei of
middle weight or by combining two light nuclei to form
a middle-weight nucleus. The former process is called
nuclear fission and the latter nuclear fusion.

  The physics of fission or fusion lies in the relation
between the binding energy per nucleon versus A
(figure 46.3). The middle-weight nuclei are more
tightly bound than heavy-weight nuclei. When the
nucleons of a heavy nucleus regroup in two
middle-weight nuclei, called fragments, the total
binding energy increases and hence the rest mass
energy decreases. The difference in energy appears as
the kinetic energy of the fragments or in some other
form. This is the basic principle of fission.

Similar arguments hold for fusion. Again, the
light-weight nuclei are less-tightly bound than the
middle-weight nuclei. Thus, if two light nuclei combine
to form a middle-weight nucleus, the binding energy
increases and the rest mass decreases. Energy is
released in the form of kinetic energy or in some other
external form.

Example 46.6

   The binding energy per nucleon is 8.5 MeV for A ≈ 120
and is 7.6 MeV for A = 240 (see figure 46.3). Suppose a
nucleus with A = 240 breaks into two nuclei of nearly
equal mass numbers. Calculate the energy released in the
process.

Solution :

Suppose the heavy nucleus had Z protons and N
neutrons. The rest mass energy of this nucleus would
be
     E = Mc 2 = (Zmp + Nmn)c 2 − B1

= (Zmp + Nmn)c 2 − 7.6 × 240 MeV.

If there are Z1 protons and N1 neutrons in the first
fragment, its rest mass energy will be

E1 = M1c 2 = (Z1mp + N1mn)c 2 − B2

= (Z1mp + N1mn)c 2 − (8.5 MeV) (Z1 + N1).

Similarly, if there are Z2 protons and N2 neutrons in the
second fragment, its rest mass energy will be 

    E2 = (Z2mp + N2mn)c 2 − (8.5 MeV) (Z2 + N2).

The energy released due to the breaking is
      E − (E1 + E2)
   = 


(Z − Z1 − Z2)mp c 2 + (N − N1 − N2)mnc 2


      + [(Z1 + Z2 + N1 + N2) × 8.5 − 240 × 7.6] MeV

  = 240 × (8.5 − 7.6) MeV = 216 MeV.

We have used the fact that Z1 + Z2 = Z, N1 + N2 = N and
Z1 + Z2 + N1 + N2 = Z + N = 240. Thus, 216 MeV of energy
will be released when this nucleus breaks.

46.8 NUCLEAR FISSION

We have seen that a heavy nucleus has larger rest
mass energy than that of its two middle-weight
fragments. It is thus energetically favourable for the
heavy nucleus to break into two middle-weight nuclei.
However, before finally breaking into two parts, the
heavy nucleus has to undergo a distortion which
gradually increases to break the nucleus. The situation
is shown in figure (46.7). The rest mass energy E1 of
the heavy nucleus is larger than the combined rest
mass energy E3 of its fragments but the energy E2 in
the intermediate state happens to be larger than E1.
Thus, it is not simple for the heavy nucleus to break
spontaneously. In fact, according to classical physics,
the process is impossible unless energy is supplied to
the heavy nucleus to reach the intermediate state.
Once it reaches the intermediate state, it can break
into two parts and release energy. But the amount
E2 − E1 has to be supplied to the heavy nucleus so that
it may reach the intermediate state. Left to itself, the
heavy nucleus will not break according to classical
physics.

The world of subatomic particles is much different
from that of our common day experience. According to
quantum mechanics, if the final state has lesser energy
than the energy in the initial state, there is a chance
that the process will take place even if the
intermediate state has energy greater than the initial
one and no energy is supplied externally (figure 46.8).

Such processes are called barrier penetration. The
energy seems to be created out of nothing, a violation
of energy conservation ! But this is a fact of the physics
of small particles. The energy conservation in the usual
sense may be violated for ‘short times’. The amount of
energy seems to be created and the time for which it
is created are related through Heisenberg uncertainty
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relation,
              ∆E.∆t ≈ h/2π
where h is the Planck constant.

Barrier penetration, though possible, is not easy.
Greater the energy difference ∆E = E2 − E1, smaller is
the probability of a successful barrier penetration. This
extra energy ∆E is called height of the barrier.
Similarly, larger the duration of intermediate state,
smaller is the probability of barrier penetration. These
parameters are different for different nuclides and
hence the probability that a heavy nucleus will break
in a given time is different for different nuclides.
Generally, this probability is extremely small except
in a few nuclides. For example, the half-life of  92

238U for

fission reaction is about 10 16 years. If you start with
N nuclei of  92

238U today, only N/2 will disintegrate in the

next 10 16 years. Table (46.1) shows some of the better
cases where the probability of fission is appreciable.

Table 46.1 : Fission probability

   Nuclide Fission probability
relative to 236U

   236U 1 (arbitrarily assumed)

   239U < 1 × 10 − 3

   240Pu 1.5

   244Am < 2 × 10 − 4

46.9 URANIUM FISSION REACTOR

The most attractive bid, from a practical point of
view, to achieve energy from nuclear fission is to use

 92
236U as the fission material. This nuclide is highly
fissionable and hence  is not found in nature. Natural
uranium contains about 99.3% of  92

238U and 0.7% of

 92
235U. The technique is to hit a uranium sample by
slow-moving neutrons (kinetic energy ≈ 0.04 eV, also
called thermal neutrons). A  92

235U nucleus has large
probability of absorbing a slow neutron and forming

  92
236U nucleus. This nucleus then fissions into two parts.
A variety of combinations of the middle-weight nuclei
may be formed due to the fission. For example, one
may have
           92

236U  →   53
137I + 39

97Y + 2n,

 92
236U  →   56

140Ba + 36
94Kr + 2n

and a number of other combinations.
During a fission event, in general, two or three

neutrons are emitted. If the total number of neutrons
emitted in a large number of events is divided by the
number of events, the average comes out to be around
2.47. We say that on an average 2.47 neutrons (or 2.5

as a round figure) are emitted in each fission event.
The two fragments generally have unequal mass
numbers as is the case in the above examples. If the
relative yield of different nuclei are plotted against
their mass number, a plot of the type shown in figure
(46.9) results. The most probable mass numbers of the
fragments are around A = 95 and 140. The probability
of having nearly equal fragments is small.

The ratio N/Z is larger in heavier nuclei than in
the middle-weight nuclei (figure 46.1). Thus, the
fragments will have N/Z ratio larger than that needed
for stability. As a result, 2 or 3 neutrons are emitted
together with the fission fragments. The fragments
reduce their N/Z ratio further via beta decay in which
a neutron is converted into a proton. These daughter
nuclei are generally formed in excited states and
consequently emit gamma rays. At some stage, a
daughter nucleus can also emit another neutron. Thus,
neutrons, beta particles (electrons), antineutrinos and
gamma photons accompany nuclear fission. For
example, in one of the reactions, 236U breaks into 39

97Y

and   53
137I. These nuclei undergo the following changes:

The neutron emitted by 137Xe comes out an
appreciable time interval after the fission as against
the two neutrons emitted almost simultaneously with
the fission. This is because 137I decays to 137Xe with its
own half-life and only then 137Xe emits the neutron.
Such neutrons are called delayed neutrons and play an
important role in controlling the fission rate.

In each fission event, about 200 MeV of energy is
released a large part of which appears in the form of
kinetic energies of the two fragments. Neutrons take
away about 5 MeV. As the fragments decay, an
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additional energy of about 15–20 MeV is released in
the form of kinetic energy of beta particles,
antineutrino and photons. The fragments, formed with
so much kinetic energy, are immediately stopped in
the bulk uranium solid in which they are formed. This
produces large amount of heat which is taken away by
passing a cold liquid in pipes through the reaction
area.

Chain Reaction

A very important and interesting feature of
neutron-induced fission is the chain reaction. Once a
neutron starts the fission by being absorbed in 235U,
the fission itself produces 2 or 3 new neutrons which
may be absorbed by another nearby 235U causing
another fission. Such a process is known as a chain
reaction. The number of neutrons may thus go on
increasing in each generation of fission and the rate
of fission may likewise increase in geometrical
progression. If that happens, the whole of the material
will fission out in a small time. The large amount of
heat produced in such a short time will be
uncontrollable and will only lead to disaster. There are
ways to control the rate of chain reaction. If the fission
event takes place near the surface of the bulk uranium
material taken, there is a good chance that the
neutrons produced will escape from the material
without coming in contact with another 235U. The
fraction of the neutrons lost in this way will be larger
if smaller pieces of uranium are taken. Controlling the
size will thus control the rate of fission. Another
important point is that the neutrons produced in the
fission have kinetic energy ≈ 2 MeV. They are called
fast neutrons. The 235U nucleus has a good probability
of absorbing slow neutrons (≈ 0.04 eV), but has a poor
chance of absorbing fast neutrons. The neutron may
not get absorbed in 235U even if the two meet and
collide. If the material is large enough, the neutron
will suffer a number of collisions with other nuclei. In
each collision, it will lose its kinetic energy and after
some time may slow down to thermal energies
≈ 0.04 eV. It may then be absorbed by 235U. But 238U
nuclei, which are present in large numbers (99.3%),
are extremely good neutron absorbers if they get
neutrons of energy 1–100 eV. These neutrons get
absorbed in 238U to form 239U which decays generally
by means other than fission. A fast neutron has to go
through this 1–100 eV range before slowing down to
thermal energies ≈ 0.04 eV and has a fair chance of
being absorbed by 238U. This neutron is, therefore, lost
as far as fission is concerned.

Nuclear Reactor

Let us now consider the design and working of a
typical uranium nuclear reactor (figure 46.11).
Uranium is taken in the form of cylindrical rods
arranged in a regular pattern in the active reactor
core. The volume in the core is filled with a low-Z
material such as heavy water (D2O), graphite,
beryllium, etc. This material is called moderator.

When fission takes place in a uranium rod, most
of the fast neutrons produced escape from the rod and
enter into the moderator. These neutrons make
collisions with the particles of the moderator and thus
slow down. About 25 collisions with deuteron (present
in heavy water) or 100 collisions with carbon or
beryllium are sufficient to slow down a neutron from
2 MeV to thermal energies. The distances between the
rods are adjusted in such a way that a neutron coming
from one rod is generally slowed down to thermal
energies before entering the other rod. This eliminates
the possibility of a neutron being absorbed by 238U in
1–100 eV region. The geometry of the core is such that
out of the average 2.5 neutrons produced per fission,
1 neutron is used to trigger the next fission and the
remaining are lost without triggering any fission. The
reaction is then sustained at a constant rate. If the
rate of the loss of neutrons is decreased further, the
fission rate will keep on increasing which may lead to
explosion. If the rate of loss of neutrons is increased,
the rate of fission will keep on decreasing and
ultimately the chain reaction will stop. The finer
control of fission rate is made by the control rods which
are made of cadmium and are inserted up to a certain
depth in the moderator. Cadmium is a very good
neutron absorber. If the stage is set for stable chain
reaction and the cadmium rods are pushed into the
moderator, the reactor will be shut off. Pulling the
cadmium rods out will start the reactor.

Some coolant liquid such as water at high pressure
or molten sodium is passed through the reactor-core
area which withdraws the heat produced in the core.
The heat is used to prepare steam from water. The
steam so prepared is used to run steam turbines and
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produce electric power. The amount of 235U goes on
decreasing as the uranium rod is used for fission.
When 235U is finished and only 238U is left, the rods
have to be changed.

Breeder Reactors

Although fission generates large amount of energy
and the world is heavily depending on fission for its
energy requirement, uranium resources are also
limited. Table (46.1) shows that fission can easily take
place with 240Pu besides 236U. But 239Pu is not a
naturally occurring isotope. However, 238U can capture
a neutron to produce  239Pu which can be used as a
nuclear fuel.

    92 
238U + n → 92 

239U 
 β − 

 93 
239Np 

 β − 
 94 
239Pu.

Suppose, used uraninum rods, which contain only
238U, are kept in or around a uranium-reactor core.
Also suppose, the geometry is such that out of the
average 2.5 neutrons produced in a fission, one neutron
is absorbed by a 238U  nucleus in these rods resulting
in 239Pu. Then we produce as much nuclear fuel in the
form of 239Pu as we consume in the form of 235U. If
more than one neutron can be absorbed by these
238U rods per fission then we produce more fuel than
what we consume. Thus, apart from nuclear energy,
these reactors give us fresh nuclear fuel which often
exceeds the nuclear fuel used. Such a reactor is called
a breeder reactor.

46.10 NUCLEAR FUSION

When two light nuclei come close to one another,
within the range of attractive nuclear force (≈ 1 fm),
they may combine to form a bigger nucleus. The
process is possible from an energy point of view
because the binding energy per nucleon is small for
light nuclei and increases with A until A is about 50.
To bring the light nuclei within the separation of about
a femtometre is, however, a difficult task. Any bulk
material is composed of atoms and an atom typically
has a radius of a few angstroms (1 angstrom
= 10 − 10 m = 10 5 fm). When atoms are pushed closer,
their electrons cause them to repel each other. Even
if all the electrons are stripped off, the nuclei
themselves are positively charged and strongly repel
each other. The technique thus is to heat a gas to an
extremely high temperature so that the electrons are
completely detached and the nuclei move within the
gas with large random speeds. Two nuclei moving
towards each other may come close enough to fuse into
one nucleus. What must be the order of temperature
which will ensure enough fusion ?

Example 46.7

   Consider two deuterons moving towards each other with
equal speeds in a deuteron gas. What should be their
kinetic energies (when they are widely separated) so that
the closest separation between them becomes 2 fm ?
Assume that the nuclear force is not effective for
separations greater than 2 fm. At what temperature will
the deuterons have this kinetic energy on an average ?

Solution :

As the deuterons move, the Coulomb repulsion will slow
them down. The loss in kinetic energy will be equal to
the gain in Coulomb potential energy. At the closest
separation, the kinetic energy is zero and the potential

energy is e 
2

4πε0 r
⋅ If the initial kinetic energy of each

deuteron is K and the closest separation is 2 fm, we shall
have

     2 K = 
e 2

4πε0(2 fm)

= 
(1.6 × 10 − 19 C) 2 × (9 × 10 9 N m 2C −2)

2 × 10 − 15 m

or, K = 5.7 × 10 − 14 J.

If the temperature of the gas is T, the average kinetic
energy of random motion of each nucleus will be 1.5 kT.
The temperature needed for the deuterons to have the

average kinetic energy of 5.7 × 10 − 14 J will be given by

        1.5 kT = 5.7 × 10 − 14 J

or,         T = 
5.7 × 10 − 14 J

1.5 × 1.38 × 10 − 23 J K

= 2.8 × 10 9 K.

One needs a temperature of the order of 10 9 K  if
deuterons are to be fused. The temperature inside the
sun is estimated to be around 1.5 × 10 7 K. Yet fusion
is the main source of energy in the sun which it
ultimately radiates to the universe including the earth.
There are two main reasons why  fusion can take place
at a temperature even hundred times smaller than
that calculated in example (46.7). One is that the
energy of all the particles is not equal to the average
energy. Although the average kinetic energy is 1.5 kT,
there are particles which have kinetic energy much
larger than 1.5 kT. Secondly, even if the kinetic energy
of the two interacting nuclei is less than that needed
to bring them within the nuclear range, there is a
small chance of fusion through the process of barrier
penetration.

As these reactions take place at high temperatures,
they are also called thermonuclear fusion or
thermonuclear reactions.
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Fusion in Sun

Among the celestial bodies in which energy is
produced, the sun is relatively cooler. There are stars
with temperatures around 10 8 K inside. In sun and
other stars, where the temperature is less than or
around 10 7 K, fusion takes place dominantly by
proton–proton cycle as follows:

        1H + 1H  →  2H + e + + ν
2H + 1H  →  3He + γ

  3He + 3He  →  4He + 2 1H                

         4 1H  →  4He + 2e + + 2ν + 2γ

Note that the first two reactions should occur twice
to produce two 3He nuclei and initiate the third
reaction. As a result of this cycle, effectively, four
hydrogen nuclei combine to form a helium nucleus.
About 26.7 MeV energy is released in the cycle. Thus,
hydrogen is the fuel which ‘burns’ into helium to
release energy. The sun is estimated to have been
radiating energy for the last 4.5 × 10 9 years and will
continue to do so till all the hydrogen in it is used up.
It is estimated that the present store of hydrogen in
the sun is sufficient for the next 5 × 10 9 years.

In hotter stars where the temperature is
≈ 10 8 K, another cycle known as proton–carbon cycle
takes place.

        1H + 12C  →  13N + γ
13N  →  13C + e + + ν

1H + 13C  →  14N + γ
1H + 14N  →  15O + γ

        15O  →  15N + e + + ν

        1H + 15N  →  12C + 4He

The end result of this cycle is again the fusion of
four hydrogen nuclei into a helium nucleus. Carbon
nucleus acts only as a catalyst.

It is clear that Coulomb repulsion becomes more
and more obstructive to fusion as Z increases. Thus,
it needs still higher temperatures for heavier elements
to fuse. When the temperature inside a star rises,
such fusions do take place to produce heavier nuclei
such as
         4He + 4He + 4He  →  12C + γ.

The process can continue, finally producing
elements in iron region (A = 56) where the binding
energy per nucleon is maximum. Elements heavier
than iron can be produced by neutron absorption and
subsequent beta decay.

46.11 FUSION IN LABORATORY

In stellar objects, the material remains confined at
high temperature due to gravitational pull. If we wish
to make fusion as energy-producing device in
laboratory, the major problem is to confine the hot
plasma (when all the electrons are detached from the
atoms, we get a plasma) in a small volume for
extended time intervals. Producing a high temperature
is obviously a major task but confinement at such high
temperatures is more challenging. Solid walls can’t be
used as containers because no solid can sustain the
high temperatures needed for fusion. The easiest
thermonuclear reaction that can be handled on earth
is the fusion of two deuterons (D–D reaction) or fusion
of a deuteron with a triton (D–T reaction).

   1
2H + 1

2H  →  2
3He + n + 3.3 MeV (D−D)

1
2H + 1

2H  →  1
3H + 1

1H + 4.0 MeV (D−D)

1
2H + 1

3H  →  2
4He + n + 17.6 MeV (D−T)

One starts with deuterium gas (heavy hydrogen)
or a mixture of deuterium with tritium, heat the gas
to high temperatures, ensuring its confinement for
reasonable period, and looks for the fusion.

Lawson criterion

J.D. Lawson showed that in order to get an energy
output greater than the energy input, a fusion reactor
should achieve

         nτ > 10 14 s cm −3

where n is the density of the interacting particles and
τ is the confinement time. The quantity nτ in s cm –3

is called Lawson number.
The ratio of the energy output to the energy input

is known as Q of the fusion machine. For a viable
fusion machine, Q should be greater than 1.

Tokamak Design

In one of the methods receiving serious attention,
one uses the so-called  Tokamak design. The deuterium
plasma is contained in a toroidal region by specially
designed magnetic field. The directions and
magnitudes of the magnetic field are so managed in
the toroidal space that whenever a charged plasma

particle attempts to go out, the qv
→
 × B

→
 force tends to

push it back into the toroidal volume. It is a difficult
task to design a magnetic field which will push the
particles moving in random directions with random
speeds into a specified volume, but it is possible and
has been done. The plasma is, therfore, confined by
the magnetic field. Such confinement has been
achieved for short durations (≈ few microseconds) in
which some fusion occurs. Fusion thus proceeds in
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bursts or pulses. The heating is accomplished by
passing high frequency oscillating current through the
plasma gas. A schematic design is shown in figure
(46.12).

A large fusion machine known as Joint European
Torus (JET) is designed to achieve fusion energy on
this principle. A value of Q ≈ 1 is already achieved with
JET. Scientists working on this machine expect to get
Q ≈ 40 in the next 40 to 50 years.

At the Institute for Plasma Research (IPR),
Ahmedabad, a small machine named Aditya is
functioning on the Tokamak design. This machine is
being used to study the properties of a plasma and a
value of nτ ≈ 1011 s cm–3 has been achieved for Lawson
number.

Inertial Confinement

In another method known as inertial confinement,
laser beams are used to confine the plasma. A small
solid pellet is made which contains deuterium and
tritium. Intense laser beams are directed on the pellet

from many directions distributed over all sides. The
lasers first vaporize the pellet converting it into
plasma and then compress it from all directions
because of the large pressure exerted. The density
increases by 10 3 to 10 4 times the initial density and
the temperature rises to high values. The fusion occurs
in this period. The α-particles (He nuclei) generated
by the fusion are also forced to remain inside the
plasma. Their kinetic energy is lost into the plasma
itself contributing further rise in temperature. Again
the lasers are operated in pulses of short duration.

The research in fusion energy is going on. Fusion
is the definite and ultimate answer to our energy
problems. The ‘fuel’ used for fusion on earth is
deuterium which is available in natural water (0.03%).
And with oceans as the almost unlimited source of
water, we can be sure of fuel supply for thousands of
years. Secondly, fusion reactions are neat and clean.
Radioactive radiation accompanying fission reactors
will not be there with fusion reactors.

Worked Out Examples

 1. Calculate the electric potential energy due to the electric
repulsion between two nuclei of 12C when they ‘touch’ each
other at the surface.

Solution : The radius of a 12C nucleus is
      R = R0 A 1/3

= (1.1 fm) (12) 1/3 = 2.52 fm.

The separation between the centres of the nuclei is
2R = 5.04 fm. The potential energy of the pair is

U = 
q1q2

4πε0 r
 

= (9 × 10 9 N m 2C −2) 
(6 × 1.6 × 10 − 19 C) 2

5.04 × 10 − 15 m

= 1.64 × 10 − 12 J = 10.2 MeV.

 2. Find the binding energy of 26
56Fe. Atomic mass of 56Fe is

55.9349 u and that of 1H is 1.00783 u. Mass of  neutron
= 1.00867 u.

Solution : The number of protons in 26
56Fe = 26 and the

number of neutrons = 56 – 26 = 30. The binding energy
of 26

56Fe is

   = [26 × 1.00783 u + 30 × 1.00867 u − 55.9349 u]c 2

= (0.52878 u)c 2

= (0.52878 u) (931 MeV u −1) = 492 MeV.

 3. Find the kinetic energy of the α-particle emitted in the
decay 238Pu  →  234U + α. The atomic masses needed are
as follows:
     238Pu         234U        4He
     238.04955 u    234.04095 u   4.002603 u
Neglect any recoil of the residual nucleus.

Solution : Using energy conservation,
     m(238Pu) c 2 = m(234U)c 2 + m(4He)c 2 + K

or,    K = [m(238Pu) − m(234U) − m(4He)]c 2

= [238.04955 u − 234.04095 u − 4.002603 u] (931 MeV u−1)
= 5.58 MeV.
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 4. Calculate the Q-value in the following decays:
(a) 19O  →  19F + e + ν

__

(b) 25Al  →  25Mg + e + + ν.
The atomic masses needed are as follows:
19O                 19F             25Al            25Mg
19.003576 u 18.998403 u  24.990432 u 24.985839 u

Solution :

(a) The Q-value of β −-decay is

   Q = [m(19O) − m(19F)]c 2

    = [19.003576 u − 18.998403 u] (931 MeV u −1)

= 4.816 MeV.

(b) The Q-value of β +-decay is

Q = [m(25Al) − m(25Mg) − 2me]c 2

= [24.990432 u − 24.985839 u − 2 × 0.511 MeV c −2]c2

= (0.004593 u) (931 MeV u −1) − 1.022 MeV

= 4.276 MeV − 1.022 MeV = 3.254 MeV.

 5. Find the maximum energy that a beta particle can have
in the following decay
         176Lu  →  176Hf + e + ν

__
.

Atomic mass of 176Lu is 175.942694 u and that of 176Hf
is 175.941420 u.

Solution : The kinetic energy available for the beta
particle and the antineutrino is

Q = [m(176Lu) − m(176Hf )]c 2

= (175.942694 u − 175.941420 u) (931 MeVu −1)

= 1.182 MeV.

This energy is shared by the beta particle and the
antineutrino. The maximum kinetic energy of a beta
particle in this decay is, therefore, 1.182 MeV when the
antineutrino practically does not get any share.

 6. Consider the beta decay

         198Au  →  198Hg ∗ + β − + ν
__

where 198Hg ∗ represents a mercury nucleus in an excited
state at energy 1.088 MeV above the ground state. What
can be the maximum kinetic energy of the electron
emitted ? The atomic mass of 198Au is 197.968233 u and
that of 198Hg is 197.966760 u.

Solution : If the product nucleus 198Hg is formed in its
ground state, the kinetic energy available to the electron
and the antineutrino is

         Q = [m(198Au) − m(198Hg)]c 2.

As 198Hg ∗ has energy 1.088 MeV more than 198Hg in
ground state, the kinetic energy actually available is

Q = [m(198Au) − m(198Hg)]c 2 − 1.088 MeV

= (197.968233 u − 197.966760 u) (931 MeV u −1)

                            − 1.088 MeV

= 1.3686 MeV − 1.088 MeV = 0.2806 MeV.

This is also the maximum possible kinetic energy of the
electron emitted.

 7. The half-life of 198Au is 2.7 days. Calculate (a) the decay
constant, (b) the average-life and (c) the activity of
1.00 mg of  198Au. Take atomic weight of 198Au to be
198 g mol −1.

Solution : (a) The half-life and the decay constant are
related as

        t1/2 = 
ln 2

λ
 = 

0.693
λ

or, λ = 
0.693

t1/2

 = 
0.693

2.7 days

= 
0.693

2.7 × 24 × 3600 s
 = 2.9 × 10 − 6 s − 1.

(b) The average-life is tav = 
1
λ

 = 3.9 days.

(c) The activity is A = λN. Now, 198 g of 198Au has
6 × 10 23 atoms. The number of atoms in 1.00 mg of 198Au
is

     N = 6 × 10 23 × 
1.0 mg
198 g

 = 3.03 × 10 18.

Thus, A = λN

 = (2.9 × 10 − 6 s − 1) (3.03 × 10 18 )

= 8.8 × 10 12 disintegrations s −1

= 
8.8 × 10 12

3.7 × 10 10 Ci = 240 Ci.

 8. A radioactive sample has 6.0 × 10 18 active nuclei at a
certain instant. How many of these nuclei will still be in
the same active state after two half-lives ?

Solution : In one half-life the number of active nuclei
reduces to half the original number. Thus, in two half-

lives the number is reduced to 



1
2




 



1
2




 of the original

number. The number of remaining active nuclei is,
therefore,

       6.0 × 10 18 × 




1
2




 × 





1
2





       = 1.5 × 10 18.

 9. The activity of a radioactive sample falls from 600 s − 1

to 500 s − 1 in 40 minutes. Calculate its half-life.
Solution : We have,

          A = A0 e − λt

438 Concepts of Physics



or,      500 s − 1 = (600 s − 1)e − λt

or,           e − λt = 
5
6

or, λt = ln(6/5)

or,         λ = 
ln(6/5)

t
 = 

ln(6/5)
40 min

 ⋅

The half-life is t1/2 = 
ln 2

λ

          = 
ln 2

ln(6/5)
 × 40 min

 = 152 min.

10. The number of 238U atoms in an ancient rock equals the
number of 206Pb atoms. The half-life of decay of 238  is
4.5 × 10 9 y. Estimate the age of the rock assuming that
all the 206Pb atoms are formed from the decay of 238U.

Solution : Since the number of 206Pb atoms equals the
number of 238U atoms, half of the original 238U atoms
have decayed. It takes one half-life to decay half of the
active nuclei. Thus, the sample is 4.5 × 10 9 y old.

11. Equal masses of two samples of charcoal A and B are
burnt separately and the resulting carbon dioxide are
collected in two vessels. The radioactivity of 14C is
measured for both the gas samples. The gas from the
charcoal A gives 2100 counts per week and the gas from
the charcoal B gives 1400 counts per week. Find the age
difference between the two samples. Half-life of
14C = 5730 y.

Solution : The activity of sample A is 2100 counts per
week. After a certain time t, its activity will be reduced
to 1400 counts per week. This is because a fraction of
the active 14C nuclei will decay in time t. The sample B
must be a time t older than the sample A.
We have,

          A = A0 e − λt

or,    1400 s − 1 = 2100 s − 1 e − λt

or, e − λt = 
2
3

t = 
ln(3/2)

λ

= 
ln(3/2)
0.693

 t1/2

= 
0.4055
0.693

 × 5730 y = 3352 y.

12. Suppose, the daughter nucleus in a nuclear decay is itself
radioactive. Let λp  and  λd be the decay constants of the

parent and the daughter nuclei. Also, let Np  and  Nd be

the number of parent and daughter nuclei at time t. Find

the condition for which the number of daughter nuclei
becomes constant.

Solution : The number of parent nuclei decaying in a short
time interval t to t + dt is λpNpdt. This is also the number
of daughter nuclei produced in this interval. The number
of daughter nuclei decaying during the same time
interval is λdNddt. The number of the daughter nuclei
will be constant if

           λpNpdt = λdNddt

or,          λpNp = λdNd.

13. A radioactive sample decays with an average-life of
20 ms. A capacitor of capacitance 100 µF is charged to
some potential and then the plates are connected through
a resistance R. What should be the value of R so that the
ratio of the charge on the capacitor to the activity of the
radioactive sample remains constant in time ?

Solution : The activity of the sample at time t is given by

              A = A0 e − λt

where λ is the decay constant and A0 is the activity at
time t = 0 when the capacitor plates are connected. The
charge on the capacitor at time t is given by

            Q = Q0 e − t/CR

where Q0 is the charge at t = 0 and C = 100 µF is the
capacitance. Thus,

Q
A

 = 
Q0

A0

 
e − t/CR

e − λt  ⋅

It is independent of t if λ = 
1

CR

or,        R = 
1

λC
 = 

tav

C
 = 

20 × 10 − 3 s

100 × 10 − 6 F
 = 200 Ω.

14. A radioactive nucleus can decay by two different
processes. The half-life for the first process is t1 and that
for the second process is t2. Show that the effective
half-life t of the nucleus is given by

             
1
t
 = 

1
t1

 + 
1
t2

 ⋅

Solution : The decay constant for the first process is

λ1 = ln 2
t1

 and for the second process it is λ2 = ln 2
t1

 ⋅ The

probability that an active nucleus decays by the first
process in a time interval dt is λ1dt. Similarly, the
probability that it decays by the second process is
λ2dt. The probability that it either decays by the first
process or by the second process is λ1dt + λ2dt. If the
effective decay constant is λ, this probability is also
equal to λdt. Thus,

                λdt = λ1dt + λ2dt

or,             λ = λ1 + λ2
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or,            
1
t
 = 

1
t1

 + 
1
t2

 ⋅

15. Calculate the energy released when three alpha particles

combine to form a 12C nucleus. The atomic mass of 2
4He

is 4.002603 u.

Solution : The mass of a 12C atom is exactly 12 u. The
energy released in the reaction 3

2
4He

  →   6
12C is

     [3 m(2
4He) − m( 6

12C)]c 2

   = [3 × 4.002603 u − 12 u] (931 MeV u −1) = 7.27 MeV.

QUESTIONS FOR SHORT ANSWER

 1. If neutrons exert only attractive force, why don’t we have
a nucleus containing neutrons alone ?

 2. Consider two pairs of neutrons. In each pair, the
separation between the neutrons is the same. Can the
force between the neutrons have different magnitudes
for the two pairs ?

 3. A molecule of hydrogen contains two protons and two
electrons. The nuclear force between these two protons
is always neglected while discussing the behaviour of a
hydrogen molecule. Why ?

 4. Is it easier to take out a nucleon (a) from carbon or from
iron (b) from iron or from lead ?

 5. Suppose we have 12 protons and 12 neutrons. We can
assemble them to form either a 24Mg nucleus or two 12C
nuclei. In which of the two cases more energy will be
liberated ?

 6. What is the difference between cathode rays and beta
rays ? When the two are travelling in space, can you
make out which is the cathode ray and which is the
beta ray ?

 7. If the nucleons of a nucleus are separated from each
other, the total mass is increased. Where does this mass
come from ?

 8. In beta decay, an electron (or a positron) is emitted by
a nucleus. Does the remaining atom get oppositely
charged ?

 9. When a boron nucleus (  5
10B) is bombarded by a neutron,

an α-particle is emitted. Which nucleus will be formed
as a result ?

10. Does a nucleus lose mass when it suffers gamma decay ?

11. In a typical fission reaction, the nucleus is split into two
middle-weight nuclei of unequal masses. Which of the
two (heavier or lighter) has greater kinetic energy ?
Which one has greater linear momentum ?

12. If three helium nuclei combine to form a carbon nucleus,
energy is liberated. Why can’t helium nuclei combine on
their own and minimise the energy ?

OBJECTIVE I
 

 1. The mass of a neutral carbon atom in ground state is
(a) exact 12 u                 (b) less than 12 u
(c) more than 12 u
(d) depends on the form of carbon such as graphite or
       charcoal.

 2. The mass number of a nucleus is equal to
(a) the number of neutrons in the nucleus
(b) the number of protons in the nucleus
(c) the number of nucleons in the nucleus
(d) none of them.

 3. As compared to 12C atom, 14C atom has
(a) two extra protons and two extra electrons
(b) two extra protons but no extra electron
(c) two extra neutrons and no extra electron
(d) two extra neutrons and two extra electrons.

 4. The mass number of a nucleus is
(a) always less than its atomic number
(b) always more than its atomic number
(c) equal to its atomic number
(d) sometimes more than and sometimes equal to its
       atomic number.

 5. The graph of ln(R/R0) versus ln A (R = radius of a
nucleus and A = its mass number) is
(a) a straight line         (b) a parabola
(c) an ellipse             (d) none of them.

 6. Let Fpp,  Fpn  and  Fnn denote the magnitudes of the
nuclear force by a proton on a proton, by a proton on a
neutron and by a neutron on a neutron respectively.
When the separation is 1 fm,
(a) Fpp > Fpn = Fnn          (b) Fpp = Fpn = Fnn

(c) Fpp > Fpn > Fnn          (d) Fpp < Fpn = Fnn.

 7. Let Fpp,  Fpn  and  Fnn denote the magnitudes of the net
force by a proton on a proton, by a proton on a neutron
and by a neutron on a neutron respectively. Neglect
gravitational force. When the separation is 1 fm,
(a) Fpp > Fpn = Fnn          (b) Fpp = Fpn = Fnn

(c) Fpp > Fpn > Fnn          (d) Fpp < Fpn = Fnn.

 8. Two protons are kept at a separation of 10 nm. Let Fn

and Fe be the nuclear force and the electromagnetic force
between them.
(a) Fe = Fn     (b) Fe >> Fn     (c) Fe << Fn

(d) Fe and Fn differ only slightly.
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 9. As the mass number A increases, the binding energy per
nucleon in a nucleus
(a) increases  (b) decreases  (c) remains the same
(d) varies in a way that depends on the  actual value
       of A.

10. Which of the following is a wrong description of binding
energy of a nucleus ?
(a) It is the energy required to break a nucleus into its
       constituent nucleons.
(b) It is the energy made available when free nucleons
       combine to form a nucleus.
(c) It is the sum of the rest mass energies of its
       nucleons minus the rest mass energy of the  nucleus.
(d) It is the sum of the kinetic energy of all the nucleons
       in the nucleus.

11. In one average-life,
(a) half the active nuclei decay
(b) less than half the active nuclei decay
(c) more than half the active nuclei decay
(d) all the nuclei decay.

12. In a radioactive decay, neither the atomic number nor
the mass number changes. Which of the following
particles is emitted in the decay ?
(a) Proton  (b) Neutron  (c) Electron  (d) Photon

13. During a negative beta decay,
(a) an atomic electron is ejected
(b) an electron which is already present within the
       nucleus is ejected
(c) a neutron in the nucleus decays emitting an electron
(d) a proton in the nucleus decays emitting an electron.

14. A freshly prepared radioactive source of half-life 2 h
emits radiation of intensity which is 64 times the
permissible safe level. The minimum time after which

it would be possible to work safely with this source is
(a) 6 h    (b) 12 h    (c) 24 h    (d) 128 h.

15. The decay constant of a radioactive sample is λ. The
half-life and the average-life of the sample are
respectively
(a) 1/λ  and  (ln 2/λ)       (b) (ln 2/λ)  and  1/λ
(c) λ(ln 2)  and  1/λ        (d) λ/(ln 2)  and  1/λ.

16. An α-particle is bombarded on 14N. As a result, a 17O
nucleus is formed and a particle is emitted. This particle
is a
(a) neutron   (b) proton   (c) electron  (d) positron.

17. Ten grams of 57Co kept in an open container beta-decays
with a half-life of 270 days. The weight of the material
inside the container after 540 days will be very nearly
(a) 10 g    (b) 5 g    (c) 2.5 g    (d) 1.25 g.

18. Free 238U nuclei kept in a train emit alpha particles.
When the train is stationary and a uranium nucleus
decays, a passenger measures that the separation
between the alpha particle and the recoiling nucleus
becomes x in time t after the decay. If a decay takes
place when the train is moving at a uniform speed v,
the distance between the alpha particle and the recoiling
nucleus at a time t after the decay, as measured by the
passenger will be
(a) x + vt        (b) x − vt        (c) x
(d) depends on the direction of  the train.

19. During a nuclear fission reaction,
(a) a heavy nucleus breaks into two fragments by itself
(b) a light nucleus bombarded by thermal neutrons
       breaks up
(c) a heavy nucleus bombarded by thermal neutrons
       breaks up
(d) two light nuclei combine to give a heavier nucleus
       and possibly other products.

OBJECTIVE II
 

 1. As the mass number A increases, which of the following
quantities related to a nucleus do not change ?
(a) Mass  (b) Volume  (c) Density  (d) Binding energy

 2. The heavier nuclei tend to have larger N/Z ratio because
(a) a neutron is heavier than a proton
(b) a neutron is an unstable particle
(c) a neutron does not exert electric repulsion
(d) Coulomb forces have longer range compared to the
       nuclear forces.

 3. A free neutron decays to a proton but a free proton does
not decay to a neutron. This is because
(a) neutron is a composite particle made of a proton and
       an electron whereas proton is a fundamental particle
(b) neutron is an uncharged particle whereas proton is
       a charged particle
(c) neutron has larger rest mass than the proton
(d) weak forces can operate in a neutron but not in a
       proton.

 4. Consider a sample of a pure beta-active material.
(a) All the beta particles emitted have the same energy.
(b) The beta particles originally exist inside the nucleus

       and are ejected at the time of beta decay.
(c) The antineutrino emitted in a beta decay has zero
       mass and hence zero momentum.
(d) The active nucleus changes to one of its isobars after
       the beta decay.

 5. In which of the following decays the element does not
change ?
(a) α-decay  (b) β +-decay  (c) β −-decay  (d) γ-decay

 6. In which of the following decays the atomic number
decreases ?
(a) α-decay  (b) β +-decay  (c) β −-decay  (d) γ-decay

 7. Magnetic field does not cause deflection in
(a) α-rays            (b) beta-plus rays
(c) beta-minus rays      (d) gamma rays.

 8. Which of the following are electromagnetic waves ?
(a) α-rays            (b) Beta-plus rays
(c) Beta-minus rays       (d) Gamma rays

 9. Two lithium nuclei in a lithium vapour at room temperature
do not combine to form a carbon nucleus because
(a) a lithium nucleus is more tightly bound than a
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       carbon nucleus
(b) carbon nucleus is an unstable particle
(c) it is not energetically favourable
(d) Coulomb repulsion does not allow the nuclei to come
       very close.

10. For nuclei with A > 100,
(a) the binding energy of the nucleus decreases on an
       average as A increases

(b) the binding energy per nucleon decreases on an
       average  as A increases
(c) if the nucleus breaks into two roughly equal parts,
       energy is released
(d) if two nuclei fuse to form a bigger nucleus, energy
       is released.

EXERCISES

   Mass of proton mp = 1.007276 u, Mass of 1
1H atom

= 1.007825 u, Mass of neutron mn = 1.008665 u, Mass of
electron = 0.0005486 u ≈ 511 keV c −2, 1 u = 931 MeV c −2.

                                                                                                                                                                                   

 1. Assume that the mass of a nucleus is approximately
given by M = Amp where A is the mass number. Estimate
the density of matter in kgm –3 inside a nucleus. What
is the specific gravity of nuclear matter ?

 2. A neutron star has a density equal to that of the nuclear
matter. Assuming the star to be spherical, find the
radius of a neutron star whose mass is 4.0 × 10 30 kg
(twice the mass of the sun).

 3. Calculate the mass of an α-particle. Its binding energy
is 28.2 MeV.

 4. How much energy is released in the following reaction:
            7Li + p  →  α + α.
Atomic mass of 7Li = 7.0160 u and that of 4He = 4.0026 u.

 5. Find the binding energy per nucleon of  79
197Au if its atomic

mass is 196.96 u.
 6. (a) Calculate the energy released if 238U emits an

α-particle. (b) Calculate the energy to be supplied to 238U
if two protons and two neutrons are to be emitted one
by one. The atomic masses of 238U, 234Th and 4He are
238.0508 u, 234.04363 u and 4.00260 u respectively.

 7. Find the energy liberated in the reaction

            223Ra  →  209Pb + 14C.

   The atomic masses needed are as follows.
     223Ra              209Pb          14C
     223.018 u     208.981 u      14.003 u
 8. Show that the minimum energy needed to separate a

proton from a nucleus with Z protons and N neutrons
is
          ∆E = (MZ − 1, N + MH − MZ, N)c 2

   where MZ, N = mass of an atom with Z protons and N
neutrons in the nucleus and MH = mass of a hydrogen
atom. This energy is known as proton-separation energy.

 9. Calculate the minimum energy needed to separate a
neutron from a nucleus with Z protons and N neutrons
in terms of the masses MZ, N, MZ, N − 1 and the mass of the
neutron.

10. 32P beta-decays to 32S. Find the sum of the energy of the
antineutrino and the kinetic energy of the β-particle.
Neglect the recoil of the daughter nucleus. Atomic mass

of 32P = 31.974 u and that of 32S = 31.972 u.

11. A free neutron beta-decays to a proton with a half-life
of 14 minutes. (a) What is the decay constant ? (b) Find
the energy liberated in the process.

12. Complete the following decay schemes.

   (a)  88
226Ra  →  α +

(b)  8
19O  →   9

19F +
(c) 13

25Al  →  12
25Mg +

13. In the decay 64Cu  →  64Ni + e + + ν, the maximum kinetic
energy carried by the positron is found to be 0.650 MeV.
(a) What is the energy of the neutrino which was emitted
together with a positron of kinetic energy 0.150 MeV ?
(b) What is the momentum of this neutrino in kg m s −1 ?
Use the formula applicable to a photon.

14. Potassium-40 can decay in three modes. It can decay by
β −-emission, β +-emission or electron capture. (a) Write
the equations showing the end products. (b) Find the
Q-values in each of the three cases. Atomic masses of

18 
40 Ar, 19

40K and 20
40Ca are 39.9624 u, 39.9640 u and 39.9626 u

respectively.
15. Lithium (Z = 3) has two stable isotopes 6Li and 7Li. When

neutrons are bombarded on lithium sample, electrons
and α-particles are ejected. Write down the nuclear
processes taking place.

16. The masses of 11C and 11B are respectively 11.0114 u
and 11.0093 u. Find the maximum energy a positron can
have in the β +-decay of 11C to 11B.

17. 228Th emits an alpha particle to reduce to 224Ra. Calculate
the kinetic energy of the alpha particle emitted in the
following decay:

          228Th  →  224Ra ∗ + α
224Ra ∗  →  224Ra + γ (217 keV).

   Atomic mass of 228Th is 228.028726 u, that of 224Ra is
224.020196 u and that of 2

4He is 4.00260 u.

18. Calculate the maximum kinetic energy of the beta
particle emitted in the following decay scheme:

12N  →  12C ∗ + e + + ν
12C ∗  →  12C + γ (4.43 MeV).

   The atomic mass of 12N is 12.018613 u.

19. The decay constant of   80
197Hg (electron capture to   79

197Au)

is 1.8 × 10 − 4 s − 1. (a) What is the half-life ? (b) What is
the average-life ? (c) How much time will it take to
convert 25% of this isotope of mercury into gold ?
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20. The half-life of 198Au is 2.7 days. (a) Find the activity of
a sample containing 1.00 µg of 198Au. (b) What will be
the activity after 7 days ? Take the atomic weight of
198Au to be 198 g mol −1.

21. Radioactive 131I has a half-life of 8.0 days. A sample
containing 131I has activity 20 µCi at t = 0. (a) What is
its activity at t = 4.0 days ? (b) What is its decay constant
at t = 4.0 days ?

22. The decay constant of 238U is 4.9 × 10 − 18 s − 1. (a) What
is the average-life of 238U ? (b) What is the half-life of
238U ? (c) By what factor does the activity of a 238U
sample decrease in 9 × 10 9 years ?

23. A certain sample of a radioactive material decays at the
rate of 500 per second at a certain time. The count rate
falls to 200 per second after 50 minutes. (a) What is the
decay constant of the sample ? (b) What is its half-life ?

24. The count rate from a radioactive sample falls from
4.0 × 10 6 per second to 1.0 × 10 6 per second in 20 hours.
What will be the count rate 100 hours after the
beginning ?

25. The half-life of 226Ra is 1602 y. Calculate the activity of
0.1 g of RaCl2 in which all the radium is in the form of
226Ra. Taken atomic weight of Ra to  be 226 g mol −1 and
that of Cl to be 35.5 g mol −1.

26. The half-life of a radioisotope is 10 h. Find the total
number of disintegrations in the tenth hour measured
from a time when the activity was 1 Ci.

27. The selling rate of a radioactive isotope is decided by its
activity. What will be the second-hand rate of a one
month old  32P(t1/2 = 14.3 days) source if it was originally
purchased for 800 rupees ?

28. 57Co decays to 57Fe by β +-emission. The resulting 57Fe is
in its excited state and comes to the ground state by
emitting γ-rays. The half-life of β +-decay is 270 days and
that of the γ-emission is 10 − 8 s. A sample of 57Co gives
5.0 × 10 9 gamma rays per second. How much time will
elapse before the emission rate of gamma rays drops to
2.5 × 10 9 per second ?

29. Carbon (Z = 6) with mass number 11 decays to boron
(Z = 5). (a) Is it a β +-decay or a β −-decay ? (b) The
half-life of the decay scheme is 20.3 minutes. How much
time will elapse before a mixture of 90% carbon-11 and
10% boron-11 (by the number of atoms) converts itself
into a mixture of 10% carbon-11 and 90% boron-11 ?

30. 4 × 10 23 tritium atoms are contained in a vessel. The
half-life of decay of tritium nuclei is 12.3 y. Find (a) the
activity of the sample, (b) the number of decays in the
next 10 hours (c) the number of decays in the next 6.15 y.

31. A point source emitting alpha particles is placed at a
distance of 1 m from a counter which records any alpha
particle falling on its 1 cm 2 window. If the source
contains 6.0 × 10 16 active nuclei and the counter records
a rate of 50000 counts/second, find the decay constant.
Assume that the source emits alpha particles uniformly
in all directions and the alpha particles fall nearly
normally on the window.

32. 238U decays to 206Pb with a half-life of 4.47 × 10 9 y. This
happens in a number of steps. Can you justify a single

half-life for this chain of processes ? A sample of rock is
found to contain 2.00 mg of 238U and 0.600 mg of 206Pb.
Assuming that all the lead has come from uranium, find
the life of the rock.

33. When charcoal is prepared from a living tree, it shows
a disintegration rate of 15.3 disintegrations of 14C per
gram per minute. A sample from an ancient piece of
charcoal shows 14C activity to be 12.3 disintegrations per
gram per minute. How old is this sample ? Half-life of
14C is 5730 y.

34. Natural water contains a small amount of tritium (1
3H).

This isotope beta-decays with a half-life of 12.5 years. A
mountaineer while climbing towards a difficult peak
finds debris of some earlier unsuccessful attempt. Among
other things he finds a sealed bottle of whisky. On return
he analyses the whisky and finds that it contains only
1.5 per cent of the 1

3H radioactivity as compared to a
recently purchased bottle marked ‘8 years old’. Estimate
the time of that unsuccessful attempt.

35. The count rate of nuclear radiation coming from a
radioactive sample containing 128I varies with time as
follows.

   Time t (minute):        0   25   50    75   100

   Count rate R(10 9 s − 1):   30   16   8.0   3.8   2.0

   (a) Plot ln(R0 /R) against t. (b) From the slope of the
best straight line through the points, find the decay
constant λ. (c) Calculate the half-life t1/2.

36. The half-life of 40K is 1.30 × 10 9 y. A sample of 1.00 g
of pure KCl gives 160 counts s −1. Calculate the relative
abundance of  40K (fraction of 40K present) in natural
potassium.

37.  80
197Hg decays to   79

197Au through electron capture with a
decay constant of 0.257 per day. (a) What other particle
or particles are emitted in the decay ? (b) Assume that
the electron is captured from the K shell. Use Moseley’s
law √ν = a(Z − b) with a = 4.95 × 10 7 s − 1/2 and b = 1 to
find the wavelength of the Kα X-ray emitted following
the electron capture.

38. A radioactive isotope is being produced at a constant
rate dN/dt = R in an experiment. The isotope has a
half-life t1/2. Show that after a time t >> t1/2, the number
of active nuclei will become constant. Find the value of
this constant.

39. Consider the situation of the previous problem. Suppose
the production of the radioactive isotope starts at t = 0.
Find the number of active nuclei at time t.

40. In an agricultural experiment, a solution containing 1
mole of a radioactive material (t1/2 = 14.3 days) was
injected into the roots of a plant. The plant was allowed
70 hours to settle down and then activity was measured
in its fruit. If the activity measured was 1 µCi, what per
cent of activity is transmitted from the root to the fruit
in steady state ?

41. A vessel of volume 125 cm 3 contains tritium (3H,
t1/2 = 12.3 y) at 500 kPa and 300 K. Calculate the
activity of the gas.
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42.  83
212Bi can disintegrate either by emitting an -particle or

by emitting a  -particle. (a) Write the two equations
showing the products of the decays. (b) The probabilities
of disintegration by - and -decays are in the ratio 7/13.
The overall half-life of 212Bi is one hour. If 1 g of pure
212Bi is taken at 12.00 noon, what will be the composition
of this sample at 1 p.m. the same day ?

43. A sample contains a mixture of 110Ag and 108Ag isotopes
each having an activity of 8.0  10 8 disintegrations per
second. 108Ag is known to have larger half-life than 110Ag.
The activity A is measured as a function of time and
the following data are obtained.

Time (s) Activity (A)
(10 8 disinte-
grations s 1)

  Time (s) Activity (A)
(10 8 disinte-
grations s1)

 20 11.799    200 3.0828

 40  9.1680    300 1.8899

 60  7.4492    400 1.1671

 80  6.2684    500 0.7212

100  5.4115

   (a) Plot lnA/A0 versus time. (b) See that for large
values of time, the plot is nearly linear. Deduce the
half-life of 108Ag from this portion of the plot. (c) Use the
half-life of 108Ag to calculate the activity corresponding
to 110Ag in the first 50 s. (d) Plot lnA/A0 versus time
for 110Ag for the first 50 s. (e) Find the half-life of 110Ag.

44. A human body excretes (removes by waste discharge,
sweating, etc.) certain materials by a law similar to
radioactivity. If technitium is injected in some form in
a human body, the body excretes half the amount in
24 hours. A patient is given an injection containing 99Tc.
This isotope is radioactive with a half-life of 6 hours.
The activity from the body just after the injection is
6 Ci. How much time will elapse before the activity
falls to 3 Ci ?

45. A charged capacitor of capacitance C is discharged through
a resistance R. A radioactive sample decays with an
average-life . Find the value of R for which the ratio of
the electrostatic field energy stored in the capacitor to the
activity of the radioactive sample remains constant in time.

46. Radioactive isotopes are produced in a nuclear physics
experiment at a constant rate dN/dt  R. An inductor of
inductance 100 mH, a resistor of resistance 100  and
a battery are connected to form a series circuit. The
circuit is switched on at the instant the production of

radioactive isotope starts. It is found that i/N remains
constant in time where i is the current in the circuit at
time t and N is the number of active nuclei at time t.
Find the half-life of the isotope.

47. Calculate the energy released by 1 g of natural uranium
assuming 200 MeV is released in each fission event and
that the fissionable isotope 235U has an abundance of
0.7% by weight in natural uranium.

48. A uranium reactor develops thermal energy at a rate of
300 MW. Calculate the amount of 235U being consumed
every second. Average energy released per fission is
200 MeV.

49. A town has a population of 1 million. The average
electric power needed per person is 300 W. A reactor is
to be designed to supply power to this town. The
efficiency with which thermal power is converted into
electric power is aimed at 25%. (a) Assuming 200 MeV
of thermal energy to come from each fission event on an
average, find the number of events that should take
place every day. (b) Assuming the fission to take place
largely through 235U, at what rate will the amount of
235U decrease ? Express your answer in kg per day.
(c) Assuming that uranium enriched to 3% in 235U will
be used, how much uranium is needed per month (30
days) ?

50. Calculate the Q-values of the following fusion reactions:
(a) 1

2H  1
2H    1

3H  1
1H

(b) 1
2H  1

2H    2
3He  n

(c) 1
2H  1

3H    2
4He  n.

   Atomic masses are m1
2H  2.014102 u, m1

3H 
3.016049 u, m2

3He  3.016029 u, m2
4He  4.002603 u.

51. Consider the fusion in helium plasma. Find the
temperature at which the average thermal energy 1.5 kT
equals the Coulomb potential energy at 2 fm.

52. Calculate the Q-value of the fusion reaction
            4He  4He  8Be.
Is such a fusion energetically favourable ? Atomic mass
of 8Be is 8.0053 u and that of 4He is 4.0026 u.

53. Calculate the energy that can be obtained from 1 kg of
water through the fusion reaction

              2H  2H    3H  p.

   Assume that 1.5  10  2 % of natural water is heavy
water D2O (by number of molecules) and all the
deuterium is used for fusion.

ANSWERS

OBJECTIVE I

 1. (a)  2. (c)  3. (c)  4. (d)  5. (a)  6. (b)
 7. (d)  8. (b)  9. (d) 10. (d) 11. (c) 12. (d)
13. (c) 14. (b) 15. (b) 16. (b) 17. (a) 18. (c)
19. (c)

OBJECTIVE II

 1. (c)  2. (c), (d)  3. (c)
 4. (d)  5. (d)  6. (a), (b)
 7. (d)  8. (d)  9. (d)
10. (b), (c)
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EXERCISES

 1. 3 × 10 17 kg m −3,  3 × 10 14

 2. 15 km

 3. 4.0016 u

 4. 17.34 MeV

 5. 7.94 MeV

 6. (a) 4.255 MeV (b) 24.03 MeV

 7. 31.65 MeV

 9. (MZ, N − 1 + mn − MZ, N)c 2

10. 1.86 MeV

11. (a) 8.25 × 10 − 4 s − 1 (b) 782 keV

12. (a)  86
222Rn (b) e

_
 + ν

__
 (c) e + + ν

13. (a) 500 keV (b) 2.67 × 10 − 22 kg m s −1

14. (a) 19
40K  →  20

40Ca + e − + ν
__
,  19

40K  →  18
40Ar + e + + ν,

      19
40K + e −  →  18

40Ar + ν

  (b) 1.3034 MeV,  0.4676 MeV, 1.490 MeV

15. 3
6Li + n → 3

7Li,  3
7Li + n → 3

8Li → 4
8Be + e − + ν

__
,

   4
8Be → 2

4He + 2
4He

16. 933.6 keV

17. 5.304 MeV

18. 11.88 MeV
19. (a) 64 min (b) 92 min (c) 1600 s

20. (a) 0.244 Ci (b) 0.040 Ci

21. (a) 14 µCi (b) 1.4 × 10 − 6 s − 1

22. 6.49 × 10 9 y (b) 4.5 × 10 9 y (c) 4

23. 3.05 × 10 − 4 s (b) 38 min

24. 3.9 × 10 3 per second

25. 2.8 × 10 9 disintegrations s −1

26. 6.91 × 10 13

27. 187 rupees

28. 270 days

29. (a) β + (b) 64 min

30. (a) 7.146 × 10 14 disintegrations s −1

   (b) 2.57 × 10 19 (c) 1.17 × 10 23

31. 1.05 × 10 − 7 s − 1

32. 1.92 × 10 9 y

33. 1800 y
34. about 83 years ago

35. (b) 0.028 min − 1 approx. (c) 25 min approx.

36. 0.12%
37. (a) neutrino (b) 20 pm

38. 
Rt1/2

0.693

39. 
R
λ

 (1 − e − λt)

40. 1.26 × 10 − 11 %

41. 724 Ci

42. (a)   83
212Bi  →    81

208Tl + α,    83
212Bi  →    84

212Bi  →    84
212Po + e − + ν

__

   (b) 0.50 g Bi,  0.175 g Tl,  0.325 g Po

43. the half-life of 110Ag = 24.4 s  and  of  108Ag = 144 s

44. 4.8 hours

45. 2 τ/C

46. 6.93 × 10 − 4 s

47. 5.7 × 10 8 J

48. 3.7 mg

49. (a) 3.24 × 10 24 (b) 1.264 kg per day (c) 1263 kg

50. (a) 4.05 MeV (b) 3.25 MeV (c) 17.57 MeV

51. 2.23 × 10 10 K

52. −93.1 keV, no

53. 3200 MJ
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CHAPTER 47

THE SPECIAL THEORY OF RELATIVITY

Special theory of relativity stems from two bold
postulates put forth by Albert Einstein—regarded by
many as the greatest scientific mind of all times. The
ideas put forward by special theory of relativity are
fascinating and to the first-time learners they seem to
go against their everyday experiences—what they
think is ‘common sense’. However, in our brief
discussion here, we shall see that the whole of special
theory of relativity is logically deduced from Einstein’s
postulates. In this chapter, we shall use only the
inertial frames of reference and we shall frequently
use the word frame for inertial frame.

47.1 THE PRINCIPLE OF RELATIVITY

The principle of relativity is not a new concept for
us. We have seen that all frames of reference that
move with uniform velocities with respect to an inertial
frame are themselves inertial. Newton’s laws of motion
are valid in the same form in all such frames. Standing
on a railway platform, you can drop a stone in such a
way that it hits your left foot. If you repeat the same
experiment in a train moving smoothly with a uniform
velocity, the stone will again strike your left foot. One
cannot distinguish between two inertial frames by
repeating the same experiment in the two frames. No
experiment done inside the train can tell whether the
train is at rest at a platform or is moving at 120 km h

−1

with respect to the platform provided there are no
jerks, the train does not speed up or speed down and
it does not bend.

This is the principle of relativity. There is no
preferred inertial frame. All frames are equivalent.
The motion between two frames is relative—you can
choose any of the frames and call it at rest and the
other in motion.

We can understand this on the basis of Newton’s
laws of motion. These laws have the same form in all
inertial frames. Whether you measure acceleration,
force and mass on the platform or on the train, force
always equals mass times acceleration. As the results
of experiments are governed by Newton’s law, identical
experiments will give identical results irrespective of

the frame involved. But Newton’s laws govern only the
experiments of mechanics ! Can we do an experiment
related to electricity inside a train and tell if the train
is moving or is at rest ?

47.2 ARE MAXWELL’S LAWS INDEPENDENT
     OF FRAME ?

Maxwell’s laws  tell us that electromagnetic waves

propagate in vacuum with a speed c = √1
µ0ε0

≈ 3 × 10 8 m s −1. Light is an electromagnetic wave. If
Maxwell’s laws are valid in the same form in all
inertial frames, light must travel with the same speed
c = 3 × 10 8 m s −1 in all such frames. Experiments show
that this is true. Figure (47.1) shows a representative
situation when two observers A and B look at a light
pulse W.

Suppose B moves away from A at a speed u = c/2
towards the right. The light pulse W moves away from
A at a speed c towards the right, and W also moves away
from B at the same speed c towards the right. Suppose
at t = 0; A, B and W were at the same place. A notes
down the distances of B and W from himself as a function
of time and B notes down the distances of A and W from
himself as a function of time. If you collect their diaries
the next day, you will find something as given below.

Diary of A:
t AB AW

0 0 0

1 s 1⋅5 × 10 8 m 3 × 10 8 m

2 s 3 × 10 8 m 6 × 10 8 m

3 s 4⋅5 × 10 8 m 9 × 10 8 m
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Diary of B:
t BA BW

0 0 0

1 s 1⋅5 × 10 8 m 3 × 10 8 m

2 s 3 × 10 8 m 6 × 10 8 m

3 s 4⋅5 × 10 8 m 9 × 10 8 m

It seems quite reasonable that AB = BA at each t.
But we also find that AW = BW at each t even though
AB ≠ 0. Do we not have AW = AB + BW ? The two
diaries suggest that something is wrong somewhere.
May be, t = 1 s  of  A is not the same as t = 1 s  of  B.
Then AW,  AB  and  BW are measured at different
instants. Or may be, 1 m of A is not the same as 1 m
of B so that AW  and  BW are measured in different
units.

If Maxwell’s equations are valid in the same form
for both A  and  B, something is fishy here. Either the
clocks of A  and  B do not run at the same rate or the
metre sticks used by A and B are not of equal length,
or both. There are two possibilities.

1. Maxwell’s equations have the same form in all
inertial frames.  Our understanding of clocks and
metre sticks, i.e., of time  and length has to be revised.

2. Maxwell’s equations have different forms in
different  inertial frames.

If the second option is correct, the experiments of
electricity, magnetism and optics should behave
differently in different inertial frames. The
experiments of mechanics could not distinguish
between a train resting at a platform and a train
moving uniformly with respect to the platform. That
was because Newton’s laws had the same form in the
two frames. But now the experiments of electricity,
magnetism and optics done inside a train should be
able to tell whether the train is at rest or it is moving
and if it is moving, with what velocity.

Experiments show that this is not true. Even
experiments of electricity, magnetism and optics done
inside a train cannot tell whether it is moving or not
with respect to a platform. A very sophisticated
experiment of this kind was designed by Michelson and
Morley which is by any standard one of the greatest
experiments in physics till date. The experiment
attempted to measure the earth’s velocity with respect
to the imagined ether frame. However, it failed and
created history.

We have to accept the first option as we cannot
accept the second. The speed of electromagnetic wave
must be the same in all inertial frames. Einstein put
these ideas in the form of two postulates known as the
postulates of special relativity.

Postulate 1: The laws of nature have identical form
in all inertial frames.

Postulate 2: The speed of light in vacuum has the
same value c in all inertial frames.

47.3 KINEMATICAL CONSEQUENCES

We have seen that the postulates of special
relativity require that we must revise our concepts of
length and time. If we construct two identical metre
sticks, put one on a railway platform and another on
a moving train, they behave differently. Similarly, if
we construct two identical clocks, use one in the
platform frame and the other in the train frame and
measure the time interval between the occurrences of
two events, the results may be different. Let us
investigate these phenomena in detail.

(A) A Rod Moving Perpendicular to its Length

Let us imagine a hypothetical experiment as
follows. Construct two identical rods L1 and L2. Place
them together and verify that the ends match against
each other, i.e., they are of equal length. Put some red
paint at the ends of L1 and blue paint at the ends of
L2. Separate L1  from  L2 by moving it perpendicular to
its length. Now move L1  towards  L2 with a uniform
velocity v and look from the frame of reference of L2,
that is, from the L2-frame (figure 47.2a).

L1 is moving, L2 is at rest. Are the two rods still
equal in length or is the moving rod shorter or is the
moving rod longer ? This can be checked by our
experiment. As the rod L1 passes over L2, there are
three possibilities (figure 47.2b).

(i) There are red marks on L2 near the ends.  This
means that the moving rod shrinks in its length.

(ii) There are blue marks on L1 near the ends. This
means that the moving rod extends in its length.

(iii) Red and blue intermix at all the four ends. This
means that the moving rod has the same length as the
stationary rod.

Suppose option (i) is correct, i.e., L1 leaves red
marks on L2 as it passes over L2. This means that the
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moving rod shrinks. Now the same experiment may be
observed by a person fixed with L1, that is, from the
L1-frame. For this observer, L1 is at rest, L2 comes from
the right and passes over L1. Since L2 gets red paint
on it during the crossing, the observer concludes that
the moving rod extended in its length. But by the principle
of relativity you can choose any of the two rods to be
at rest and the other moving. Laws of nature should
have the same form in the L1-frame and the L2-frame.
Thus, option (i) is wrong. Similarly, option (ii) is wrong.
We conclude that a rod’s length remains unchanged
when it is moved perpendicular to its length.

(B) Moving Clocks (Time Dilation)

Consider another hypothetical experiment. Take a
rod of length L as measured by an observer fixed with
the rod and suppose that there are two mirrors fixed
at the ends. Suppose a light pulse is reflected back
and forth by the mirrors. Let us find the time interval
between successive reflections from the mirror M1. Let
us call the first reflection ‘event E1’ and the next
reflection ‘event E2’. (The word ‘event’ also has a
specialised meaning in the mathematical theory of
relativity but we are using the literal meaning only.)

Figure (47.3a) shows the situation from a frame S
in which the mirrors are at rest. The rod connecting
the mirrors is not shown for clarity. The light pulse
travels a distance 2L between successive reflections
from M1. As the speed of light is c, the time elapsed

between these reflections is ∆t = 2L
c

 ⋅

Now consider another frame S′ moving with
respect to the frame S with a speed v towards the left.
From this frame, the rod and the mirrors are moving
towards the right with a velocity v. The mirror M1 at
the time of the second reflection is at a place different

from where it was at the time of the first reflection
(figure 47.3b). If the time interval between these
reflections is ∆t′, the simple geometry of figure (47.3b)
shows that the light pulse travels a distance

          2 √L
2 + 





v∆t′
2





 2

between these reflections. Note that the length of the
rod is unaltered as it moves in a direction
perpendicular to its length. As the speed of light is c,
the time interval between the successive reflections
from M1, is

            ∆t′ = 
2
c

 √L
2 + 





v∆t′
2





 2

or, 




c∆t′
2





 2

 = L2 + 




v∆t′
2





 2

or, (c 2 − v 2) 




∆t′
2





 2

 = L2

or, ∆t′ = 
2L/c

√1 − v 2/c 2

or, ∆t′ = 
∆t

√1 − v 2/c 2
 = γ ∆t … (47.1)

where γ = 
1

√1 − v 2/c 2
 ⋅

We shall use this factor again and again and hence
a symbol γ is assigned to it. Note that γ is greater than
1. The time interval between the occurrences of the
same two events is different as measured from
different frames. In frame S, both E1 and E2 occur at
the same place. The time interval measured from such
a frame where the two events occur at the same place
is called proper time interval. The time interval
measured by a frame where the events occur at
different places is called improper time interval. Here
∆t is proper and ∆t′ is improper time interval.
According to equation (47.1),

The proper time interval between the occurrences of
two events is smaller than the improper time interval
by the factor γ.

This phenomenon is called time dilation.

The apparatus described above may be treated as
a clock. Each reflection from the mirror M1 can be
thought of as a tick of the clock. We shall call it a
light-beam clock. We see that when the clock is
stationary with respect to the observer, it ticks at an
interval 2L/c and when it moves with respect to the
observer, it ticks at an interval γ (2L/c). Thus,

A moving clock runs slower than a stationary clock
by a factor of γ.
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Remember, any of the two clocks may be taken to
be stationary. Suppose A and B are two clocks moving
with respect to each other. As seen from the frame of
A, B runs slower and as seen from the frame of B, A
runs slower.

Proper time interval

The concept of proper and improper time interval
is valid for any two events and not only for two ticks
of a clock.

Consider two events E1 and E2. Suppose, E1 occurs
at x = 0 at a time t = 0 and E2 occurs at x = L at a time
t as seen from a frame S (figure 47.4).

Suppose a clock C is at x = 0 at t = 0 and moves
along the x-axis with a speed L/t. At time t, this clock
will be at x = L. So this same clock is present at both
the events E1 and E2.

 Consider a frame S′ moving along the x-axis at a
speed L/t with respect to S. In this frame, the clock
is at rest and both the events are measured on the
same clock. In other words, both the events take place
at the same place in S′.

As seen from S, the time interval between the
events is t. The clock C is moving with respect to S
and hence runs slower by a factor γ. The time interval
between the events as measured by this clock is
t′ = t/γ. This is also the time interval between E1 and
E2 in frame S′ and hence is the proper time interval.

In the frame S′, the events can be recorded by a
single clock. All other frames where two clocks are
needed to record the events, give improper time
intervals. The proper time interval is smaller than an
improper time interval by a factor of γ.

Example 47.1

   A person in a train moving at a speed 3 × 10 7m s −1 sleeps
at 10.00 p.m. by his watch and gets up at 4.00 a.m. How
long did he sleep according to the clocks at the stations ?

Solution : The time interval measured by the watch is the
proper time interval because the events, ‘sleeping’ and
‘getting up’, are recorded by the single clock (the watch).
The clocks at the stations represent the ground frame
and in this frame he sleeps at one place and gets up at
another place. Thus, the time interval measured by the

station clocks is improper time interval and is more than
the proper time interval.
The duration of his sleep in the ground frame is

∆t′ = γ∆t = 
∆t

√1 − v 2/c 2
 = 

6 h

√1 − 




3 × 10 7 m s −1

3 × 10 8 m s −1





 2
 

= 6 h √100
99

 = 6 hours 1.8 minutes.

The speed of the train in this example is hypothetical.
A typical fast train today runs at about 300 km h −1.
Repeat the exercise with such a train.

(C) A Rod Moving Parallel to its Length
   (Length Contraction)

Consider the light-beam clock that we discussed.
Suppose it is moved at a velocity v along its length
(figure 47.5) with respect to an observer. As the rod
in the light-beam clock is now moving parallel to its
length, we do not know whether the rod retains its
length or not. Suppose the length of the rod is L′ in
the frame S. Consider a light pulse reflected from
M1 and moving towards M2. Now, M2 is itself moving
with velocity v in the same direction. Suppose that the
pulse strikes M2 at the position M2′ and that it has
taken a time ∆t ′ to go from the position M1 to M2′.
The mirror M2 has moved ahead a distance v∆t1′ so
that the pulse has moved a distance L′ + v∆t1′ before
striking M2. But the speed of light pulse is c so that
it must travel a distance c∆t1′ in time ∆t1′. Thus,
             c∆t1′ = L′ + v∆t1′

   or, ∆t1′ = 
L′

c − v
 ⋅

Similarly, the time taken by the pulse in its return
journey from M2 to M1 (it strikes M1 at the position
M1′) is

          ∆t2′ = 
L′

c + v
 ⋅ 

The total time elapsed between successive reflections
from M1 is, therefore,

        ∆t′ = ∆t1′ + ∆t2′ = 
L′

c − v
 + 

L′
c + v

= 
2L′c

c 2 − v 2
 ⋅ … (i)
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But ∆t′ is the improper time interval between the
two reflections as they occur at different places. An
observer, stationary with respect to the rod of the
light-beam block, measures this interval to be
∆t = 2L/c which is the proper time interval between
the same two events. Thus, from the equation (47.1),

          ∆t′ = (∆t)γ

= 



2L
c




 γ. … (ii)

Using (i) and (ii),

     
2L′c

c 2 − v 2
 = 

2L

c √1 − v 2/c 2
 

or, 
L′

(1 − v 2/c 2)
 = 

L

√1 − v 2/c 2
 

   or, L′ = L √1 − v 2/c 2  = L/γ. … (47.2)

The length of a rod is contracted by a factor of γ
if it moves parallel to its length. The length measured
by an observer at rest with respect to the rod is called
its rest length or proper length. Thus,

The length of a rod moving parallel to itself is
shorter than its rest length by the factor γ. This
phenomenon is called length contraction.

Example 47.2

   The passenger of example 47.1 slept with his head
towards the engine and feet towards the guard’s coach.
If he measured 6 ft in the train frame, how tall is he in
the ground frame ?

Solution : In the ground frame, the passenger is moving
with a velocity c/10. His length is thus contracted. The
length measured in the train frame is the rest length of
the passenger as the passenger is at rest in the train.
Thus, his length in the ground frame is

L′ = 6 ft √1 − 




1
10





 2

 = 6 ft√99
100

 = 5 feet 11.6 inches.

(D) Which Event Occurred Earlier ?

A very important result of special relativity that
often surprises beginners is that the concept of
simultaneity and ordering of events depends on frame.
It is possible that an event E1 occurs before another
event E2 in one frame but after E2 in some other frame.

Suppose, a long box of rest length L, having two
doors D1 and D2 at the ends, lies on the ground (figure
47.6a). At the middle point of the box, there is a light
source which can be switched on or off rapidly.
Suppose the mechanism is such that when a light
pulse strikes a door, the door opens. There are two
trains T1 and T2, the first moving towards the left and

the other towards the right with respect to the ground,
both at speed v. Figure (47.6a) shows the situation
from the ground frame.

Suppose the light source at C is switched on at
t = 0. Light pulses travel towards D1 and D2, finally
striking and opening them. Which of the two doors
opened first ? In the ground frame, D1 and D2 do not
move and C is at the middle point. Both the light
pulses travel with the same speed c and cover equal
distances L/2 before striking the doors. Both the doors

were opened at t = L
2c

 , i.e., the two events are

simultaneous in the ground frame.
Now analyse the situation from the train T1. The

scene from T1 is shown in figure (47.6b). The box is
moving towards the right at a speed v. The length of

the box is L′ = L √1 − v 2/c 2 . Consider the light pulse
moving towards D1. The door D1 is coming towards the
pulse with a velocity v. If the time taken by the pulse
to reach D1 is ∆t1′, the door has moved a distance
v∆t1′ and the pulse had to travel a distance
L′/2 − v∆t1′. Thus,

         c∆t1′ = 
L′
2

 − v∆t1′

   or ∆t1′ = 
L′

2(c + v)
 ⋅ … (47.3)

Similarly, the time taken by the pulse to reach D2 is

          ∆t2′ = 
L′

2(c − v)

   or, ∆t2′ − ∆t1′ = 
L′
2

 


1
c − v

 − 
1

c + v




 = 
L′v

c 2(1 − v 2/c 2)
 = 

Lv

c 2√(1 − v 2/c 2)

   or, ∆t2′ − ∆t1′ = 
Lv

c 2
 γ. … (47.4)

As ∆t2′ > ∆t1′, the door D2 opens after D1 in the
frame of T1. Similar analysis from T2 shows that D2
opens before D1 in the frame of T2.
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Which of the door opened first ? The answer
depends on the frame. In the ground frame both
opened together, in the frame of the train T1 the door
D1 opened before D2 and in the frame of the train T2

the door D2 opened before D1.

Example 47.3

   Suppose the rest length of the box in figure (47.6) is
30 light seconds. The train T1 travels at a speed of 0.8c.
Find the time elapsed between opening of D1 and D2 in
the frame of T1.

Solution : The box moves in the frame of T1 with a speed
of 0.8c so that

          γ = 
1

√1 − (0⋅8) 2
 = 

1

0⋅6
 ⋅

In this frame, D2 opens after D1. The time elapsed
between the openings of the doors is

Lv
c 2  γ = 

(30 light seconds) × (0.8c)
c 2 × 0.6

 = 
(30 s)c × (0.8c)

c 2 × 0.6
 = 40 s.  

(E) Are the Clocks Synchronized ?

How do we synchronize two clocks separated from
each other ? The readings of the two clocks must be
the same at the same instant. One way of doing this
is to place a light source at the middle point between
the clocks and send light pulses simultaneously
towards the clocks. The time t = 0 on a clock may be
set at the arrival of the pulse at the clock. As the light
pulses travel at identical speeds and the source is
placed exactly midway between the clocks, this process
ensures that the clocks simultaneously read t = 0.

Once again consider the situation of figure (47.6a)
redrawn in figure (47.7). Suppose the train T1 is very
long and a series of clocks are kept on it along its
length. Suppose there are clocks fixed in the box at
the doors D1 and D2 and the hands are set at zero as
the light pulses reach the doors. These clocks are
synchronized in the ground frame. The doors open
simultaneously in the ground frame and hence the
clocks simultaneously read t = 0.

The clocks in T1 are synchronized by the same
procedure performed in the train. As the door D1 opens,
some clock C1 on the train will be opposite to D1 and
it will have some reading, say t′1. Similarly, as the
door D2 opens, there will be some clock C2 on the train
opposite to D2 and it will have a reading t′2.

We have seen that (equation 47.4) according to
these clocks on T1, door D2 opens after D1 and the time
lag is

           t′2 − t′1 = 
Lv

c 2
 γ. … (i)

In ground frame, the doors open at the same
instant t = 0. So the clock C1 reads t′1 at the same
instant when C2 reads t′2. So in the ground frame, the
train clocks are out of synchronization. The clock C2,
that is at the rear, is ahead of the clock C1, that is at
the front, by an amount

             ∆t = 
Lv

c 2
 γ. … (47.5)

Here L is the separation between the doors D1 and
D2 as measured from the ground frame. It is also the
separation between C1 and C2 as measured from the
ground frame. But the length C1C2 measured from the
ground frame is the moving length as C1 and C2 are
moving with respect to the ground. The distance
between C1 and C2 in the train frame, i.e., the rest
length C1C2, will be larger than the moving length.
Thus, the rest separation of the clock C1C2 is L0 = Lγ
and equation (47.5) can be reframed as

             ∆t = 
L0v

c 2
 ⋅ … (47.6)

The clocks of a moving frame are out of
synchronization. The clock at the rear leads the one at
the front by L0v/c

2
, where L0 is the rest separation

between the clocks, and v is the speed of the moving
frame.

Remember that the first postulate asserts that you
can call any inertial frame at rest and the conclusions
above are valid for all frames. In the previous example,
we can very well take the train T1 as the rest frame
and then the clocks of the ground frame will be out of
synchronization.

47.4 DYNAMICS AT LARGE VELOCITY 

When velocities comparable to the velocity of light

are involved, Newton’s second law of motion, F
→

 = ma
→

,
does not adequately govern the dynamics. We shall not
deduce the correct laws but state them.

The linear momentum p
→

 of a particle is defined as
             p

→
 = m0 γ v

→
 … (47.7)
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where m0 is the mass of the particle as we know it in
Newtonian mechanics. The quantity

         m = m0 γ = 
m0

√1 − v 2/c 2
 

is called the moving mass of the particle when it moves
at a speed v with respect to the observer. Thus, the
mass of the particle is different for different observers.
The mass m0, measured by an observer at rest with
respect to the particle, is called its rest mass.

With equation (47.7) as the definition of
momentum, the law of dynamics is

              
dp

→

dt
 = F

→
. … (47.8)

Equation (47.8) leads to the law of conservation of
relativistic momentum. If no force acts on a particle,
its momentum remains constant.

Example 47.4

   A particle is kept at rest at the origin. A constant force

F
→

 starts acting on it at t = 0. Find the speed of the particle
at time t.

Solution :

The equation of motion is,

              
dp

→

dt
 = F

→
. 

As the particle starts from rest and the force is always
in the same direction, the motion will be along this
direction only. Thus, we can write

              
dp
dt

 = F

or, ∫ 
0

p

dp = ∫ 
0

t

F dt

or, p = Ft

or,           
m0 v

√1 − v 2/c 2
 = Ft

or,         m0
 2v 2 = F 2t 2 − 

F 2t 2

c 2  v 2 

or,          v 2 



m0

 2 + 
F 2t 2

c 2




 = F 2t 2

or,          v = 
Ftc

√m0
 2c 2 + F 2t 2

 ⋅

Note from example (47.4) that however large t may
be, v can never exceed c. No matter how long you apply
a force, the speed of a particle will be less than the
speed c.

47.5 ENERGY AND MOMENTUM 

According to relativistic dynamics, matter is a
condensed form of energy. The energy E equivalent to
a mass m is given by the equation

            E = mc 2. … (47.9)

Thus, matter can be converted into energy and
energy into matter. If work is done on a particle,
energy is supplied to it. Its energy increases and hence
the mass increases. Energy and mass are names for
one and the same physical quantity in this viewpoint.
When a particle is at rest, its mass is m0 which is
called its rest mass. The energy concentrated in it is,
therefore, E0 = m0c 2. This is called the rest mass energy
of the particle. If the particle moves at a speed v, its
mass changes to

        m = m0 γ = 
m0

√1 − v 
2
/c 

2
 

and the total energy in it becomes E = mc 2

    = m0c 2 



1 − 

v 2

c 2




 − 1/2

= m0c 2 



1 + 

v 2

2c 2
 + 

1
2

 ⋅ 3
4

 
v 4

c 4
 + …





= m0c 2 + 
1
2

 m0v 2 + … … (i)

The extra energy (mc 2 − m0c 2) is called the kinetic
energy. If v << c, the higher order terms in (i) are

negligible and hence the kinetic energy is K = 1
2
 m0v 2

as usual. Combining the equations

         p = mv = 
m0v

√1 − v 
2
/c 

2
 

and E = mc 2 = 
m0c 2

√1 − v 
2
/c 

2
 ,

one can deduce that

         E 2 = m0
 2
c 4 + p 2c 2.  … (47.10)

For particles having zero rest mass like photons,
m0 = 0 and hence from equation (47.10),

            E = pc

   or, p = E/c. … (47.11)

This result has already been used in previous
chapters for photons.

Example 47.5

   If a mass of 3.6 g is fully converted into energy, how
many kilowatt hour of electrical energy will be obtained ?

Solution :

The energy obtained is

E = mc 2 = (3.6 × 10 − 3 kg) (3 × 10 8 m s −1) 2 = 32.4 × 10 13 J.

Now 1 kilowatt hour = 10 3 J s −1 × 3600 s = 3.6 × 10 6 J.

Thus, E = 
32.4 × 10 13

3.6 × 10 6  kWh = 9 × 10 7 kWh.
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47.6 THE ULTIMATE SPEED

We saw in example (47.4) that even if we continue
to apply a force on a particle for a long time, its speed
cannot exceed c. This is a very general result in special
relativity. In fact, no information can be sent with a
speed greater than c. If we assume that information
can be sent with a speed greater than c, it turns out
that we shall have frames in which a bullet will hit
the bird before it is actually fired, a dog can die before
it is born and so on. If the effect cannot precede its
cause in any frame, then c is the ultimate speed for
any material particle or information.

Scientists have worked out the mathematics for a
world in which all the particles are moving with
respect to each other with speeds greater than c. Such
a world can exist without violating the postulates of
relativity but these particles can never be slowed down
to a speed less than c. The particles of this hypothetical
world cannot interact with ours and in that world,
effect will always precede its cause. Such particles are
named tachyons and a group of physicists is working
to explore the possibility of the actual existence of such
particles. These large speeds and the unworldly results
remind us of several stories from Indian Scriptures
and no wonder the idea of tachyons was mooted by an
Indian scientist E.C.G. Sudarshan.

47.7 TWIN PARADOX

As the postulates of special relativity lead to
results which contradict ‘common sense’, a number of
interesting paradoxes have been floated. We shall
describe one of the most famous paradoxes of
relativity—the twin paradox. Consider the twins Ram
and Balram living happily on the earth. Ram decides
to make a trip to a distant planet P, which is at rest
with respect to the earth, and come back. He boards
a spaceship S1, going towards the planet with a
uniform velocity. When he reaches the planet, he
jumps from the spaceship S1 to another spaceship S2

which is going towards the earth. When he reaches
the earth, he jumps out and meets his brother Balram.

As Ram returns from his trip and stands next to
Balram, do they have equal age ? Or is Ram younger
than Balram or is he older than Balram ?

To keep the calculations simple, let us assume the
following data:

Distance between the earth and
                  the planet = 8 light-years,

speed of S1 with respect to earth = 0.8c, and

speed of S2 with respect to earth = 0.8c.
When we said that the distance between the earth

and the planet P is 8 light-years, was it clear to you

that this length is the length as measured from the
earth frame ?

First, let us analyse the events from the point of
view of Balram who is on the earth. For him, both the
spaceships move at a speed 0.8c. So,

        γ = 
1

√1 − v 
2
/c 

2
 = 1

0.6
 ⋅

When Ram is on S1, he is moving and all his clocks
run slower because of time dilation. His heartbeat,
pulse beat, etc., represent clocks in themselves and
they all run slower. Balram calculates that Ram will
take 8 light-year/0.8c = 10 years to reach the planet P.
But during all these 10 years, time is passing slowly
on S1 and the clocks will read only 10 years × 0.6 = 6
years in this period. The number of breaths taken by
Ram corresponds to 6 years only.

Ram jumped into S2 for the return journey. This
spaceship is also moving at 0.8c and for Balram,  time
passes slowly on S2 as well. Although 10 years passed
on the earth during Ram’s return journey, on the
spaceship the journey was clocked at 6 years. Thus,
Ram has aged only 12 years whereas Balram has aged
20 years during this expedition. Ram has become
younger than Balram by 8 years. This difference in
aging is real in the sense that Ram shows lesser signs
of aging like he has lesser white hairs than his brother.

The observation of Balram is quite consistent with
the special theory of relativity. Such experiments are
indeed performed in laboratories with radioactive
particles. Particles are accelerated to large speeds and
are kept at these speeds for quite some time by
magnetic fields. These particles with large speeds have
longer lives than their counterparts kept at rest in the
laboratory.

The paradox arises when we analyse the events
from the point of veiw of Ram. When he is in the
spaceship S1, to him the distance between the earth
and the planet is not 8 light-years. The earth and the
planet P are moving with respect to Ram and hence
he is measuring contracted length. The separation is,
therefore, 8 light-years × 0.6 = 4.8 light-years. As the
planet is approaching Ram at 0.8c, the time taken by
the planet to reach Ram is 4.8 light-year/0.8c = 6 years.
So according to Ram’s clock, he jumped from S1 to S2

6 years after getting into S1. Once he is on S2, the
earth and the planet are again moving with the same
speed 0.8c. Again, the earth is 4.8 light-years from the
planet and is approaching at 0.8c. It takes 6 years for
the earth to reach Ram. Thus, according to Ram’s
clock, he was out for 12 years from the earth, the same
result as Balram had expected.

But how about Ram’s calculation of Balram’s age ?
When Ram is on S1, the earth is going away from him
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with a speed 0.8c. Ram will find that the time on the
earth is passing slower by a factor of 0.6 so that
Balram is aging slower than he is. The same is true
when he is on S2. During this period also, Balram is
moving (towards Ram) with a speed 0.8c and hence
time is passing slowly for Balram. As 12 years passes
on Ram’s clock, he calculates that Balram’s clocks have
advanced only by 12 years × 0.6 = 7.2 years in this
period. According to this analysis, Ram should find
that Balram is 12 – 7.2 = 4.8 years younger than him.

This is the paradox. According to Ram, Balram’s
clocks are running slow and according to Balram,
Ram’s clocks are running slow. Each thinks the other
is younger. Where lies the fallacy ?

The fallacy lies in the fact that Ram has changed
frames whereas Balram has stayed in an inertial
frame. Thus, the roles of the twins are not
symmetrical. The ordering of events are different in
different frames and Ram must take that into account
when he changes frames. Suppose Ram gets into  the
spaceship S1 when his clock reads zero. So does
Balram’s clock. What is the reading of the planet’s
clock at this instant ? According to Balram, it is zero
because both the earth and the planet are at rest and
the clocks are synchronized in his frame. But that is
not so in S1. As Ram gets into S1, he may have the
following conversation with the captain of the ship.

Captain: Welcome aboard S1. I saw you on the
earth, coming towards us. Your jump to board this ship
was perfect. Where are you going ?

Ram: Thank you. I am going to the planet P. How
far is it from here and how long will it take for the
planet to come to us ?

Captain: Planet P is 4.8 light-years from us at the
moment. It is coming towards us at a speed of 0.8c so
it will take 4.8 light-years/0.8c = 6 years for the planet
P to reach us.

Ram: Well, the clocks on the earth and the planet
are running a bit slower than ours. I have been taught
that moving clocks run slow by a factor of γ. This factor
is 1/0.6 for these clocks. So they will advance by 6 years
× 0.6 = 3.6 years by the time the planet reaches us.

Captain: Yes, both the clocks will advance by 3.6
years by the time you jump on the planet P.

Ram: The earth-clock was reading t = 0 as we
passed the earth. This means when I jump on the
planet P the clocks on the earth and the planet will
be reading 3.6 years.

Captain: Here you are mistaken. Don’t you
remember that the planet’s clock is not synchronized

with the earth’s clock ? The planet’s clock is at the rear
end, and hence is running 6.4 years ahead of the
earth’s clock. At the instant the earth’s clock was
reading zero, the planet’s clock was reading 6.4 years.
As the planet reaches us, both the clocks will advance
by 3.6 years. So when you jump out of S1, the earth’s
clock will be reading 3.6 years but the planet’s clock
will be reading 10 years.

Ram understands the logic. In the earth’s frame,
the two clocks read zero simultaneously. But in
S1-frame, the event “planet’s clock reading zero”
occurred several years before “earth’s clock reading
zero”. Six years pass in S1 and Ram finds that the
planet P has reached him. He finds another spaceship
S2 which is heading towards the earth. Ram jumps onto
S2. In the process he looks at the planet’s clock and
finds that it is reading 10 years as calculated by him
on S1. On S2, he starts talking to the commander of the
ship.

Commander: Welcome to S2. How long will you be
with us ?

Ram: Thank you. I am going to Earth. Earth is at
present 4.8 light-years from here and is coming
towards us with a speed of 0.8c. So I will be with you
for 6 years. The captain of S1 told me that the earth’s
clock is reading 3.6 years at this moment whereas the
planet’s clock reads 10 years. There is a difference of
6.4 years in the reading because the two clocks are not
synchronized. Also ….

Commander: Sorry for interrupting you, but you
are mistaken. It is true that the earth’s clock and the
planet’s clock are not synchronized as they are moving
past us. Also the difference in the readings of the two
clocks is 6.4 years. But the planet’s clock is at the front
and the earth’s clock is at the rear. It is the earth’s
clock that is leading by 6.4 years. At the moment the
planet’s clock reads 10 years and hence the earth’s
clock must be reading 16.4 years.

Ram: Hmm… you are right. In S1, the earth was
at the front and its clock lagged behind the planet’s
clock. But in S2 it is the other way round. Indeed the
earth’s clock reads 16.4 years whereas the planet’s
clock reads 10 years.

Commander: That’s right. The earth’s clock is
reading 16.4 years at present. It will advance by another
3.6 years during the 6 years you will be with us. So it
will be reading 20 years when the earth reaches you.

We see that the paradox is resolved.
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Worked Out Examples

 1. A hypothetical train moving with a speed of 0.6c passes
by the platform of a small station without being slowed
down. The observers on the platform note that the length
of the train is just equal to the length of the platform
which is 200 m. (a) Find the rest length of the train.
(b) Find the length of the platform as measured by the
observers in the train.

Solution : (a) The length L′ of the train at a speed 0.6c is
200 m. If the rest length is L,

          L′ = L √1 − v 2/c 2

or, L = 
L′

√1 − v 2/c 2
 = 

200 m

√1 − (0.6) 2
 

= 250 m.

(b) The rest length of the platform is 200 m. For the
observers in the train, the platform is moving at a speed
of 0.6 c. The length as measured by the observers in the
train is, therefore,

        L′ = 200 m √1 − (0.6) 2  = 160 m.

 2. Unstable pions are produced as a beam in a nuclear
reaction experiment. The pions leave the target at a speed
of 0.995c. The intensity of the beam reduces to half its
original value as the beam travels a distance of 39 m.
Find the half-life of pions (a) in the laboratory frame,
(b) in their rest frame.

Solution : (a) The intensity of the pion beam reduces to
half its original value in one half-life. The half-life of
the pions as measured in the laboratory is

     t1/2 = 
39 m

0.995 c
 = 

39 m
0.995 × 3 × 10 8 m s −1

= 1.3 × 10 − 7 s.

(b) The events—a pion leaving the target and its
decaying—occur at the same place in the pion-frame.
Thus, the time measured in the pion-frame is the proper
time and is the smallest. It is equal to

  t′1/2 = t1/2√1 − v 2/c 2  = (1.3 × 10 − 7 s) √1 − (0.995) 2

= 1.3 × 10 − 8 s.

 3. Two events A and B occur at places separated by 10 6 km,
B occurring 5 s after A. (a) Find the velocity of a frame
in which these events occur at the same place. (b) What
is the time interval between the events in this frame ?

Solution :

(a) Suppose the events A and B occur at points X and
Y at times tA and tB where tB = tA+ 5 s. Consider a small
train which is at the point X when the event A occurs.

Suppose, this same train moves towards Y and reaches
the point Y when the event B occurs. Thus, the events
A and B occur at the same place in the train frame. This
frame moves 10 6 km in 5 s as seen from the original
frame. Thus, the velocity of the train frame is

       v = 
10 6 km

5 s
 = 2 × 10 8 m s −1.

(b) As the events A and B occur at the same place in
the train frame, the time interval between the events
measured in this frame is the proper interval. Thus, this
time interval is

     = (5 s) √1 − v 2/c 2  = (5 s) √1 − 



2
3





 2

= 3.7 s.

 4. A satellite orbits the earth near its surface. By what
amount does the satellite’s clock fall behind the earth’s
clock in one revolution ? Assume that nonrelativistic
analysis can be made to compute the speed of the satellite
and only the time dilation is to be taken into account for
calculation of clock speeds.

Solution : The speed of the satellite may be obtained from
the equation,

   
GMm

R 2  = 
mv 2

R 

   or, v = √GM
R

= 




(6.67 × 10 − 11 N m 2kg −2) (6 × 10 24 kg)
6400 × 10 3 m





 1/2

= 7910 m s −1. … (i)

Thus, v/c = 
7910

3 × 10 8 = 2.637 × 10− 5

or,     √1 − 



v
c





 2

 = [1 − 6.95 × 10 − 10 ] 1/2

≈ 1 − 3.48 × 10 − 10.

The time taken by the satellite to complete one
revolution is

   T = 
2πR

v
 = 

6.28 × 6400 × 10 3 m

7910 m s −1  = 5080 s.

The clock on the satellite will slow down as observed
from the earth. If the time elapsed on the satellite’s clock
is t as the satellite completes one revolution (this is
proper time and 5080 s is improper time),

             t = (1 − 3.48 × 10 − 10) × (5080 s)

or,   
t

5080 s
 = 1 − 3.48 × 10 − 10

� �

� �
����� �����

Figure 47-W1
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or,       
(t − 5080 s)

5080 s
 = − 3.48 × 10 − 10

or,       (t − 5080 s) = − 1.77 × 10 − 6 s.

The satellite’s clock falls behind by 1.77 × 10 − 6 s in one
revolution.

 5. The radius of our galaxy is about 3 × 10 20 m. With what
speed should a person travel so that he can reach from
the centre of the galaxy to its edge in 20 years of his
lifetime ?

Solution : Let the speed of the person be v. As seen by the
person, the edge of the galaxy is coming towards him at
a speed v. In 20 years (as measured by the person), the
edge moves (20 y) v and reaches the person. The radius
of the galaxy as measured by the person is, therefore,
(20 y)v. The rest length of the radius of the galaxy is
3 × 10 20 m. Thus,

           (20 y)v = (3 × 10 20 m) √1 − v 2/c 2

or, (6.312 × 10 8 s) 2 v 2 = (9 × 10 40 m 2) (1 − v 2/c 2).

Solving this,

v = 0.9999996 c.

 6. Find the speed at which the mass of an electron is double
of its rest mass.

Solution : The mass of an electron at speed v is

m = 
m0

√1 − v 2/c 2
 

where m0 is its rest mass. If m = 2 m0,

2 = 
1

√1 − v 2/c 2
 

or, 1 − 
v 2

c 2  = 
1
4

or, v = 
√3
2

 c = 2.598 × 10 8 m s −1.

 7. Calculate the increase in mass when a body of rest mass
1 kg is lifted up through 1 m near the earth’s surface.

Solution : The increase in energy = mgh

        = (1 kg) (9.8 m s −2) (1 m) = 9.8 J.

The increase in mass = 
9.8 J

c 2  

          = 1.11 × 10 − 16 kg.

 8. A body of rest mass m0 collides perfectly inelastically at
a speed of 0.8c with another body of equal rest mass kept
at rest. Calculate the common speed of the bodies after
the collision and the rest mass of the combined body.

Solution : The linear momentum of the first body

        = 
m0 v

√1 − v 2/c 2
 = 

m0 × 0.8c
0.6

= 
4
3

 m0 c.

This should be the total linear momentum after the
collision. If the rest mass of the combined body is M0

and it moves at speed v′,

            
M0 v′

√1 − v′ 2/c 2
 = 

4
3

 m0c.  … (i)

The energy before the collison is

      
m0

√1 − v 2/c 2
 c 2 + m0c 2 = m0c 2 



1
0.6

 + 1



      = 
8
3

 m0c 2.

The energy after the collision is

           
M0c 2

√1 − v′ 2/c 2
 ⋅

    Thus,      
M0c 2

√1 − v′ 2/c 2
 = 

8
3

 m0c 2. … (ii)

Dividing (i) by (ii),

          
v′
c 2 = 

1
2c

    or,    v′ = 
c
2

 ⋅

Putting this value of v′ in (ii),

M0 = 
8
3

 m0 √1 − 
1
4

 

or, M0 = 2.309 m0.

The rest mass of the combined body is greater than the
sum of the rest masses of the individual bodies.

QUESTIONS FOR SHORT ANSWER

 1. The speed of light in glass is 2.0 × 10 8 m s −1. Does it
violate the second postulate of special relativity ?

 2. A uniformly moving train passes by a long platform.
Consider the events ‘engine crossing the beginning of

the platform’ and ‘engine crossing the end of the
platform’. Which frame (train frame or the platform
frame) is the proper frame for the pair of events ?
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 3. An object may be regarded to be at rest or in motion
depending on the frame of reference chosen to view the
object. Because of length contraction it would mean that
the same rod may have two different lengths depending
on the state of the observer. Is this true ?

 4. Mass of a particle depends on its speed. Does the
attraction of the earth on the particle also depend on
the particle’s speed ?

 5. A person travelling in a fast spaceship measures the
distance between the earth and the moon. Is it the same,
smaller or larger than the value quoted in this book ?

OBJECTIVE I

 1. The magnitude of linear momentum of a particle moving
at a relativistic speed v is proportional to
(a) v                 (b) 1 − v 2/c 2

(c) √1 − v 2/c 2            (d) none of these.

 2. As the speed of a particle increases, its rest mass
(a) increases            (b) decreases
(c) remains the same       (d) changes.

 3. An experimenter measures the length of a rod. Initially
the experimenter and the rod are at rest with respect
to the lab. Consider the following statements.
(A) If the rod starts moving parallel to its length but the
observer stays at rest, the measured length will be reduced.
(B) If the rod stays at rest but the observer starts moving
parallel to the measured length of the rod, the length
will be  reduced.
(a) A is true but B is false. (b) B is true but A is false.
(c) Both A and B are true.  (d) Both A and B are false.

 4. An experimenter measures the length of a rod. In the
cases listed, all motions are with respect to the lab and
parallel to the length of the rod. In which of the cases
the measured length will be minimum ?
(a) The rod and the experimenter move with the same
       speed v in  the same direction.

(b) The rod and the experimenter move with the same
       speed v in  opposite directions.
(c) The rod moves at speed v but the experimenter stays
       at rest.
(d) The rod stays at rest but the experimenter moves
       with the speed  v.

 5. If the speed of a particle moving at a relativistic speed
is doubled, its linear momentum will
(a) become double     (b) become more than double
(c) remain equal      (d) become less than double.

 6. If a constant force acts on a particle, its acceleration will
(a) remain constant        (b) gradually decrease
(c) gradually increase       (d) be undefined.

 7. A charged particle is projected at a very high speed
perpendicular to a uniform magnetic field. The particle
will
(a) move along a circle
(b) move along a curve with increasing radius of
       curvature
(c) move along a curve with decreasing radius of
       curvature
(d) move along a straight line.

OBJECTIVE II

 1. Mark the correct statements:
(a) Equations of special relativity are not applicable for
       small speeds.
(b) Equations of special relativity are applicable for all
       speeds.
(c) Nonrelativistic equations give exact result for small
       speeds.
(d) Nonrelativistic equations never give exact result.

 2. If the speed of a rod moving at a relativistic speed
parallel to its length is doubled,
(a) the length will become half of the original value
(b) the mass will become double of the original value
(c) the length will decrease
(d) the mass will increase.

 3. Two events take place simultaneously at points A and
B as seen in the lab frame. They also occur
simultaneously in a frame moving with respect to the
lab in a direction

(a) parallel to AB        (b) perpendicular to AB
(c) making an angle of 45° with AB
(d) making an angle of 135° with AB. 

 4. Which of the following quantities related to an electron
has a finite upper limit ?
(a) Mass  (b) Momentum  (c) Speed  (d) Kinetic energy

 5. A rod of rest length L moves at a relativistic speed. Let
L′ = L/γ. Its length
(a) must be equal to L′      (b) may be equal to L
(c) may be more than L′ but less than L
(d) may be more than L.

 6. When a rod moves at a relativistic speed v, its mass
(a) must incrase by a factor of γ
(b) may remain unchanged
(c) may increase by a factor other than γ
(d) may decrease.
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EXERCISES

 1. The guru of a yogi lives in a Himalyan cave, 1000 km
away from the house of the yogi. The yogi claims that
whenever he thinks about his guru, the guru
immediately knows about it. Calculate the minimum
possible time interval between the yogi thinking about
the guru and the guru knowing about it.

 2. A suitcase kept on a shop’s rack is measured
50 cm × 25 cm × 10 cm by the shop’s owner. A traveller
takes this suitcase in a train moving with velocity 0.6c.
If the suitcase is placed with its length along the train’s
velocity, find the dimensions measured by (a) the
traveller and (b) a ground observer.

 3. The length of a rod is exactly 1 m when measured at
rest. What will be its length when it moves at a speed
of (a) 3 × 105 m s−1, (b) 3 × 106 m s−1 and (c) 3  × 107 m s−1 ?

 4. A person standing on a platform finds that a train
moving with velocity 0.6c takes one second to pass by
him. Find (a) the length of the train as seen by the
person and (b) the rest length of the train.

 5. An aeroplane travels over a rectangular field
100 m × 50 m, parallel to its length. What should be the
speed of the plane so that the field becomes square in
the plane frame ?

 6. The rest distance between Patna and Delhi is 1000 km.
A nonstop train travels at 360 km h −1. (a) What is the
distance between Patna and Delhi in the train frame ?
(b) How much time elapses in the train frame between
Patna and Delhi ?

 7. A person travels by a car at a speed of 180 km h −1. It
takes exactly 10 hours by his wristwatch to go from the
station A to the station B. (a) What is the rest distance
between the two stations ? (b) How much time is taken
in the road frame by the car to go from the station A to
the station B ?

 8. A person travels on a spaceship moving at a speed of
5c/13. (a) Find the time interval calculated by him
between the consecutive birthday celebrations of his
friend on the earth. (b) Find the time interval calculated
by the friend on the earth between the consecutive
birthday celebrations of the traveller.

 9. According to the station clocks, two babies are born at
the same instant, one in Howrah and other in Delhi.
(a) Who is elder in the frame of 2301 Up Rajdhani
Express going from Howrah to Delhi ? (b) Who is elder
in the frame of 2302 Dn Rajdhani Express going from
Delhi to Howrah.

10. Two babies are born in a moving train, one in the
compartment adjacent to the engine and other in the
compartment adjacent to the guard. According to the
train frame, the babies are born at the same instant of
time. Who is elder according to the ground frame ?

11. Suppose Swarglok (heaven) is in constant motion at a
speed of  0.9999c with respect to the earth. According
to the earth’s frame, how much time passes on the earth
before one day passes on Swarglok ?

12. If a person lives on the average 100 years in his rest
frame, how long does he live in the earth frame if he
spends all his life on a spaceship going at 60% of the
speed of light.

13. An electric bulb, connected to a make and break power
supply, switches off and on every second in its rest
frame. What is the frequency of its switching off and on
as seen from a spaceship travelling at a speed 0.8c ?

14. A person travelling by a car moving at 100 km h−1 finds
that his wristwatch agrees with the clock on a tower A.
By what amount will his wristwatch lag or lead the clock
on another tower B, 1000 km (in the earth’s frame) from
the tower A when the car reaches there ?

15. At what speed the volume of an object shrinks to half
its rest value ?

16. A particular particle created in a nuclear reactor leaves
a 1 cm track before decaying. Assuming that the particle
moved at 0.995c, calculate the life of the particle (a) in
the lab frame and (b) in the frame of the particle.

17. By what fraction does the mass of a spring change when
it is compressed by 1 cm ? The mass of the spring is
200 g at its natural length and the spring constant is
500 N m −1.

18. Find the increase in mass when 1 kg of water is heated
from 0°C to 100°C. Specific heat capacity of water =
4200 J kg −1K −1.

19. Find the loss in the mass of 1 mole of an ideal
monatomic gas kept in a rigid container as it cools down
by 10°C. The gas constant R = 8.3 J K −1mol −1.

20. By what fraction does the mass of a boy increase when
he starts running at a speed of 12 km h −1 ?

21. A 100 W bulb together with its power supply is
suspended from a sensitive balance. Find the change in
the mass recorded after the bulb remains on for 1 year.

22. The energy from the sun reaches just outside the earth’s
atmosphere at a rate of 1400 W m –2. The distance
between the sun and the earth is 1.5 × 10 11 m.
(a) Calculate the rate at which the sun is losing its mass.
(b) How long will the sun last assuming a constant decay
at this rate ? The present mass of the sun is 2 × 10 30 kg.

23. An electron and a positron moving at small speeds
collide and annihilate each other. Find the energy of the
resulting gamma photon.

24. Find the mass, the kinetic energy and the momentum
of an electron moving at 0.8c.

25. Through what potential difference should an electron be
accelerated to give it a speed of (a) 0.6c, (b) 0.9c and
(c) 0.99c ?

26. Find the speed of an electron with kinetic energy
(a) 1 eV, (b) 10 keV and (c) 10 MeV.

27. What is the kinetic energy of an electron in electronvolts
with mass equal to double its rest mass ?

28. Find the speed at which the kinetic energy of a particle

will differ by 1% from its nonrelativistic value 1
2
 m0 v 2.
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ANSWERS

OBJECTIVE I

 1. (d)  2. (c)  3. (c)  4. (b)  5. (b)  6. (b)
 7. (b)

OBJECTIVE II

 1. (b), (d)  2. (c), (d)  3. (b)
 4. (c)  5. (b), (c)  6. (a)

EXERCISES

 1. 1/300 s
 2. (a) 50 cm × 25 cm × 10 cm (b) 40 cm × 25 cm × 10 cm

 3. (a) 0.9999995 m (b) 0.99995 m (c) 0.995 m

 4. (a) 1.8 × 10 8 m (b) 2.25 × 10 8 m

 5. 0.866c
 6. (a) 56 nm less than 1000 km

   (b) 0.56 ns less than 
500

3
 min

 7. (a) 25 nm more than 1800 km 

   (b) 0.5 ns more than 10 hours

 8. 13
12

 y in both cases

 9. (a) Delhi baby is elder (b) Howrah baby is elder
10. the baby adjacent to the guard is elder

11. 70.7 days
12. 125 y

13. 0.6 s − 1

14. will lag by 0.154 ns

15. 
√3c
2

16. (a) 33.5 ps (b) 3.35 ps

17. 1.4 × 10 − 18

18. 4.7 × 10 − 12 kg

19. 1.38 × 10 − 15 kg

20. 6.17 × 10 − 17

21. 3.5 × 10 − 8 kg

22. (a) 4.4 × 10 9 kg s −1 (b) 1.44 × 10 13 y

23. 1.02 MeV

24. 15.2 × 10 − 31 kg,  5.5 × 10 − 14 J,  3.65 × 10 − 22 kg m s −1

25. (a) 128 kV (b) 661 kV (c) 3.1 MV

26. (a) 5.92 × 10 5 m s −1 (b) 5.85 × 10 7 m s −1

   (c) 2.996 × 10 8 m s −1

27. 511 keV

28. 3.46 × 10 7 m s −1
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APPENDIX A

Units and Dimensions of Physical Quantities

Quantity Common Symbol SI Unit Dimension
Displacement s METRE (m) L
Mass m, M KILOGRAM (kg) M
Time t SECOND (s) T
Area A m 2 L2

Volume V m 3 L3

Density  kg m3 M L3

Velocity v, u m s1 L T 1

Acceleration a m s2 L T 2

Force F newton (N) ML T2

Work W joule (J)(= N–m) ML2 T2

Energy E, U, K joule (J) ML2 T2

Power P watt W J s1 ML2 T3

Momentum p kgm s1 ML T 1

Gravitational constant G Nm 2 kg 2 L3 M1T 2

Angle ,   radian
Angular velocity  rad s1 T  1

Angular acceleration  rad s2 T  2

Angular momentum L kgm 2 s1 ML2 T 1

Moment of inertia I kgm 2 ML2

Torque  Nm ML2 T 2

Angular frequency  rad s1 T  1

Frequency  hertz (Hz) T  1

Period T s T
Young’s modulus Y N m2 M L1T 2

Bulk modulus B N m2 M L1T 2

Shear modulus  N m2 M LT 2

Surface tension S N m1 M T 2

Coefficient of viscosity  Ns m 2 M L1T 1

Pressure P, p N m 2, Pa M L1T 2

Wavelength  m L
Intensity of wave I W m 2 M T 3

Temperature T KELVIN (K) 
Specific heat capacity c J kg1K 1 L2 T 2 K 1

Stefan’s constant  W m 2K 4 M T 3K 4

Heat Q J ML2 T 2

Thermal conductivity K W m1K 1 ML T 3K 1

Current I AMPERE(A) I
Charge q, Q coulomb (C) IT
Current density j A m 2 IL2

Electrical conductivity  1/m (= mho/m) I 2T 3 M1L3

Dielectric constant k
Electric dipole moment p Cm LIT
Electric field E V m1 N C1 ML I1T 3

Potential (voltage) V volt (V) J C1 ML2 I1T 3

Electric flux  Vm ML3 I1T 3

Capacitance C farad (F) I 2T 4 M1L2

Electromotive force E volt (V) ML2 I1T 3

Resistance R ohm () ML2 I 2T 3

Permittivity of space 0 C 2 N1m 2  F m1 I 2T 4 M1L3

Permeability of space 0 N A2 ML I 2T 2

Magnetic field B tesla (T) Wb m2 M I1T2

Magnetic flux B weber (Wb) ML2 I1T 2

Magnetic dipole moment  Nm T1 IL2

Inductance L henry (H) ML2 I 2T 2
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